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The construction of generating functions for multiplicities of irreducible representations from 
generating functions for compound characters is examined. Weyl reflection symmetry is used to 
simplify the procedure. Two examples involving the enumeration ofSU(3) irreducible 
representations are discussed. 
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1. INTRODUCTION 

In the last few years, generating functions have emerged 
as a useful tool for the solution of a number of problems in 
group representation theory. 1 A single generating function 
(GF) enumerates, in a closed form, all irreducible representa
tions (IR's) of finite dimension contained in some infinite set 
of reducible representations. This infinite set may be, for 
example, the set of all direct products of two IR's or the set of 
all IR's of some larger group. In the former case we obtain a 
generating function for the Clebsch-Gordan series while in 
the latter we obtain a GF for subgroup branching rules. 

Generating functions are rational expressions whose 
numerators and denominators are polynomials in auxiliary 
variables with integer coefficients. When expanded in power 
series, they contain only terms with positive integer coeffi
cients. These coefficients represent the multiplicities of the 
IR labeled by the corresponding powers in the auxiliary var
iables. In a special form, with only positive coefficients in the 
numerators and with denominators which are products of 
terms(l - X), where Xis a product of powers of the auxiliary 
variables, the GF's provide information about the corre
sponding integrity basis. 

Generating functions can be obtained in several ways. 
Simpler GF's can be guessed directly from the lower terms in 
the power series expansion, the result then being tested. A 
GF can be constructed from others by a process of "substitu
tion.,,2 Finally, generating functions can be constructed 
from the characters of the IR's in a manner described below. 
It is the last method which will concern us here. 

The construction of generating functions can be a te
dious procedure. During intermediate stages, before simpli
fication, the function can "balloon" into an almost impossi
bly complicated form. In general, the larger the number of 
(1 - X) denominator factors, the more complicated the GF 
becomes during the intermediate stages. If some of these fac
tors can be effectively eliminated the construction can be 
simplified. Such an elimination has made it possible to con
struct several generating functions enumerating SU(2) irre
ducible representations. 3

•
4 In this paper we shall generalize 

the technique to IR's of any semisimple Lie group. 

In Sec. 2 we review the construction of generating func
tions from IR characters. In Sec. 3 we derive the basic for
mulae of the elimination method. Some examples involving 

multiplicities ofSU(3) IR's are presented in Sec. 4. Section 5 
contains some concluding remarks. 

2. CONSTRUCTION OF GF's FROM IR CHARACTERS 

The character of an irreducible representation A of a Lie 
group can be written 

d / 

X,.(1]) = L n 1]'('", (1) 
j= 1 i= 1 

where d is the dimension of the IR, I is the rank of the group, 
mij is the ith component ofthejth weight and the 1]; are class 
labels. These characters can be determined from the rela
tion5 

x,d1]) = S,d1])/so(1])· 

SA (1]) is the Weyl characteristic for the IR A = (A1,···,A/) 
/ 

SA (1]) = L det(S) n 1]pSjdA
, + I), 

i,j,k = 1 

(2) 

(3) 

where the sum is over Weyl reflections, Yij is the ith compo
nent of the highest weight ofthejth fundamental IR and Sjk 
are the matrices which transform the Yij under the Weyl 
group. The Sjk consist of the matrices 

S'fr-=Ojk-AjkOkn (n=l, ... ,l), (4) 

and all distinct products of these, A jk is the Cartan matrix of 
the group. 

Equation (3) can be used to obtain a generating function 
for Weyl characteristics: 

E(A,1]) = L det(S) iJlnl 1]T'h] 

X [1 -Ak . IT 1]T"s,,] -I. (5) 
I,J= 1 

The coefficent of A ~' ... A l' in the expansion of(5) is the char
acteristic SA (1]). With (2) and (5) we obtain a formal expres
sion for the IR character generator: 

X (A,1]) = E(A,1])/E(O,1]). (6) 

Again the exponents of the auxiliary variables A label the 
irreducible representations while the coefficients provide the 
corresponding character XA (1]). If the 1] are treated as auxil
iary variables, then (6) becomes a weight generator. If the 1] 
are set equal to 1, then (6) becomes a generator for IR dimen-
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sions. The character generator is a useful starting point for 
the construction of other generating functions. 

The characteristic can be used to construct the function 
I 

¢fL (1]) = So(1]) II 1]j - y.,{fLj + I), 
j.j= I 

which has the property 

[¢fL (1])x,d1]) hXI'I) = 0 = 0fL).' 

(7) 

(8) 

where the instruction EX(1]) = 0 indicates that we are to 
keep only terms in the expansion which are independent of 
the 1]j. Acting on a compound character, the function ¢fL (1]) 
under the operation EX(1]) = 0 projects out the multiplicity 
of the IR(,u). We can therefore construct the generating func
tion 

4f!(A,1]) = So(1]) jD1DI 1]j - Y"] 

X [( 1 - Aj jDI 1]j - Y'})] - I. (9) 

If X (1]) is the character of a reducible representation which 
contains the irreducible representation (A ) with a multiplic
ity N). then 

I 

G (A) = [4f!(A,1])X(1])]EXI'I) =0 = L N). II A:', (10) 
). j= I 

is a generating function for IR multiplicities. 
A particularly useful basis in which to work is one in 

which Yij = oij' In this "o-basis" we have 
I 

So(1]) = 3(0,1]) = L det(S) II 1];", (11 ) 
j.k= I 

and 

G(A)= [X(1])SO(1]) jDI1]j-I(I-A;l1]j)-ILxl'I)=0·(12) 

Equation (12) can be shown to be equivalent to 

G(A) = [X (A )So(A) jDI A j-ILx,A);;'O' (13) 

where the EX(A »0 instructs us to keep only the part whose 
expansion contains nonnegative powers of Ai' 

3. ELIMINATION OF DENOMINATOR FACTORS 

Suppose the operation described in Eq. (13) is applied to 
a generating function X (1] ,B ) whose expansion in terms of the 
auxiliary variables B yields a set of compound characters. 
Then the resulting function G (A,B ) will be a generating func
tion enumerating the irreducible representations (labeled by 
A ) contained in reducible representations (labeled by B ). The 
function X (A ,B ) will be a sum of rational expressions whose 
denominators are products offactors (1 - X) where X is a 
product of powers of the variables A and B. The products X 
will contain only nonnegative powers of the B but some A j in 
the products may have negative exponents. A systematic 
procedure exists for the implementation of the EX(A »0 in
struction. If a term has a denominator which contains the 
factor (1 - PAP) (1 - QA - q) where A is one of the variables 
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A and P and Q are products of powers of the other variables, 
then the term can be replaced by a sum of two terms whose 
denominators contain the factors (1 - QPpq) (1 - PA P) and 
(1 - QPpq) (1 - QA -q): 

1 (P-I QmA -mq 

(I-PAP)(I- QA -q) = m~o (I-PAP) 

+ QPA -pq qil pmA mp )/(1 - QPpq). (14) 
m = 0 (1 - QA - q) 

In this way a term can be reduced, step by step, to a part with 
only nonnegative powers of A in its expansion and one with 
only negative powers, which is discarded. The other A varia
bles are handled similarly. This procedure, and all other re
duction procedures, become more difficult as the number of 
(1 - X) denominator factors increases. In this section we 
shall exploit the Weyl reflection symmetry of the characters 
to effectively reduce the number of these factors. 

The function G (A ) defined in (13) (we will suppress the 
variable B ) must also satisfy 

I 

G(A) = X(A )So(A) II A i-I 
i= ] 

I 

- L det(S)G(A ') II (A ~/Ai)' (15) 
S#l i= I 

by virtue of the W ey I reflection properties of the first term on 
the right-hand side. Here the reflection of the variable Ai is 

I 

A 5 = II AS" I j , (16) 
j= I 

and the sum is over all reflections except the identity. It is 
easily verified that the operation EX(A »0 applied to Eq. (15) 
gives Eq. (13) since the last term vanishes under this oper
ation. 

Suppose that we can identify a portion D (A ) of the de
nominator of X (A ) as a portion of the common denominator 
of G (A ). In other words, we can write 

G (A ) = R (A )1 D (A ), (17) 

and 

X(A )So(A) = ¢ (A )ID (A ). (18) 

Then if we multiply (15) by D (A) and perform the EX(A »0 
operation we find 

R(A)=H(A) 

_ [L det(S)R (A :)D (A) IT (A ~ I Ai)] , 
S#l D(A) i=1 EX(A»O 

( 19) 

where 

H(A)= [¢(A) IT A j -
I

] . 

i= I EX(A »0 
(20) 

The second term on the right-hand side ofEq. (19) is nonzero 
for only a few terms in the expansion of R (A 5) so that this 
equation can be solved relatively easily for R (A ) onceH (A ) is 
known. The determination of H (A ) from Eq. (20) is simpler 
than the determination of G (A ) from Eq. (13) due to the re
duced number of denominator factors. 
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4. MULTIPLICITIES OF SU(3} IR's 

In this section we shall demonstrate the procedure dis
cussed above with two examples involving the enumeration 
ofSU(3) irreducible representations. In order to limit the 
number of subscripts, we shall use A,B instead of A I' A2 as 
the variables whose exponents label the IR's. The Cartan 
matrix for SU(3) is 

[~1 ~1] 
from which the Sij are found to be 

[1 0] [ - 1 ° l' 1 
~],[ ~ 1 -1][0 -1] ° ' - 1 0' 

[~ 1 ~ 1] and [~ ~J 
Corresponding to these we have the reflections 

n det(S) AS B S 

° 1 A B 

1 -1 A -IB B 

2 1 A -IB A -I 

3 -1 B- 1 A -I 

4 B- 1 AB- I 

5 -1 A AB- I 

where n = ° is the identity S = I. The function So is 

so(A,B) =AB-A -IB 2 +A -2B 
-A -IB -I +AB -2 -A 2B- 1 

=AB(I-A -2B)(I-A -IB- I)(I_AB-2). (21) 

A. SU(3} Clebsch-Gordan series 

This well-known generating function provides a useful 
first test of our methods. The function X in (13) and (15) is the 

I 

product of two SU(3) character generators 

X(A I,BI,A2,B2,A,B) = X(A I,BI,A,B)X(A2,B2,A,B), (22) 

where the exponents of A I,B I andA2,B21abel the SU(3) IR's 
whose product is to be decomposed into a sum ofSU(3) IR's. 
The final result is expected to have a common denominator 
factor 

D = (1 -AIA)(1 -A2A)(1 - BIB)(1 - B2B), (23) 

and with this substitution Eq. (19) becomes, suppressing the 
variables A I,B I' A2,B2 for the moment, 

R (A,B) =H(A,B) +AIA2BR (O,B) +BIB2AR (A,O) 

+ A IA2B IB2R (0,0). (24) 

With some manipulation, the characteristic generator (5) can 
be written, in the o-basis, 

E' (Aj,B j, A,B) = ABE" (AjJBjJ A,B )/((1 - AjA )(1 - BjB)), 
(25) 

where 

E"(Aj,Bj , A,B) 

= I det(S)(1 - A S/A)(1 - BS/B )/((1 - AjA S)(1 - BjBS)). 

(26) 

Using (6) to turn this into a character generator and with (18), 
(21), and (22) we find 

A -IB -I¢(A,B) 

E(AI,B I, A,B )E(A2,B2, A,B) 
(27) 

(I-A -2B)(I-A -IB- I)(I-AB-2) . 

The EX(A,B );;;.0 part of this is 

H(A,B) =AIB2/(1 -A IB2) + 1/(1 -A2Bd. (28) 

After solving (24) for R (A,B) and dividing by (23) we find 

G(A B A B ,AB)- (1/(1-AIA2B)+BIB2A/(I-BIB2A)) 
I' I' 2' 2 , - (I-AlA )(1-BIB)(1-A2A )(1-B2B)(I-AIB2)(I-A2BI) 

(29) 

which is the desired result. I 

B. Polynomials in the (3,O) representation of SU(3) 

We now construct the generating function G ( U,A,B ) in which the coefficient of U U A a B b enumerates the (a,b ) representa
tions of SU(3) contained in the symmetric part of the direct product of u (3,0) representations. We start with the o-basis 
character generator 

X(U,A,B) = [(1 - UA 3)(1 - UAB)(1 - U)(1 - UA -3B 3)(1 - UB -3)(1 - UA -IB -I) 
(1 - UAB -2)(1 - UA -IB2)(1 - UA 2B -1)(1 _ UA -2B )]-1, (30) 

where the coefficient of UU in the expansion is the character of the product ofu (3,0) representations ofSU(3). The form of (30) 
suggests that we attempt to remove a common denominator factor D = (1 - UA 3)(1 - UAB). 

The function H(U, A,B) = [DxsolAB ] EXIA.BI>O is found to be 

H(U, A,B) = (1 + U 3)(1 + U 2AB + U 4A 2B2)/((1 - U 2)(1 _ U 4)(1 _ U 6 )(1 _ U 3A 3)(1 _ U 3B 3)) 

- U(1 + U)(l + U 3AB + U 6A 2B 2)/((1 - U 2)(1 - U 4)(1 - U 6 )(1 _ U 4A 3)(1 _ U 5B 3)). (31) 

Equation (19) becomes 

R (U,A,B) = H(U,A,B) + Ro(B)(U 2A 2B2 + U 3AB 4U 4B 6 - UAB - U 2B3) +RI(B)(U2AB3 + U 3B 5 _ UB2) 

+R2(B)(U2B4) + (U - U 2AB)Roo - U2B2RlO - U 2BRol , (32) 
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where we use the notation 

R (U,A,B) = IR;(B)A; = IRijA ;Bj. (33) 
i ij 

Equation (32) is easily solved by equating coefficients of appropriate powers of A and B. The required generating function is 
found to be. 

G (U, A,B) = R (U, A,B )1((1 - UA 3)(1 - UAB)) 
= [(1 + U 12B 9 + U 5AB 4 + U7AB4 + U 7AB7 + U 9AB 7 + U 6A 2B5 + U 8A 2B5 + U 8A 2B8 + UIOA 2B8 

+ U 3A 3B3 + U 15A 3B 12)/((1 _ U 5B 3)(1 _ U 4B6)) + (U 8AB4 + U4A 2B2 + U 6A 2B2 

+ UIOA 2B5 + U 7A 3B3 + U 8A 3B3 + U 9A 3B3 + UIIA 3B6 + U 7A 4B + U 9A 4B4 + UIOA 4B4 + UIIA 4B4 

+ U 8A 5B2 + U9A 5B2 + UIOA 5B2 + U 12A 5B 5 + U 8A 6 + UIOA 6B3 + UIIA 6B3 + U 12A 6B3 

+ U 9A 7B + U 13A 7B4 + U 15A 7B4 + UIIA 8B2)1((1 _ U 5B 3)(1_ U 8A 6)) + (U 3A 3 + U 5A 3B3 

+ U 4A 4B + U 5A 4B + U 6A 5B2 + U7A 5B2 + UIOA 7B + UIIA 7B + U 12A 8B2 + U 13A 8B2 + U 12A 9 

+ U 14A 9B 3)1((1 _ U 3A 3)(1 _ U 8A 6))]/((1 _ U 4)(1 _ U 6)(1 - UA 3)(1 - U 2A 2B 2)(1 - U 3B 3)). (34) 

Notice that we have had to multiply numerator and denomi
natorby(1 + UAB)and,forthelasttwoterms,(1 + U 4A 3)in 
order to obtain positive coefficients in the numerators. The 
denominator factor (1 - u4B 6) appears in the solution of 
Eq. (32). 

5. CONCLUDING REMARKS 

The technique outlined here promises to be useful in the 
construction of generating functions when common denomi
nator factors are known or can be guessed. As is particularly 
evident in the second example, the method splits a difficult 
procedure into two much simpler ones. In fact, it is always 
possible to split the function H (A ) into a piece which forms a 
part of R (A ) directly and one which enters into Eq. (19) for 
the rest of R (A ). It can be seen from Eq. (32), for example, 
thattheEX(A ) > 2 partsofH (U, A,B )andR (U, A,B ) must be 
the same. 

This method is quite useful in the construction of gener
ating functions for the Clebsch-Gordan series, both because 
many common denominator factors are known and because 
Eq. (19) takes a particularly simple form. Work has recently 
been completed on the Clebsch-Gordan generator for G2•

6 

As was mentioned in Sec. 1, there are several ways in 
which generating functions can be constructed. Regardless 
of the method of construction, Eq. (15) provides us with a 

2220 J. Math. Phys., Vol. 23, No. 12, December 1982 

way of testing the resulting generating function. It can be 
rewritten to give the D-basis character generator in terms of 
the IR generator: 

I 

X(A ) = S 0- I(A ) I det(S)G (A S) II A :. (35) 
S ;=1 

Both sides ofEq. (35) can be calculated on a computer for a 
large number of random values of the parameters. If the 
equation is satisfied, we can be confident that the GF has 
been constructed correctly. This method was used to verify 
Eq. (34). 
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Necessary and sufficient conditions are given for the unitary implementability of one-parameter 
unitary groups of one-particle automorphisms of the CCR algebra in representations 
symplectically related to the Fock representation. The criteria become particularly simple when 
the one-particle generator of the unitary group is positive and bounded away from zero; in this 
case the automorphism group is unitarily implementable only in the representations unitarily 
equivalent to the Fock representation. If the spectrum ofthe generator includes zero, however, 
the situation is more complicated; there then exist representations inequivalent to the Fock 
representation which admit unitary implementation of the automorphism group. It is also shown 
that whenever implementation of the automorphism group is possible, the implementing 
operators can be chosen to be a strongly continuous unitary group, guaranteeing the existence of a 
"second-quantized" self-adjoint generator. 

PACS numbers: 02.20. + b, 03.65.Fd 

I. INTRODUCTION 

Criteria for the unitary implementability of particular 
automorphism groups of an abstract algebra are of great in
terest for the selection of physically meaningful representa
tions of the algebra. Here necessary and sufficient conditions 
are found for the unitary implementability of a class of dyna
mical automorphisms of the algebra of the canonical com
mutation relations in representations symplectically related 
to the standard (Fock) representation. More specifically, the 
following situation is analyzed. 

Let dY be a separable complex Hilbert space, also re
garded as a real symplectic space with sympletic form equal 
to the imaginary part of the inner product. Let .7 be the 
boson Fock space over the complex space dY, that is, 

.7 =dYo Gl dY. Gl dY2 Gl··· , 

where dYo=! en ICEej is one-dimensional, dY. is isomor
phic to dY, and dYn is the n-fold symmetrized tensor pro
duct of dY. with itself. 

The Fock space .7 carries the standard irreducible re
presentation (by unitary operators) of the Weyl group 
W:dY -B (Y) over dY in which 

W(f)W( g) = e - iB(J.g)/2 W(f + g), 

where B is the symplectic form, and in which 
! w(f)n If E dYj is total inY. The abstract Weyl C *-alge
bra '}f/ generated by the Weyl group (Segal·) is the algebra of 
the CCR under study. Throughout the following, the ab
stract Weyl algebra is identified with its standard faithful 
representation on Fock space. 

Linear transformations on dY which preserve the sym
plectic form B are of interest because they leave invariant the 
Weyl group structure, i.e., the canonical commutation rela
tions. A symplectic transformation S:dY -dY is a bounded 
real-linear transformation with bounded inverse such that 
B (SJ,Sg) = B (J, g) for allf and g in dY. A symplectic trans-

alSupported by National Science Foundation Grant No. PHY-79-23251. 
This work is based in part on results presented in a thesis to be submitted 
by the author in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at the University of California, Berkeley. 

formation S induces an automorphism u on the Weyl algebra 
given by u( W (f))== W (Sf). Such an automorphism u (or, 
loosely speaking, the symplectic transformationS) is unitari
ly implementable in a representation 1T of the Weyl algebra if 

there exists a unitary operator U on the carrier space of the 
representation such that 

1T{u(W(f))) = 1T{W(Sf)) = U1T{W(f))U*, forallfin dY. 

The representation 1TT of 11'" induced via the Gel'fand-Nai
mark-Segal construction by the state ET on '}f/ given by 

ET(W(f)) = EI(W(f)), 

where Tis symplectic and EI(A ) = (n IAn) is the Fock 
vacuum state, is said to be symplectically related to the Fock 
representation. Without loss of generality the Hilbert space 
carrying the representation 1TT may be identified with the 
Fock space Y. Then with the convention that the represen
tation symbols are dropped for the Fock representation, 
1TT(W(f)) = W(Tf)· 

This paper treats the following issue. Consider a contin
uous one-parameter group of unitary transformations 
Vt :dY -dY generated by a nonnegative-definite self-adjoint 
operator H; VI = eitH

• Such a group induces an automor
phism group V t on 11'" given by V t (W(f)) = W(Vt f). The 
main question is, in which representations 1TT of '}f/ sym
plectically related to the Fock representation can V t be im
plemented by a one-parameter unitary family on .7? 

The answer depends on the spectrum of H. Theorem 1 
below shows that if H is bounded away from zero, V t is uni
tarily implementable only in the representations unitarily 
equivalent to the Fock representation. If the spectrum of H 
includes zero, however, there exist representations 1TT ine
quivalent to the Fock representation which admit imple
mentation of the automorphism group V t • Explicit general 
criteria, in terms of Hand T, for the unitarily implementabi
lityofvt in 1TT are given in Theorem 1, and a generic example 
of a representation inequivalent to the Fock representation 
in which a one-parameter group Vt is unitarily implementa
ble is given in Sec. VIII. 

It is also shown that whenever implementation of the 
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automorphism group v, is possible, the implementing un i
taries can be chosen to be a strongly continuous unitary 
group. Thus there always exists a "second-quantized" self
adjoint generator in representations where the dynamical 
automorphism is unitarily implemented. 

II. THE MAIN RESULT 

To remove the temptation to commute it with real-lin
ear operators, denote by A the operation of multiplication by 
the complex number i on the Hilbert space JY'. 

Theorem 1. Let JY' be a separable complex Hilbert 
space, and let 'If/' be the Weyl C·-algebra over JY' regarded 
as a real Hilbert space with inner product equal to the real 
part of the complex inner product, and symplectic form 
equal to the imaginary part. Let 1TT be the representation of 
'If/' induced by the symplectic transformation T:JY' -JY'. 

Let H be a nonnegative, self-adjoint, complex-linear 
transformation with domain D (H) dense in JY', and for 
m > 0, let Pm be the spectral projection for H onto spectral 
values larger than m. Let V, e'AH be the one-parameter 
unitary group generated by H, and let v, : 'If/' _ 'If/' be the 
automorphism induced by V,: 

v,(W(f)) = W(V,j) for allfE JY'. 

Then the automorphism v, is unitarily implementable in the 
representation 1T T of 'ff' for all t E R if and only if for some 
m > 0, both Pm (IT 12 - /) and [I T 12, A (/ - Pm lH] are Hil
bert-Schmidt operators. In particular, if H is bounded away 
from zero then v, is unitarily implementable in 1T T for all real 
t if and only if 1T T is unitarily equivalent to the Fock repre
sentation. 

Furthermore, if v, is unitarily implementable in 1TT for 
all real t, then the one-parameter family of implementing 
unitary operators can be chosen to be a strongly continuous 
unitary group. 

Remark: Here IT 12 = T· T, with T· the real adjoint of 
T, and the trace in the definition of the Hilbert-Schmidt 
norm is defined in terms of the real inner product on JY'. 

These results are applicable to the specific case in which 
v, is regarded as a dynamical automorphism induced by the 
one-particle time development V" with H the one-particle 
Hamiltonian. In this case, H being bounded away from zero 
corresponds to strictly positive energy. With this physical 
interpretation, Theorem 1 implies that only in theories with 
massless excitations can the interesting situation occur that 
there exist representations symplectically related but inequi
valent to the Fock representation which admit unitary im
plementation of the time development. Although this phys
ical interpretation plays no role in the mathematics, the 
terms "Hamiltonian" and "energy" are used in place of 
"self-adjoint operator" and "spectral value" in what follows. 

The proof of Theorem 1 is divided into two pieces. Sec
tions III, IV, and V establish the necessary and sufficient 
conditions for the implementability of v, in 1TT' while Secs. 
VI and VII prove the continuity of the implementation. 

III. CONDITIONS FOR IMPLEMENTABILITY 

Let v, be the automorphism group induced by 
V, = ei'H as above, and let T:JY' _JY' be symplectic. The 
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necessary and sufficient conditions stated in Theorem 1 for 
the implementability of v, in the representation 1TT follow 
directly from Theorem 2 below, which contains the crux of 
the issue. The following considerations demonstrate that the 
unitary implementability of v, in 1TT is equivalent to the con
dition (I) of Theorem 2 that [I T 1

2
, V,] be a Hilbert-Schmidt 

operator for all t. 
First, note that implementability in 1TT of V, is equiva

lent to the implementability in the Fock representation of the 
automorphism induced by the one-parameter symplectic 
group TV, T -I, because 

U,1TT(W(f))U~ = 1TT(V,(W(f))), for allfE JY', 

iff U,1TT(W(f))U~ = 1TT(W(V,j)), for allfE JY', 

iff u, W(Tf)u~ = W(TV, f), for allfE JY', 

iff U, W(f)U~ = W(TV, T-,/), for allfE JY'. 

Second, the question of implementability of a symplec-
tic transformation S can be reduced to consideration only of 
the properties of S as an operator on JY'. The following crite
rion for the unitary implementability in the Fock representa
tion of the Weyl algebra of a given symplectic transforma
tion S was found by Shale2

: 

There exists a unitary operator U:Y -Y such that 
UW(f)U· = W(Sf) for allfinJY'ifand only if 
(IS I - 1) is a Hilbert-Schmidt operator. 

Here again IS I =(S • S ) 1/2, with S • the real adjoint of S, and 
the trace in the definition of the Hilbert-Schmidt norm is 
taken over a real basis for JY'. 

So V, is implementable in 1TT if and only if TV, T -I is 
implementable in the Fock representation, which is the case 
if and only if (I TV, T -II - 1) is of Hilbert-Schmidt type for 
all times t. Now, note that for a bounded real-linear transfor
mation Y, (I Y I - /) is a Hilbert-Schmidt operator if and only 
if (Y· Y - /) is a Hilbert-Schmidt operator, because the set 
B2r of real-linear operators of Hilbert-Schmidt type is a .
ideal, the operator (I Y I + /) has a bounded inverse, and 
(Y· Y - /) = (I Y I + / )( I Y I - /). Note furthermore that 
(I TV, T - 112 - /) being a Hilbert-Schmidt operator is equi
valent to the commutator [I T 1

2
, V,] being a Hilbert-Schmidt 

operator, because 

(ITV,T- 1
1
2 - 1) = T·- 1V,·(ITI 2V, - V,ITI 2)T- 1

, 

and both T and V, have bounded inverses. 
Thus V, is implementable in 1T T iff [I T 1

2
, V,] is a Hil

bert-Schmidt operator for all times t. 
Now, it is clear that if Tsatisfies Shale's criterion, then 

V, is implementable in 1TT' But is it necessary that Tbe of 
Shale type for TV, T - I to be? The answer is no; if the spec
trum of the Hamiltonian H which generates V, includes 
zero, then other symplectic transformations Tin addition to 
those of Shale type yield a one-parameter symplectic group 
TV, T - I which is of Shale type for all t. An example of such a 
T is given in Sec. VIII. 

The properties of ITI2 which embody the fact that 
[I T 1

2, V, ]EB2r for all t obviously depend on the relationship 
between IT 12 and the Hamiltonian H; Theorem 2 states these 
properties in terms of the spectral projection Pm for H onto 
energies larger than m > 0. 
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Theorem 2. Let H be a nonnegative, self-adjoint, com
plex-linear transformation with domain D (H) dense in the 
separable Hilbert space 3f'. Let V:R--B(dY') be the (strongly 
continuous) unitary group generated by H, V, = e'AH, and 
consider an open interval T ~ R with 0 E T. Let Pm be the 
spectral projection for H onto spectral values larger than m. 

Let S be a symplectic transformation on 3f'regarded as 
a real Hilbert space with inner product equal to the real part 
of the complex inner product on 3f', and symplectic form 
equal to the imaginary part. Suppose S is self-real-adjoint. 

Then the following three statements are equivalent: 

I. [S, V,] is of Hilbert-Schmidt type for all t E T. 

II. There exists an m > 0 such that: 
(A) Pm (S - I) is a Hilbert-Schmidt operator, and 
(B) [S, A (I - Pm )H] is a Hilbert-Schmidt operator. 

III. Statements (A) and (B) hold for all m > O. 

The proof of this theorem appears in Secs. IV and V. 
The statement (II) is thus the necessary and sufficient 

condition on S = IT 12 for V, to be unitarily implementable 
in 1fT' Note that if H is bounded away from zero, i.e., there 
exists an h >0 such that (/IHI)';?h 11/112 for all/E D (H), 
then choosing m with 0 < m < h gives Pm = I, and then as a 
result [I T 12, V,] E B2r for all t if and only if (I T 12 - I) is a 
Hilbert-Schmidt operator. This implies that for such Hamil
tonians H, V, = e'AH is unitarily implementable in 1fT only 
if T is unitarily implementable in the Fock representation, 
that is, V, is unitarily implementable only in the representa
tions equivalent to the Fock representation. 

The example in Sec. VIII shows that the class of repre
sentations which admit implementation of V, is actually 
larger than this when the spectrum of H reaches zero. 

IV. PRELIMINARY LEMMAS 

The proof of Theorem 2 depends on the four results 
which are collected here with sketches of their proofs. Re
peated use is made of the facts that the class of Hilbert
Schmidt operators B2 on a Hilbert space 3f' forms a Banach 
space with the norm IIC 112 = (tr{ IC 12})112, and thatB2isa *
ideal in the algebra B(dY') of bounded operators on 3f'. 

Lemma 1: Let A and B be bounded operators, and let 
T~ R be an open interval containing the origin. Then [B,e'A ] 
is a Hilbert-Schmidt operator for all t E T if and only if[B, A ] 
is a Hilbert-Schmidt operator. 

Proof If[B, A] isa Hilbert-Schmidt operator, itiseasily 
established that the power series for [B,e'A ] converges in Hil
bert-Schmidt norm. For the converse, note that if [B,e'A] is 
of Hilbert-Schmidt type, then so is 

X(t) etA Be- ,A - B = (e' Ad(AI - I)B. 

Formally, 

t [A,B] = t Ad(A )B = t Ad(A )(e' Ad (A I - I)-IX (t); 

using the facts that g(z) = z(e - I) - I is analytic near zero 
and 

II(Ad(A lr X Ib..;2n !lIA lit IIX 112 for n,;? I, 

it is easy to show that the formal series for t [A,B] 
= g(t Ad(A ))X(t) converges for small enough t in Hilbert-

Schmidt norm. 0 
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Lemma 2: Let H be a self-adjoint operator on (a dense 
domain in) a separable Hilbert space. For any E> 0, there 
exists a self-adjoint (bounded) Hilbert-Schmidt-class opera
tor K with 11K 112 < E such that (H + K) has pure point spec
trum. 

The original proof is due to von Neumann3
; see also 

Kato.4 

Lemma 3: Let HI and H2 be self-adjoint operators with 
a common dense domain in a separable Hilbert space, such 
that HI - H2 is (bounded and) of Hilbert-Schmidt type. 
SupposefR--C is a bounded measurable function such that 
I/(x) - l(y)I";clx - yl for some constant c>O. Then 
I(RI) - I(H2) is of Hilbert-Schmidt type, and 

II/(HI) - I(H2)112";cIIHI - H 2112' 
Proof Lemma 2 is used to approximate Hj by 

Ej = Hj + Kj , where Ej has pure point spectrum and IIKj 112 
is small. Writing 

Ilf(Hd - I(H2)112 

..;II I(Hd - I(EI)112 + 11/(H2 - I(E2)112 

+ II/(EI) - I(E2)112' 

evaluating traces in the orthonormal bases of eigenvectors of 
the Ej , and using the inequality for I shows 

II/(HI) - I(H2 )112 

..;c11K1112 + cllK2112 + cllEI - E2112 

..;2c11K1112 + 2cllK2112 + cllHI - H2112 

Since IIKj 112 is arbitrarily small, the assertion follows. 0 
Lemma 4: Let { Pk Ik = 1, ... ,00 J be a set of nonnegative 

constants, and let (Ik Ik = 1, ... ,00 J be a sequence of positive 
numbers bounded away from zero, i.e., there exists an m > 0 
such thatlk > m for all k. If~k = I Pk sin2

(fk t) converges for 
each t in an open interval T containing zero, then 

~k=1 Pk < 00. 

Proof Let 5 (t) = ~L I Pk sin2
(fk t); 5 (t) is absolutely 

convergent for each t E T, and is the point-wise limit of the 
continuous partial sums 5N(t) ~k = I Pk sin2(fk t ), so 5 is 
measurable. There thus exists a set a~ T of finite positive 
measure on which 5 is bounded, say 5 (t) ..; M for tEa. So 
Sa dt 5 (t) exists and in fact Sa dt 5 (t) ..; Sa dt M = MJ.l(a) 
>0. Since 

ktll dt Pk sin
2
(fk t ) 

= 1 dt 5N(t) ..; 1 dt 5(t) ..; MJ.l(a) 

for all N, with the right side independent of N, 

!~ kt I 1 dt Pk sin
2
(fk t) ..; MJ.l(aJ< 00, 

that is, 

00 > kt/k 1 dt sin
2
(fk t ). 

Since sin28 = (1 - cos(28 ))/2, 

r dt sin2(fkt) = ~ J.l(a) - ~ r dt cos(2/kt). Ja 2 2 Ja 
The latter integral is the Fourier cosine transform of the 
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characteristic function of the set a; by the Riemann-Lebes
gue lemma, it vanishes as Ik"- 00. Choose L > 0 such that 
If (7 dt cos(2ft)1 <p(a)l2 for all/>L; then f (7 dt sin2(ft) 
>p(a)/4 for all/>L. 

Because the sum ~k ~ } hf (7 dt sin2( Ikt) is absolutely 
convergent, the order of summation can be rearranged. Let 
Y _[k Ilk <L J and ,qJ=[k I/k>L J. Then 

00 > kB, h 1 dt sin
2
(fk t ) + k£; h 1 dt sin

2
(fk t ), 

and since each sum is positive, each is finite. 
Since f (7 dt sin2(fk t) > p(a)l4 for all kE,qJ, it follows 

that 

and since a has nonzero measure ~kE.JIJ Pk < 00. 

For the sum over Y, pick r E 7 such that 0 < r< tTIL. 
Then for all kEY, mr <Ik r < tT, so that sin2(fk r) is bounded 
away from zero, that is, there exists {j> 0 such that 
sin2(fk r) > {j for all kEY. Thus 

00 >S(r) > I h sin2(fkr) > {j I h, 
kEY' kEY' 

that is, ~kE.Y' Pk < 00. 

Adding the two (absolutely convergent) series con-
cludes the proof. 0 

v. PROOF OF THEOREM 2 

Because the proof involves both the complex and real 
structures for the Hilbert space $", it is useful to adopt the 
following notation. Let H2r be the ideal of bounded real
linear transformations on $" which are real-Hilbert
Schmidt operators: 

A E (H2r ) if 00 > (IIA 112r)2 - trr(A*A ) == I Re(Apj IApj), 
j 

where [ Pj J is a real-orthonormal basis for the real Hilbert 
space ($",Re( I»). Let H2c be the ideal of bounded complex
linear transformations on $" which are complex-Hilbert
Schmidt operators: 

AEH2c if 00 >(IIA Ibc)2= trc(A*A)==I (AYkIAYk), 
k 

where [Yk J is a complex-orthonormal basis for the complex 
Hilbert space ($",( I»). Since [Yk ,iYk Ik = 1, ... ,00 J is a real
orthonormal basis for ($",Re( I») whecever 
[Yk Ik = 1, ... ,00 J is a complex-orthonormal basis for $", if 
A E H2c thenA E H2r and trr(A*A) = 2 trc(A*A). Every real
linear transformation Q:$" -$" is uniquely decomposed 
into complex-linear and complex-antilinear parts Q/ and Qa 
by 

rQ, = (Q+A*QA )/2, 

lQa = (Q - A*QA )12, 

so that Q/A = AQ/ and QaA = - AQa. Because the trace 
of a complex-antilinear operator vanishes, a real-linear 
transformation Q is in H2r if and only if Q/ E H2r and 
Qa E H2r ; furthermore, 
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!lIQ 112rf = !lIQ/112r)2 + (11Qa 112r)2. 

The proof of Theorem 2 proceeds as follows. 
(1) Obviously (III) implies (II). 
(2) To show (II) implies (I), assume that for some m > 0, 

(A) and (B) hold. Since S is self-adjoint and H2r is a *-ideal, 
Pm (S - I )EH2r iff (S - I )Pm EH2r . 

(a) Since (e tAP m H - 1) = Pm (e tAP m H - 1) 
= (etAPmH - I)P m' 

[S,etAP",H] = [(S-1),(etAPmH -1)] 

= (S-I)Pm(etAp",H-1) 

- (e tAPmH - I)Pm(S - I). 

Thus Pm (S - 1) E H2r implies [S,etAPmH] E H2r for all t. 
(b) Because (I - Pm)H is a bounded operator, by 

Lemma 1 

[S, A (I - Pm )H 1 E Hzr iff [S,etA 
(1- p ... IH] E HZr for 

all t E 7. 

(c) Since etAH = etAP",H + tA (1- PmlH = etAPmH etA (/- P",IH, 

[S,e tAH ] = [S,etAPmH]etA(/-PmIH 
+ etAP",H [S,etA (/- P",IH]. 

As shown above, the first term is of Hilbert-Schmidt type by 
the hypothesis (A), and the second term is of Hilbert
Schmidt type by hypothesis (B). So [S,etAH ] E H2r for all t, as 
required. 

(3) To show (I) implies (III), fix an arbitrary m > O. 
(a) The most involved part of the proof is to show that 

[S, Vt ] E Hzr for all t E 7 implies condition (A), that is, 
Pm (S - 1) E HZr . 

(i) Choose 0 < m} < m2 < m. Let p:R..-R be the follow
ing function: 

{

a, ifx<m}, 
x-m} . 

pIx) = , If m} <,x<,m2, 
m 2 -m} 

1, if m 2 <x. 

Note that p(H »P m . Since [p(H), Vt ] = 0, [S, Vt ] E HZr im
plies that [p(H)S,Vt ] E Hzr . 

(ii) Using Lemma 2 with the complex structure on $", 
approximateHby E = H + K, where 11K 112c < EandE has a 
pure point spectrum. Note that with E small enough, every 
eigenvalue w of E is larger than - mo, where 0 < mo < m}: 
Let r/J E D (E) = D (H) be such that Er/J = wr/J. Because H is 
nonnegative, 

wllr/J1I2 = (r/JIEr/J) = (r/JI(H + K )r/J) 

> (r/JIHr/J) -1(r/JIKr/J)1 

> -1(r/JIKr/J)I· 

Since I (r/JIKr/J) I <: 11r/J11211K II <:11r/J1121IK 112c < 1Ir/J112E, choosing 
E < mo gives wllr/J112 > - mollr/J112. 

(iii) Observe thatp(x) satisfies the hypotheses of Lemma 
3, sop(E) - p(H) E H2c CHzr ' hence [p(H)S,Vt l E Hzr ifand 
only if [ pIE )S, Vt 1 E H2r · 

Observe that the function elt (·1 also satisfies the hypoth
eses of Lemma 3, so that (eitH 

- eitE
) E Hzc ' and hence 

[p(H )S,etAH
] E H2r iff [pIE )S,etAE

] E H2r . Since E is com
plex-linear and since Q E Hzr iff Qa E Hzr and Q/ E Hzr , it 
follows that 
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[S,vt] E B2r implies [p(E)Sa ,etAE ] E B2r · 

(iv) If A E B2r is either purely linear or purely antilinear, 
then (IIA 112,f = 2~j.k I (Yk IAYj) 12 with {Yj I a basis for the 
complex Hilbert space. Let { Y n I be an orthonormal basis for 
JY' consisting of eigenvectors of E: Ey n = CUn Y n . Apply the 
trace formula to the antilinear operator [p(E )Sa ,etAE ] to get 

II [p(E)Sa ,etAH ] lit 

= 2 I I(Yn l(p(E)Sa etAE - etAEp(E)Sa)Yk W 
k.n 

= 2 I I(e-it"'. - eit"'-)(Yn Ip(E)SaYkW 
k.n 

= 8 I sin2((cuk + cun )1 /2)1 (p(E )Yn ISa Yk) 12. 
k.n 

(v) Since pIx) was chosen so that pIE )Yn = 0 whenever 
cu n < m I' it must be the case that whenever ( p(E)y n ISa Y k ) is 
nonzero, 

(CUk + CUn »(CUk + mIl> - mo + m l > O. 

Imagine explicitly dropping from the absolutely convergent 
trace sum all terms in which the matrix element 
(Yn I p(E)Sa Yk) vanishes; the resultant collections of non
negative constants { I (Yn I p(E)Sa Yk) 121 and positive 
numbers {(CUk + CUn ) I bounded away from zero satisfy the 
hypotheses of Lemma 4. As a consequence, the sum 

01 p(E)Sa 112,)2 = I I (Yn I p(E)Sa Yk ) 12 
k.n 

converges, that is, pIE )Sa E B2r . 

(vi) Fromp(E)Sa E B2r andp(E) - p(H) E B2c it follows 
thatp(H)Sa E B2r . Thus because (p(HW>(Pm)2, 

00 > tr, {I p(H)Sa 121 = 2 I IIP(H)Sa Yj 112 
j 

>2 I IIPmSaYj ll2 = tr, IIPmSa 1
21, 

j 

so Pm Sa E B2r . Now, it is easy to show that the condition for 
a bounded real-linear transformation Q with bounded in
verse to be symplecticis that A *QA = Q* - I. So S, being self
adjoint and symplectic, thus has the property that 

Sa = (S - A*SA )12 = (S - S -1)/2 
= (S - I)(I + S -I )/2. 

Therefore Pm Sa = Pm (S - I)(I + S - I )12, and since 
(I + S - I) is invertible, 

PmSa EB2r ifandonlyifPm (S-1)EB2r · 

Thus Pm (S - I) E B2r , which establishes condition (A). 
(b) It remains to prove that [S, V,] E B2r for all 1 E T im

plies condition (B), that is, [S, A (I - Pm )H] E B2r . 
Under the hypothesis, the above argument showed that 

Pm (S - I) E B2r ; taking the adjoint gives (S - I )Pm E B2r , 
and as in paragraph (2a) above, these imply that 
[S,e'APmH] E B2r for all 1. As in paragraph (2c) above, 
[S,e'A (1- Pm IH] 

= e - ,APmH I [S, V,] - [S,e'APmH ]e,A (1- PmlH J, 
and since the two terms on the right are Hilbert-Schmidt 
operators, [S,e'A (I - Pm IH] E B2r for all real 1. Since 
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(I - Pm )H is bounded, Lemma 1 then implies that 
[S,A (I - Pm )H] E B2r , as desired. 

This concludes the proof of Theorem 2. 0 

VI. CONTINUITY OF THE IMPLEMENTATION 

Suppose that the one-parameter group of transforma
tions V, = e'AH is in fact unitarily implementable in 11'T' The 
assertion of Theorem 1 which remains to be proved is that 
the one-parameter family of implementing unitary operators 
can be chosen to be a strongly continuous unitary group. 
This implies in particular that, when V, is regarded as a time 
development, there always exists a "second-quantized" Ha
miltonian in representations where the dynamical automor
phism v, is unitarily implemented. As the following consid
erations show, the validity of this assertion follows directly 
from (the somewhat technical) Theorem 3 below. 

Shale5 showed that if (J, is a one-parameter group of 
implementable symplectic transformations which is contin-

~ 

uous in a certain topology, then there exists a strongly con-
tinuous unitary group implementing (J, in the Fock repre
sentation. Specifically, let rSp(Yi] be the group of symplectic 
transformations satisfying Shale's criterion; the topology on 
rSp(Yi] is defined as follows. Polar decomposition (with re
spect to the real adjoint) of a transformation T E rSp(Yi] 
gives T = ZIT I, where Z is complex-unitary (because it is a 
symplectic real isometry) and I T I is a (real-) positive sym
plectic transformation. The topology on rSp(Yi] is the pro
duct topology obtained when rSp(Yi] is regarded as the Car
tesian product of the space of unitary operators under the 
weak operator topology, with the space of positive symplec
tic operators under the topology induced by the Hilbert
Schmidt norm [well-defined because (I T I - I) E B2r for 
T E rSp(Yi]]. 

Shale furthermore showed that group multiplication is 
continuous in this topology, so that if (J, is a one-parameter 
group of implementable symplectics, continuity of (J, at 
1 = 0 implies continuity everywhere. Thus to show the exis
tence of a continuous unitary implementation of (J, in the 
Fock representation, it is sufficient to show that 
(J:R---+-rSp(Yi] is continuous at the origin. 

To apply this criterion to the implementation of V, in 
11'T' note that, as earlier, continuous implementation of V, in 
11'T is equivalent to continuous implementation of 
(J, = TV, T -I in the Fock representation. 

Theorem 3: Let H be a nonnegative self-adjoint com
plex-linear transformation with domain D (H) dense in the 
separable Hilbert space JY'. Set V, = e'AH. 

Let Tbe a symplectic transformation on JY' regarded as 
a real Hilbert space with inner product equal to the real part 
of the complex inner product on JY', and symplectic form 
equal to the imaginary part. Set (J, = TV, T -I. 

If( I (J, I - 1) is a Hilbert-Schmidt operator for all real t, 
then (J:R---+-rSp(Yi] is continuous at the origin in Shale's to
pology. 
The proof of this theorem is in Sec. VII. 

As an immediate corollary, (J, is then continuous every
where, and hence (J has a continuous unitary implementa
tion in the Fock representation. Since the hypothesis here 
that (I(J, I - I) be in the Hilbert-Schmidt class is equivalent 
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to the unitary implementability of () t' if follows that if Vt is 
unitarily implementable in 1TT then the implementing uni
tary family can always be chosen to be a strongly continuous 
unitary group. 

VII. PROOF OF THEOREM 3 

The unitary group Vt is of course not uniformly contin
uous. The proof of Theorem 3 rests instead on the following 
result. 

Lemma 5: Let B E B2r . Let F t be a strongly continuous 
one-parameter unitary group. Then G:R-+B2r given by 
G (t ) = FtB is continuous in the Hilbert-Schmidt norm. 

Proof of lemma: Because B E B2r , it is the Hilbert
Schmidt-norm limit of finite-rank operators Bj : 

limj-->oo liB - Bj 112, = O. Given 00, choosej so large that 
liB - Bj 112, < E/4. Then 

IIG (s) - G (t lII2' 

<1I(Fs - Ft)Bj 112, + II(Fs - Ft)(B - Bjlll2' 

< lI(Fs - Ft)Bj 112, 

+ II(Fs - Ft lIIIIB - Bj 112, 

< lI(Fs - Ft )Bj 112, + El2. 

Now, because Bj has finite rank, the remaining Hilbert
Schmidt norm involves a finite sum: 

rank B
J 

(li(Fs - Ft)Bj 112,)2 = I II(Fs - Ft)BjtPk 112 
k~l 

for a suitably chosen orthonormal set { tPk I· Since Ft is 
strongly continuous, there exists 8> 0 such that 

Thus II G (s) - G (t lII2' < E for Is - t I < 8, which proves the 
lemma. 0 

Remark: Because IIX *IIz, = IIX 112,' BFt is also contin
uous in the Hilbert-Schmidt norm. 

To prove Theorem 3 itself, it is necessary to show that: 

(i) lim III()tl-Ilb =Oand 
t-oO 

(ii)lim(fl(Zt -I)g) =OforallfandginJli"', 
1-00 

where Zt is the unitary operator occurring in the real polar 
decomposition (), = Zt I(), I· 

(1) To prove assertion (i), first note that the hypothesis of 
the theorem that (I()t I - I) is a Hilbert-Schmidt operator for 
all real t implies, as in Sec. III, that for all t, 

(1()/1 2 - 1) = T*-IVt *(T*TV, - Vt T*T)T- 1EB2r , 

and hence that [I T 12, Vt ] E B2r , for all real t. So Theorem 2 
with S = 1 T 12 implies that for all m > 0 

Pm (S - 1) E B2r and [S, A (I - Pm )H ] E B2r 

where Pm is the spectral projection for H onto spectral val
ues larger than m. 

Since (I()/I + 1) is a bounded invertible operator, 
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1I(I()t 1- IliI2' = IHI()t 1+ 1)-1(I()t 12 - IlII2' 

<1I(I()t 1+ I)-IIlIl(I()t 12 - 1)112, 

<1I(I()t 12 - 1)1I2r 

withS=ITI2. 

= II T *-IV,*[ITI 2,V,]T- 1 11 2, 

<liT 1111 T -11111[S, Vt]IIz, 

Now fix m > O. As in the proof of Theorem 2, 

[S, V
t

] = etAPmH [S,etA II - Pm)H] + [S,etAPmH ] etA II - Pm)H, 

and since etAPmH and etA II - Pm)H are unitary, 

II[S,Vt]1I2,<II[S,etAII-Pm)H]lb + II [S,etAPmH] 112,' 

In fact, each ofthe two commutators on the right-hand side 
is Hilbert-Schmidt continuous at t = 0, which can be seen as 
follows. 

(a) For the first term, the fact that A (I - Pm)H is a 
bounded operator implies that the series 

[S,e't<1II - Pm )H] = f ~ [S,(A(I-Pm)H)"] 
"~l n! 

is operator-norm convergent. Because 
[S, A (I - Pm )H] E B2 .. itisalsoHilbert-Schmidt-normcon
vergent: 

II [S,e'A II - Pm)H] 112, 

00 I t I" 
< I -II[S,(A (I -Pm)H)"]112' 

n ~ I n! 

< f J:..l.:. n(IIA (I - Pm)H Ill" - 1 II [S, A (I - Pm)H] 112, 
n ~ I n! 

= It III[S,A (I -Pm )H]112, exp{lItA (I -Pm)HIII· 

In particular, 

lim II [S,etA II - Pm)H 1112, = O. 
t-oO 

(b) For the second term, write, as in the proof of 
Theorem 2, 

II [S,e'APmH] 112, 

= II(S - I )P'm (etAPmH - 1) 

- (e,APmH - I )Pm (S - 1)112, 

<11 (e'APmH -I)Pm(S-1)lb 

+ II(S-I)Pm(etAPmH -1)112,' 

Now apply Lemma 5 twice, with F, _ e'APmH and 
B = Pm (S - 1) [or B = (S - I )Pm ] to conclude that 

lim II [S,e'APmH] 112, = 0, 
1-00 

as desired. 
Combining these two results shows that 

lim/-oO II[S,V,JI12' = 0, which establishes assertion (i). 
(2) To prove assertion (ii), it is sufficient to show that 

lim Re{fl(Z, -1)g) = o for allJ,gEJli'" 
1-00 
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IRe(/I(ZI -I)g)1 = IRe(/I(OI -IO/IlIO/I-lg)1 

= IRe«(O~-IOIIVIIO/I-Ig)1 
<1«(O~-IO/IVIIO/I-Ig)1 

< 11(0 ~ - 10/IVIIIII0/1-Igll· 

(a) Now, 

1110/1-lg112 = (IO/I-lgIIO/I-lg ) 

= Re( gllOI 1- 2g) 
= Re( glO 1- 10 ~ - Ig) 

= 110 ~ - Igl12 

= IIT*-IVI T*gI12 

<IITI1 2I1T- 111 2I1gI1 2 =L2, 

with L independent of t, so that 

IRe(/I(ZI - I)g)I<L II(O~ -IOIIVII· 

(b) Thus 

IRe(/I(ZI - I)g) I <L II !(O~ - I) - (10/ 1- I) VII 

<L ! 11(10/ 1 - IVII + II(O~ - IVII)· 
Since 

1I(IO/I-IVII<IIIO/I-IIIII/II 

<IIIB/I-II12rll/ll, 

and since by assertion (i), lim/---+o 11101 I - lib = 0, it follows 
thatliml---+o 11(10/ 1 - IVII = o for alliin JY. As for the other 
term, note that 

II(O~ -IVII = IIT*-I(V-I -I)T*fll, 

so that the strong continuity of VI implies that 

lim II(O~ - IVII = 0 for all/eJY· 
1---+0 

Thus 

lim IRe(/I(ZI -I)g)1 =OforallJ,geJY, 
1---+0 

which establishes assertion (ii). 
(3) Since assertions (i) and (ii) are equivalent to the con

tinuity at the origin of BI in Shale's topology, Theorem 3 is 
proved. 0 

VIII. AN EXAMPLE 

Because the symplectic transformations satisfying 
Shale's criterion form a group rSp(JY) under multiplication, 
the set of symplectic transformations T for which TVI T -I 
satisfies Shale's criterion includes rSp(JY). That the inclu
sion is proper, and hence that conditions (A) and (B) of 
Theorem 2 are not merely equivalent to Tbeing an element 
of rSp(JY), is shown by the following construction of a sym
plectic transformation T not in rSp(JY), but for which 
TV1 T - I is in rSp(JY) for all real t. 

Let the self-adjoint generator H of VI have spectrum 
extending to zero. The idea is to construct from H a bounded 
positive linear operator A which is almost in the Hilbert
Schmidt class, in the sense that the "low-energy" eigenval
ues of A are not square-summable, while those of AH are. 
Then it is easy to form a symplectic transformation Twhose 
square IT 12 has an antiliner part consisting precisely of A 
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multiplied by a suitable conjugation; this T is not of Shale 
type but has the property that (I TV1 T -11 2 

- I) is a Hilbert
Schmidt operator for all t. This construction is of course 
motivated by the criteria (A) and (B) of Theorem 2, but the 
assertions of Theorem 2 are not used here. 

For a concrete example, let JY be the complex Hilbert 
space L 2(R

3
) with the usual inner product 

(/1g ) = f d 3p I*(p)g(p). Again denote by A multiplication 
byi, and let Cbe the conjugation given by (C/)(p) =:1*( - pl· 
The antilinear operator C is self-real-adjoint because 

Re(/ICg) = ~(/ICg) + (CgI/») 

= ~( gIC/) + (C/lg») = Re(C/lg)· 

Let H be multiplication by I p I on its domain of self-adjoint
ness. Such a framework is familiar from the theory of free 
massless scalar fields. 

(1) First approximate H by an operator E with discrete 
eigenvalues by applying von Neumann's Lemma 2 to H: 
Given € > 0 there exists a self-adjoint operator K e B2c with 
11K Ibe < € such that E = H + K has pure point spectrum. 
The eigenvectors! Yn } of E span JY, and the eigenvalues 
! {r)n } of E are dense in (0, 00 ) because (0, 00 ) is in the spectrum 
of H (Kat06

). There is thus a sequence ! Y~ } of eigenvectors 
such that the corresponding eigenvalues ! (r)~ } form a mono
tonically decreasing sequence with 

lI(n + 1) <(r)~ < lin. 

(2) Now construct a positive bounded (complex-linear) 
operator B by specifying its action on the basis! Yn }: Define 
say By~ = (n -1/4)y~, and set BYk = 0 for all Yk not in the 
set ! y~ ). The complex-linear operator so defined is self-ad
joint and such that 

B 4eB2C but B 2~B2C' 

Since B is complex-linear, also B 2~B2r' 
(3) Now setA =(B 2 + CB 2C). BecauseBCisantilinear, 

CB 2C = IBC 12 is complex-positive. Thus A is a positive com
plex-linear operator which commutes with C. Because 
B 2~B2r and C is invertible, CB 2C~B2r; since both terms are 
positive, taking the trace of A 2 in the basis ! Y n ) shows that 

A~B2r' 
(4) This operator A has the property 

(A C )eilH - eilH (A C )eB2r for all real t, 

which can be seen as follows. 
(a) Note first that because CeilH C = e- iIH , the above 

property is equivalent to AeilH - e- i1H A e B2r for all t. 
(b) As in the proof of Theorem 2, Lemma 3 implies that 

eilE _ eilH e B2r for all real t. It follows that 

CeilE C _ e- ilE 

= C(ei1E _ ei1H)C _ le-ilE - e- ilH ) e B2r . 

(c) Since B 2 commutes with Eon D IE), B 2 commutes 
with e±iIE. 

Thus 
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trr(IB 2eitE _ e- itE B 212) = 2 trc (12(sin tE)B 212) 

= 8 I II(sin tE)B 2r~ 112 
n 

= 8 I II(sin tliJ~)(l/Jil) r~ 112 
n 

Since sin20..;O 2 for all real 0, 

2 ~ 1 
<8t £.. 3" < 00. 

n n 
Thus (B 2eitE - e- itE B 2) E B2r . 

(d) Because C 2 = I, 

CB 2CeitE _e- itE CB 2C 

= C I(B 2e- itE _ eitE B2) + B2(CeitE C _ e- itE ) 

_ (Ce-itEC _ eitE )B 2JC, 

and since each of the parenthetical expressions has been 
shown to be of Hilbert-Schmidt type, (CB 2CeitE 

- e- itE CB 2C) E B2r also. 
(e) Add the results of (c) and (d) to show that (AeitE 

- e - itE A ) E B2r ; then the factthat (eitH - eitE ) E B2r for all t 
implies (AeitH - e- itH A) E B2r , or equivalently 

(AC)eitH - eitH(AC) E B2r for all t, 

as claimed. 
(5) The final step in the construction is to define a sym

plectic operator Twith (T * T)a = A C so that Tis not of Shale 
type, but TVt T - I is of Shale type. 

(a) Since A is positive, the operator R (I + A 2) 1/2 is 
well-defined, and furthermore R>I and [R,C] = O. Set 

T= _1_ (R + 1)1/2 + _1_ (R _ 1) 1I2c. 
v2 v2 

This T is self-real-adjoint, and 

T*T=R + (R 2 -1)1I2C =R +AC. 

To check that T is symplectic, note that 

A*T*A = _1_ [(R + 1)1/2 - (R _ 1) I I2C ], 
v2 

so that 

T(A*T*A) = (A*T*A )T= HR + 1- (R - I)] = I. 
(b) To see that T is not of Shale type, note that 
IT * T - I 12 = (R - 1)2 + A 2 + 2A (R - 1)C, 

and since 2A (R - 1)C is antilinear, 

tr r II T * T - I 12 J = tr r ! A 2 + (R - 1)2 J, 

which is not finite because AN B2r · 
(6) The following result is useful in demonstrating that 

TVt T - I is in fact of Shale type. 
Lemma 6: Let P be a bounded positive linear transfor

mation, bounded away from zero, and let X be a bounded 
linear transformation such that PX + XP E B2c . Then 
XE B2c ' 
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Proof Assume, without loss of generality, that liP II..; 1. 
Let Q = PX + XP E B2c ' Then [X,P 2] = [Q,P]. 

The crux of the proof is to show that [X,P] E B 2c ' Since 
P is positive and liP II..; 1, the series 

P= {p = I + c,(I - p 2
) + c2(1 - P2)Z + c3(1 _ p 2 )3 + ... 

converges in norm. Thus, the series 

[X,P] = c,[X,(1 - p 2)] + cz[X,(1 _ p 2)2] 

+ c3[X,(1 _ P 2)3] + ... 
also converges in norm. That this series furthermore con
verges in Hilbert-Schmidt norm can be seen from the fact 
that 

II [X, (I - p 2)k]112c..;k 11(1 - pZlIlk - I II [X,(1 - pZ)]112c 

= k II(! - p2l11k - I II[Q,P]1I2c' 

Since P is bounded away from zero, 11, _ 11(1 - P 2)11 is less 
than 1. Thus 

II[X,P]112c = II ktl Ck [X,(1 - p
2

)k 1112c 

00 

..; I ICk Ik 11(1 - PZ)llk - I II [Q,P 1112c 
k~1 

00 

= II [Q,P11I zc I Ick lkl1,k-'. 
k~1 

Since this last series converges for 0..;11, < 1, XP - PX E B2c , 
as desired. 

To finish the proof of the lemma, note that by hypothe
sis XP + PX E B2c , so that both XP and PX are in B2c ' Now, 
since P is bounded away from zero, P - I is bounded, so that 
X = (XP)P -I E B2c ' 

This concludes the proof of the lemma. D 
(7) To demonstrate that TVt T -I satisfies Shale's crite

rion although T does not, write 

ITV,r-'1 2-I= T*-'Vi(ITI2Vt - Vt ITI 2)T- ' 
= T*-'Vi((R +AC)V, - Vr(R +AC))T- ' 
= T*-'Vi! [AC,eitH1 + [R,eitH]JT- I

. 

Paragraph (4) above shows that [AC,eitH ] E B2r . To show 
that the remaining term [R,eitH ] is also in B2r , note that 

[R 2,eitH ] = [A 2,eitH ] 
= A (AeitH - e- itH A) _ (e itH A _ Ae-itH)A, 

so that, again by the results of paragraph (4), [R 2,eitH ] E B2r · 
That is, XR + RX E B2r , where X [R,eitH ]. Since all of 
these operators are complex-linear, it is even true that 
XR + RX E B2c , so Lemma 6 above with P - R implies that 
X E B2c ' i.e., [R,eitH ] E B2c CB2r . Thus 
(I TVt T - 112 - I) E B2r , as was to be shown. 
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The 22n-dimensional operator algebra constructed on n single-fermion states is decomposed into 
irreducible tensor operator spaces with respect to three Lie subalgebras of physical interest: (i) the 
Lie subalgebra associated with the group SU(n) used in Hartree-Fock theory, (ii) the Lie 
subalgebra associated with the group SO(2n) used in Hartree-Bogoliubov theory, and (iii) the Lie 
subalgebra associated with the group SO(2n + 1) introduced by Wybourne in atomic 
applications. 
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I. INTRODUCTION 

In this paper we study the algebra generated by a finite 
number of creation and annihilation fermion operators. This 
case occurs in nuclear and atomic shell-model applications 
when the infinite number of single-particle states is cut off to 
a finite number for practical calculations. The finite-dimen
sional algebra generated by n creation and n annihilation 
fermion operators was investigated by Heise' in view of 
physical applications. Heise, however, studied this algebra 
especially in relation with its unitary, particle-number-con
serving subalgebra. We shall consider also two other subal
gebras of physical interest. These are: (i) the subalgebra cor
responding to the orthogonal group SO(2n) which mixes the 
n particles with the n-hole states2 and is used in Hartree
Bogoliubov calculations3 and (ii) a subalgebra corresponding 
to the orthogonal group SO(2n + 1) introduced by Wy
bourne4 and which found some interest in atomic applica
tions. 

The purpose of this paper is to decompose the finite
dimensional fermion algebra into generalized irreducible 
tensor operator spaces with respect to the three Lie subalge
bras: the unitary SU(n), the orthogonal SO(2n), and the orth
ogonal SO(2n + 1). The irreducible tensor operator spaces 
(ITOS's) are irreducible representation spaces for the subal
gebras with respect to the operation of commutation. 

In Sec. II we review various useful properties of the 
fermion algebra and of its three Lie subalgebras. In particu
lar, we specify simple basis for the three Lie subalgebras that 
we shall use in Sec. III for the decomposition into ITOS's. In 
Sec. III we decompose the fermion algebra into irreducible 
tensor operator spaces with respect to the three subalgebras 
corresponding to the groups SU(n), SO(2n), and SO(2n + 1). 
We characterize each ITOS by the highest weight (hw) of the 
representation, by the operator corresponding to this highest 
weight (hwo), and by the dimension of the irreducible repre
sentation. 

II. BASIC PROPERTIES OF THE FERMION ALGEBRA 
AND OF ITS THREE SUBALGEBRAS 
A. The algebra C 

We consider n creation and n annihilation operators 
at, ... , an+, a, • ... , an' (1) 

obeying the fermion anticommutation relations 

[a/ , aj ] + = oij' [a/ , a/ ] + = [a;. aj ] + = O. (2) 

From the operators (1) we can construct 22n linearly indepen
dent products 

(3) 

for which we may adopt the normal ordering, i.e., creation 
operators first and i, <i2· .. < ip,j, <j2'" <js' These 22n pro
ducts span the finite-dimensional fermion algebra. This alge
bra was studied in the mathematical literature, for instance 
by Chevalley,5 as a Clifford algebra and we shall denote it by 
C. 

The subspace of C spanned by products (3) containingp 
creation and s annihilation operators will be noted C( p,s)' The 
subspace of C spanned by normal products of order k, i.e., 
such that p + s = k, will be called Clk )' Clearly 

dimC(p,s) = C)(;), dimC(k) = C;)' (4) 

It is useful also to consider the even and odd parts of C: The 
subspace of C containing the Clk ) 's with k even will be noted 
Ce and the subspace of C containing the Clk ) 's with k odd 
will be noted Co. We have 

dimCe = dimCo = 22n -', (5) 

It is easy to see that Ce is an algebra while Co is not. Ce is in 
fact the direct sum of two simple algebras, 

To decompose Ce in simple parts, we note that the cen
ter of Ce is spanned by two elements5

: the identity and the 
operator 

n 

e = II (2a;+a; - 1) (6) 
;= I 

which satisfies the relation e2 = 1. We therefore construct 
the two projectors 

p ± = ~(l ± e), (7) 

which satisfy 

p2± =P±' p+p_=p_p+=O, p++p_=1. (8) 

Then Ce can be split into two simple algebras 

C/ = C.P+, C e- = Cep_ (9) 
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each of dimension 22n 
- 2 and such that C'+ C e- = C e- C e+ 

=0. 
The algebra C itself can be decomposed into a direct 

sum with the aid of the projectorsp+ andp_. To see this, 
defineC + = Cp+andC - = Cp_,andnotethatC +andC
are disjoint. For, ifcp+ = c'p_ (C,C'EC), multiplying by p+ at 
the right on both sides, we obtain, using (8), cp+ = c'p_ = O. 
Moreover, any element CEC can be decomposed in a unique 
way as a sum c = c+ + c_ with c+ = cp+ and c_ = cp_. 

We have reviewed above the main properties of the fin
ite-dimensional fermion algebra C. For other properties and 
especially the relation of C to the space of wave functions (or 
the space of spinors) we refer to the works 2 and 5. 

B. The subalgebra L1 

In what follows we shall use mainly commutators and 
not the associative product, so we shall refer to Lie algebras 
and subalgebras instead of (associative) algebras. We shall 
consider first the Lie algebra associated with the realization 
of the unitary group U(n) which mixes creation operators (or 
annihilation operators) among themselves. This Lie algebra 
and the corresponding group are important in Hartree-Fock 
theory. 

This unitary Lie subalgebra is spanned by the n2 opera-
tors 

a/ aj' i,j = 1, ... , n. (10) 

It is not a simple algebra but it becomes simple if we take off 
its center which is the number operator N = l:7 = 1 a/ a;. We 
call the resulting (n 2 

- I)-dimensional Lie subalgebraL I. LI 
is of type An -I' It has n - 1 simple roots [a;, i = 1, ... , 
n - 1 J, which satisfy the relations 

(ao a;) = 2, (ao aj ) = kij' (11) 

where ( , ) is the scalar product in the root space and kij 
= - 1 if a; and a j are adjacent and connected in the Dyn

kin diagram of An_I andkij = Oifa; andaj are not directly 
connected. To each simple root a; corresponds a triplet 
[ H a; , E ± a, J = [H;, E ± ; J of simple operators, satisfying the 
commutation relations 

[H;,E±d_= ±(aoa;)E±o [EoE_d_=Ho 
(12) 

[HoEj]_ = (a;,aj)Ej , [EoEj]_ =qEa,+a
j

' 

where q = ± 1 if a; and a j are directly connected and q = 0 
ifnot. The 3(n - 1) operators [H;, E ± i' i = 1, ... ,n J form a 
simple basis of L 1 from which all other operators of L 1 can be 
obtained by commutation. The H; are Cartan-Hermitian 
operators (H / = H;) and E; and E _; are respectively rais
ing and lowering operators (E _; = E / ). A realization of 
this simple basis in terms of creation and annihilation opera
tors is given by 

Ei =a/ai+l , E_i =ai~lai' 

Hi = a/a; - ai~ lai+ I' i = 1, ... ,n - 1. (13) 

C. The subalgebra L2 

The Lie subalgebra L2 of C is associated with the ortho
gonal group O(2n). This group is the basic group in the Har-
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tree-Bogoliubov theory where it mixes creation and annihil
ation operators to form quasiparticle operators. L2 is 
spanned by the n(2n - 1) bilinear products 

(14) 

and is of type D n • The simple roots of L2 satisfy relations (11) 
where the scalar products are determined by the Dynkin 
diagram of D n' It is easily checked that a basis of 3n simple 
operators is given by 

Ei = a/ai+ I' E_i = ai~ la;, 

H; = a;+ ai - a;~ 1 ai + I' i = 1, ... ,n - 1, 

En = an+_ 1 an+, E _ n = an+ an+_ I' 

Hn =an+_1an_ 1 +an+an -1. 

(15) 

All other operators (14) can be obtained from the operators 
(15) by commutation. 

D. The subalgebra L3 

The realization of the group O(2n + 1) in terms of fer
mion operators was considered by Wybourne.4 Its Lie alge
bra L3 contains bilinear as well as single operators 

(16) 

for a total of n(2n + 1) operators. L3 is of type Bn . Its simple 
roots satisfy 

(ao ail = 2, i = 1, ... ,n - 1, (an' an) = 1, (ao aj ) = kij' 
(17) 

where kij = - 1 if a; and aj are connected by a line in the 
Dynkin diagram and kij = 0 if they are not connected. A 
simple basis of operators for L3 satisfying the relations (12) is 
given by 

E; =a/ai+l , E_i =a;~lao 

H; = a/ a; - a;~ 1 a; + I' i = 1, ... ,n - 1, 

1/1. DECOMPOSITION OF C INTO IRREDUCIBLE 
TENSOR OPERATOR SPACES 

(18) 

It is a matter of interest to decompose the algebra C into 
ITOS's with respect to the three subalgebras L I , L 2, and L 3• 

Before beginning the specific decomposition, it is important 
to note the difference between a usual representation space 
for a Lie algebra L and an irreducible tensor operator space 
for L. For a usual representation space Vof L, L acts on Vby 
the so-called module multiplication L VC V. On the other 
hand, for an ITOS T of L we have [L, T] _ C T, where the 
commutator replaces the module multiplication. 

A. Decomposition of C with respect to L1 

LI is spanned by the operators [a/ aj J. We remark that 
both Co and Co are stable with respect to commutation with 
these operators and are therefore tensor operator spaces for 
L I' The same remains true when we commute the operators 
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a;+ aj with the subspaces C( p,s)' which are thus tensor opera
tor spaces for L\. However, it can be seen (by taking for 
example a particular case) that the spaces C( p,s) are in general 
reducible. 

Let us note that C( p,O) and C(O,s) are ITOS's for L \. In 
fact, CI p,O) is the pth antisymmetrized tensor product of 
CII,O» which is spanned by the creation operators (a;+ , 
i = 1, ... ,n). C(l,O) has hw (1,0, ... ,0) and its hwo is a l+ (corre
sponding to the simple basis specified in Sec. lIB). CI P.O) has 
an hw with O's everywhere except a 1 in the pth position from 
the left and its hwo is a 1+ a2+ ... a/ . We shall use the notation 
(lp) for an hw with a 1 in positionp from the left and O's 
everywhere else. The ITOS's CIO,S) are adjoints to Cls,O)' As 
such C(O,S) is thesth antisymmetrized power ofCIO,I) which is 
spanned by the annihilation operators (ao 1 = 1, ... ,n), CIO,I) 
has hw (1 n ~ I ) and hwo an and CIO,S) has hw (1 n ~ s) and hwo 
anan ~ I ... an ~ s + I . 

Now CI p,s) is the tensor product of CI p,O) with CIO,S)' We 
use the obvious notation (1 k 1,) for an hw with 1 's in the k and 
I positions from the left and O's everywhere else. Dynkin6 has 
shown that a tensor product like CI p,s) decomposes into irre
ducible spaces with highest weights 

(lpln~s)' (lp~lln~S+I)' (lp~21n~S+2)"'" (19) 

the enumeration terminating either with an hw (0, ... ,0) or an 
hw with a single 1. Dynkin has also proved that each of the 
irreducible representations corresponding to the above hw's 
has multiplicity 1. To determine the hwo's corresponding to 
the hw's (19), we note first that a l+ a2+ ... a/ an .. ·an ~ s+ I is 
the hwo corresponding to (1 pin ~ s). The verification is done 
by checking that the commutators of a l+ ... a/ an · .. an ~ s + I . 
with the raising operators E; of L I give zero. Then one can 
verify quite easily that the hwo's corresponding to the other 
hw's are obtained by replacing the farthest creation operator 
from the left and the nearest annihilation operator from the 
right by the number operator N. Thus the hwo correspond
ing to (lp ~ I In ~ s+ I) is at ... a/~ I Nan· .. an ~ s+ 2' the hwo 
corresponding to (lp _ z In _ s+ z) is a l+ ... a/~ 2N 2an 
· .. a n _ s + 3 , etc. 

Let us take, for better illustration, a specific example. 
We assume n = 4 and want to decompose Clz.2) in ITOS's. 
The hw's occurring in the decomposition will be 
(1 2 ,1 2)=(020), (1 1,1 3)-(101) and (000). The corresponding 
hwo's, as easily verified, areat at a4a3, at Na 4 , and N 2

• We 
check in the Appendix the correctness of the decomposition 
of C with respect to L I by using dimensions. 

B. Decomposition of C with respect to L2 

We take the simple basis (15) of L2 and look for hw's and 
hwo's ofITOS's in C. We find that 1, at, at a2+ , ... , a 1+ at 
... a/, ... , at az+ ... an+ are such hwo's. This can be seen by 
commuting the raising operators Ei from (15) with the above 
operators and noting that this gives O. The corresponding 
hw's (apply the Cartan operators Hi to the hwo's) are 

(20) 

The dimension of the representation (lp) ofDn is (~n) and that 
of (2n) is !(2;). If 1, a 1+ , at a2+ , ... , a 1+ a2+ ... an+ form a com-
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plete decomposition of C in ITOS's we must have the equa
lity of dimensions: dimC = 1 + et) + en + ... (;~ I ) + !enn) 
=22n ~ I. But the dimension of C is 22n, the double of 22n - I. 

Let us remember, however, that C is the direct sum of 
C + and C ~. Thus, we can in fact construct twice as many 
ITOS's in C by using the projectors p ± ' viz., 

P± ,atp± ,ataz+P± , ... ,al+at· .. an+P±. (21) 

It is easily verified that these (n + 1) pairs are hwo's with the 
corresponding hw's (20) and that the dimension check is now 
correct: 

d· - 2n (2n) ImC =2 = 2·1 + 2· 1 + ... 

(22) 

C. Decomposition of C with respect to L3 

In the case of L3 we shall see that pairs of adjacent 
ITOS's in the decomposition (22) of C with respect to L2 mix 
to form an ITOS with respect to L 3• This is related to the 
binomial coefficient identity 

(2n) (2n) = (2n + 1). 
i + i+l i+l 

(23) 

According to Eq. (23), one can see how the dimensions of 
ITOS's of L2 in Eq. (22) mix. We have now 

dimC=2
2n 

= 1 + [C;) + Cln)] + [C;) + C2n)] + ... 

+ [ C ~ 2) + C ~ J] 
+ [C ~ J ++(~) ++Cnn)] 

=1 + Cn t 1) + Cn: 1) + ... 

+Cnn~n+Cn: 1), (24) 

and we see that two ITOS's of L2 mix to form an ITOS of L3 
for all representations of L2 but the first and the last. The 
first ITOS of L2 does not mix and the three last ITOS's of L2 
form an ITOS of L 3 • 

This dimension decomposition must be checked by de
termining the hwo's and the corresponding hw's. We assert 
that the following operators, 

(25) 

are hwo's for ITOS's of L 3 • Note that in Eq. (25) an hwo 
consisting of a product of an odd number of creation opera
tors has attached an operator e. To prove that the operators 
(25) are hwo's, one applies the raising operators E; in (18). 
The hw's corresponding to the hwo's (25) are 

(0), (1 d, (12)' .... 

IV. CONCLUSIONS 

We make now the following comments on what has 
been done and on possible generalizations. 
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First, our method can be extended to the case of an 
infinite number of single-particle states. Then, one has to 
consider infinite-dimensional algebras and subalgebras but 
the decomposition into ITOS's keeps probably the same 
structure as for the finite-dimensional case. 

Secondly, it is important to note that the specific form 
of the hwo's depends on the realizations of the simple basis 
for L

" 
L 2, andL3 in terms of creation and annihilation oper

ators. The decomposition according to hw's and the dimen
sions ofthe ITOS's remain, however, invariant and are 
therefore characteristic of the problem. The specification of 
the hwo's for the ITOS's is nevertheless useful because one 
can obtain from them, by using lowering operators, all the 
operators of the ITOS's corresponding to a specific basis of 
L

" 
L 2, or L 3• In general, the problem of the decomposition is 

unique up to an automorphism of the whole algebra C. 
Let us elaborate also on the usefulness of our decompo

sition for physical applications. As noted by Heise, I the 
study of the algebra constructed on a finite set of fermion 
operators is useful for the analysis and understanding ofvar
ious model Hamiltonians and operators occuring in atomic 
and nuclear physics. These Hamiltonians and operators be
long to the algebra C and therefore themselves and their 
eigenspaces can be studied by using our general decomposi
tion. Our decomposition can be extended also to other sym
metry subalgebras such as the symplectic or quasispin subal
gebras which are used for the classification of atomic and 
nuclear states. 
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APPENDIX 

In this appendix a closed formula for the dimension of 
an irreducible representation (IR) of type (0 .. ·010 ... 010 ... 0) of 
SU(n + 1) is derived and a check for the decomposition (19) 
of the space C( p,s) with respect to L I is made by using dimen
sions. 

Dynkin6 rewrote Weyl's dimension formula in a com
binatorial form and thus made it suitable for computations. 
We 7 unified Dynkin's formulas for all simple Lie algebras by 
the use of Killing-Cartan system of roots and coded the al
gorithm for programmable calculators. Here we use this for
mulation except that we have replaced the parameters I ti I 
by their values In + 1 - ij . 

The vector [A 1.A2, ... A n ] denotes the highest weight 
vector characterizing an IR. For An [i.e., SU(n + 1)] the di
mension formula is given by 

NA =f(I)f(L), 

where 

f(I) = II [1 + k
i 

.], 

I<i<n n + 1 -I 

[ k. - k.] f(L) = II 1 + '. . } , 
I <i<j<n }-I 
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(AI) 

the kj's satisfying the recursion relation 

kn=An, 

k n _ p = k n _ p + I + A n _ p (I<p<n - 1). 

We consider an IR of the type defined by 

Ap = Aq = 1, Ai = 0, i=/=p, q. 

Then (A2) gives 

{

O' q + I<i<n, 

k i = 1, P + I<i<q, 
2, 1 <i<p. 

Consequently, 

f(I)= II (1+ 2 .] II [1+ 1 .] 
I<i<p n + 1 - I p,i<q n + 1 - I 

which, after some algebra, reduces to 

f(I)= (n+l)(n+2) 
(n + 1 - q)(n + 2 - p) 

The other factor of N A is 

fILl = IT { II [1 + -. 1 .] IT [1 +~]} 
I<i<p p<j<q } -I q<j<n J-I 

X J!JJ~t [ 1 + j ~ i]}' 
which, after some manipulations, becomes 

fILl = q + 1 - p (n)(n + 1). 
n+l-p p q+l 

Finally, 

(A2) 

NA = (q + 1 - p)(n + I)!(n + 2)!, (A3) 
(q + I)!(n + 1 - q)!p!(n + 2 - pI! 

which can be written also for An _ I [SU(n)] 

NA = q - p + 1 (n + 1)(n). (A4) 
q+ 1 p q 

We8 know that for A n _ I the reflection about the midpoint is 
an automorphism of the Dynkin diagram. Consequently, the 
dimension formula must verify the relation 

NA (p, q) = NA (n - q, n - pl· 

We see that our formula satisfies this test. 
It is easy now to prove by induction the decomposition 

(19) of Sec. IlIA. We note that the equality of dimensions 
holds for CIO,O) , C(I,O) , and CIO.I ) in (19). Now suppose that the 
equality of dimensions holds for CIP,S)' To complete the in
duction proof, it remains to show that the equality holds also 

for CIP + I,S+ I)' But dimCIP + I.s+ I)-(~+ .)(~+ I)' and we 
shall prove that it equals dim( 1 p + I' 1 n _ s _ I ) + dimCI p,s). In 
fact this last sum can be written: 

n - s - p - 1 (n + 1)( n ) + (n)(n) 
n-s p+l n-s-I p s 

(nW 
(p + l)!(n - p - l)!(s + l)!(n - s - I)! 

[In + l)(n - s - p - I)I(n - p)(n - s) + (p + I)(s + 1)1 
(n - p)(n - s)] and the expression in square brackets equals 
1, which finishes the proof. 
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The lifting of an InOnO-Wigner contraction at the level of universal coverings 
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It is shown that, when the Borel cohomology of a connected Lie group G is such that all projective 
representations can be lifted to unitary representations of the universal covering group, then any 
contraction of G corresponds to a contraction of its universal covering. Three theorems are stated 
and proved. The results apply also to the inonii-Wigner contraction of the Poincare group into 
the Galilei group. 

PACS numbers: 02.20.Qs 

INTRODUCTION 

After the pioneering works ofWigner and Bargman 1•2 

the relationship between the classification of the PUR (pro
jective unitary representations) of a connected Lie group and 
the classification of the PUR of its contraction in the inonii
Wigner sense has become an important problem.3 In this 
paper we shall study the special case of a complex connected 
Lie group G contracted to a "motion type" group 
K (G )Cx2" K (G) (Cx=semidirect product). [To fix notation, 
2" (G ) will denote the Lie algebra of G,K (G ) a maximal com
pact subgroup of G, H~(G,U(1)) the second cohomology 
group (Borel cohomology) corresponding to trivial action of 
G on U( 1), and G the set of classes of projective unitary repre
sentations of G indexed by H~(G,U(I)).] 

That kind of contraction can, in special cases of phys
ical interest, be lifted at the level of universal converings. 

contraction 

G------t G' 

p[ [P' 
G • G' 

contraction 

The classical contraction P~g (P = Poincare group, 
g = Galilean group) does not "preserve the compact part," 
that is K (P) =l=K (g) and, in fact there are classes of PUR of g 
that do not appear in P. But even this contraction can be 
lifted in a sense described below. 

Theorem I: Let G 'be a contraction of G, G any connect
ed Lie group such that K (G) = K (G '). Then G = G '. 

Proof The following isomorphism holds for every con
nected G: 

H~(G,U(l)) ~H ~(K (G ),U(I)). 

Then, 

H~(G ',U(1))~H~(G,U(I)). 

This is because G and K (G) have the same topology. Note 
that the isomorphism holds in spite of the fact that we in
clude a further condition on the measurable 2-cocycles: 
a(a,bc)a(b,c) = u(a,b )u(ab,c)(a,b,cEG). A contraction 
G~K (G )Cx2"(K (G)) can be actually lifted toanexte~sionof 
G (the universal covering of G ) which we denote by G, such 
that, if p:G~G is a continuous covering epimorphism, then 

applying the contravariant functor Ext6(-,U(I)) we get the 
trivial homomorphism Ext6(p,U(I))=0[Ext6(P,U(l)):Ext6 
(G,U(l))~Ext6(G,U(I)).] We have the general result: 

Theorem II: Let <j beoa connected Lie group, G its uni
versal covering; then G~G (as groups). 

Proof 2"(G) = 2"(G) and so, alsoH ~(2"(G ),R) = H ~ 
(7'(Q ),R). Then by a result due to Hochschild4 we can state 
G=G. 

We shall work in the special context: (1) H~ 
(2" K (G ),R) = O[ H~(K'(G ),U(l),) = 0] [which holds in 
many cases of physical interest, for example, when K (G) is 
the three-dimensional rotation group, for K (P ), etc. (2) G is of 
the form G/center of GI' where G1 is a connected and sim
ply connected complex Lie group. 

We shall actual~ee that G =,.... G and 
K (G )~2"(K (G)) = (G )&2"(K (G)). [The group Gcan be de
tected in the Levy-Leblond papers dealing with the compu
tation of all PUR of g which can be lifted to the unitary line 
as representations of g (the "extended Galilean group"). Ac
tually it is possible to "lift" at the level of the fov.:.rings the 
contraction P~g, but in this particular case, P=P because 
Exto (P, U( 1)) = 0, so P is a lO-dimensional group, as P, but 
Exto (g,U( 1 ))=1=0 andg is II-dimensional over the real field R 
Even here we can "contract" P tog by adding an extra gener
ator to the 2"(P) and still show that a contraction holds at 
the level of 2"(P)~2"(g)]. 

In our particular context, G is the only connected sim
ply connected Lie group associated with the Lie algebra 
2"(G). 

The condition H ~ (K(G), U( 1)) = 0 always holds if the 
Lie algebra 2"(K (G)) is semisimple (Whitehead's second 
lemma).6 

A comparison of the Lie algebra of G and of 
K (G ) Cx 2" tK (G )) will show that one is a contraction of the 
other: 2"(G) = L8-K (semidirect sum of the Lie algebra L 
and K) so that the following commutator relations hold: 
[L,L ] CL,[L,K] CK,[K,K] CK,[L,K] =1=0; 
2"(K(G)&2"(K(G))) = L' $K', where 0 

[L ',L ']CL ',[K',K ']CK', and [L ',K '] = O. 2"(G) is contract
ed to 2"(K(G)&2"(K(GUl. 

The condition H~ (K (G),U(I)) = 0 implies 
H6(2"(K (G )&2"(K (G ))),R) = O.SinceK (G ) is compact, we 
also get H 6 (2"(K (G)), 2"(K (G ))) = O. (Weyl, see, e.g., 
MacLane6

). 
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We also have that H ~ (!f (G ),R) = O. Hence G and 
K (G )~!f(K (G)) are the connected simply connected Lie 
groups of the Lie algebras of G and K (G )<2<!f (K (G )), that is 
their respective universal coverings. Moreover, the contrac
tion G-+K (G ) ~!f (K (G )) preserves the compact part [which 
is nothing but the universal covering of K (G )]. Hence we also 
get the following: 
~ Theo-:em III: Under these assumptions, 
Ger;K (G )~!f(K (G)). 

Corollary: In the case of our hypothesis, PUR of G and 
K (G )<2<!f(K (G)) can be lifted to the UR of their respective 
universal coverings. 

As an illustration, one can consider the case exposed by 
Mackey in his monograph G = SL(2,C)/Z2,G' = Euclidean 
group. 

We have the contraction G-+G " and we are in the case 
of our hypothesis: Exto 
(S0(3),U(I)) = Exto(SL(2,C),U(I)) = O. 

Note (1) that condition (2) is not redundant; the condi-
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tionH~ (!f(K(G)),R) = OdoesnotimplyH~ (!f(G),R) = 0 
for any connected Lie group G. (2) In the above illustration of 
Mackey,7 G has only the principal series. Up to a set of mea
sure 0 (with the Pontrjagin measure), the dual objects of G 
and of K (G )<2<!f (K (G )) are such that their parameter spaces 
are coordinable, and the same correspondence of above can 
be lifted at the level of dual objects of universal coverings. 

'E. P. Wigner, Ann. Math. 40, 149 (1939). 
2V. Bargmann, Ann. Math. 59, I (1954). 
3E. inonii and E. Wigner, Proc. Nat!. Acad. Sci. USA 39, 510-524 (1953). 
·G. Hochschild, Ann. Math. 54,96 (1951). 
'J. M. Levy-Leblond, "Galilei Group and Galilean Ivariance," in Group 
Theory and its Applications, Vol. II, edited by E. M. Loebl (Academic, New 
York, 1971). 

6R. MacLane, Homology (Springer, New York, 1963). 
7G. Mackey, Induced Representations (Marcel Dekker, New York, 1966). 
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The representation of the orthosymplectic algebras and the other members of their class are built 
explicitly, with simple techniques. 

PACS numbers: 02.20.Qs, 11.30.Pb 

1. INTRODUCTION 

The "classical" Lie superalgebras 1-3 are divided into 
two classes or types: the Class I includes the unitary superal
gebrasSU(mln) and C (n)[osp(2/2n - 2]; the Class II is made 
of the superalgebras osp(mln) and the exceptional F(4) and 
G(3). 

The difference between the two classes appears in the 
gradation of the Lie algebra: Class I superalgebras can be 
decomposed into G_ 1 + Go + G1 (with IG G J C G.)' 1') J+J' 

Class II superalgebras can be decomposed only into 
Go + G1, with I GI> G1 J eGo· 

In other words, in the Class I case, the odd generators 
belong to a reducible representation of Go, namely 
G1 + G- 1• IExampleSU(mln): G1 + G_ 1 corresponds to 
(in, n) + (m, ii) of the underlying bosonic subalgebra 
SU(m)XSU(m)X U(l)]; in the Class II case, the odd genera
tors in G1 form an irreducible representation of Go [for 
osp(mln), Go is 0 (m) xSp(n) and G1 is (m, n); for F(4), Go is 
o (7)xSU(2) and G1 is a (8,2) and for G(3), Go is G2 XSU(2) 
and G1 is a (7,2)]. 

This modifies significantly the problems raised by the 
representation of these superalgebras. In a related work4 we 
study the irreducible representation of SU (min), with all the 
group details; with the same kind of intention we address 
ourselves here to the representation of the Lie superalgebras 
of Class II. 

In which senseosp(4/2) andosp(l/2n) are special will be 
made precise in Sec. 5. 

The Dynkin diagrams are related to a Cartan matrix in 
the same way as for a classical Lie algebra. 5 

There is a basis (chevalley basis) where it is possible to 
decompose the algebra into a Cartan subalgebra 
(hi I[ hi' hj] = 0, i,j = 1, ... ,r = rank of the superalgebra), 
and the other generators are associated with positive and 
negative roots. It is always possible to extract a system of r 
single positive and/or negative roots a i±, involving only one 
odd root; in terms of these roots the algebra to represent is 

[a i+, aj-j = Dij hi 

([a, b J = lab J ifbotha i and are odd, it is a commuter other
wise) and 

[ hi' a/ ] = ± aij a/. 
aij are the elements of the "Cartan Matrix," which can 

be read off the Dynkin diagram; the rules are the same as for 

8) Partially supported by the Swiss National Science Foundation. 

the plain Lie algebras. Two kinds of roots are added, "grey" 
and "black," which correspond to the odd roots. In our cases 
[Dynkin diagrams are not uniquely defined in general for Lie 
superalgebras (Ref. 1)] for these roots the rules are grey root 
corresponds to a 0 in the diagonal and to a-I for all con
nected entries, except the first nonzero at the right of the 
zero is a + 1. A black root is the same except that there is a 2 
in the diagonal. 

The rank of osp(2mI2n) or osp(2n + l/2n) is m + n; on 
their Dynkin diagram one can recognize a SU(n) and a 
SO (2m) or SO (2m + 1). The odd root hides an even simple 
root which belongs to Sp(2n). This is the source of consisten
cy conditions for the representations which do not exist in 
the Class I superalgebras, the details of which we give in 
Secs. 2, 4, and the appendices of this paper. 

This paper whose aim is to be pedagogical is organized 
as follows: 

-In Sec. 2 a specific simple, but neither trivial nor ex
ceptional example [B (2,2) = osp(5/4)], is studied in a 
lot of detail. 

-In Sec. 3, the osp(mln) Lie superalgebras are dis
cussed; the parts of their anatomy and physiology 
relevant for us are displayed. 

-In Sec. 4 we study the representation of osp(mln) in 
general; namely we precisely define the conditions of 
typicality and consistency. 

-In Sec. 5 we try to clarify what is special aboutB (0, n) 
and D (2, 1, a). 

Because, unavoidably, a general study like the one we 
do in Secs. 3 and 4 could seem a bit abstract to an hypotheti
cal reader interested in playing with concrete representation, 
we have decided to show more examples than B (2, 2). 

With respect to what is potentially contained in Refs. 1 
and 3, this paper does not include anything mathematically 
new; it clarifies the meaning of the consistency conditions, 
and concretely shows how the representation follows. This 
was not made before and completes a work made with the 
same philosophy on SU(mln). 

2. B(2, 2) = osp(5/4) 

i.e., in terms of the bosonic subalgebra Sp(4) X 0 (5), the ad
joint representation of osp(5/4) is (10, 1 )even + (4,5)odd 
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+ (1, lO)even. In the SU(m/n) case (Ref. 4) it is possible to 
decompose the algebra into a Cartan subalgebra and positive 
and negative odd and even roots. The even positive/negative 
roots are those of SU (m) XSU (n). The odd positive/negative 
roots are in (m, n)/(m, Ii) of SU(m)XSU(n). 

This construction has to be modified in the case of 
osp(m12n): The odd roots do not divide so naturally into 
positive and negative roots, since they belong to a real respre
sentation of 0 (m) xSp(2n). 

Embedded in Sp(2n) there is a U (n) regularly embedded 
such that 2n = n + Ii. The roots are ranged as positive or 
negative according to whether they belong to the (m, n) or 
(m, Ii) of 0 (m) xU (n). 

The system of roots of osp(5/4) is made of two parts .10 

for the even roots and .1) for the odd roots: 

.10 = ! ± E3; ± E3 ± E4; ± 8) ± 82; ± 28); 282 ), 

.1) = ! ± 8); ± 82; ± E3 ± 82; 

± E3 ± 8); ± E4 ± 82; ± E4 ± 8) J. 
The system of roots we choose is as follows: The even 

roots 8) - 82, E5 - E4, E4 and the roots 82 - E3. (The numbers 
we choose are not uncorrelated with the Dynkin diagram of 
osp(5/4). 

The even simple root of Sp(4), 282, is hidden, and is not 
simple here since it corresponds to the linear combination of 
the simple roots: 2[(82 - E3) + (E3 - En) + En]. 

We make the distinction between positive and negative 
roots in terms of SU (2) X 0 (5), each set belonging to a (2, 5). 

This leads to the newSU (2) X 0 (5)gradationofosp(5/4): 

G __ 2(3, I)even + G_)(2, 5)odd + Go[(3 + 1, 1) + (1, lO)]even 

+ G)(2, 5)odd + G2(3, I)even· 

G -2 and G2 correspond to the generators of Sp(4)/U(2). 
To be able to build the representation we start from a 

highest weight, on which we will apply all the generators 
corresponding to the negative roots. 

The "negative" odd generators necessary to build the 
representation will be defined the following way: 

way: 

and 

/3 ~ - is the generator associated with the simple odd 
negative roots; it corresponds to the highest weight of 
the (2, 5) of SU (2) X 0 (5). 
The other odd generator are defined in the following 

/3 J - = [/3 J - , a)- ] j = 2, 3,4, 4, 3 

(2.1) 
/3i- = [/3~-, a 4-], /3~- = [/3i-, a 3-]; 

their anticommuter vanishes only when it does not belong to 
G -2 or in other work is not in a (3, 1) of SU(2)XO(5). 

The highest weight of an irreducible representation of 
os(5/4) is characterized by four nonnegative integers 
a l' b, a3 , a4 • (a), a2 , a3 , a4 ) is associated with the simple roots 
(and corresponding to the projection of the highest weight on 
the corresponding simple roots). 

a), a3 , and a4 can be seen as characterizing a 
SU(2) X 0 (5) representation; any representations of osp(5/4) 
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can be expressed uniquely in terms of irreducible representa
tions of Sp(4) X 0 (5). The highest weight corresponding to 
(ai' a2 , a3 , a4 ) is in theSp(4)XO(5) representation corre-

al b a.~ Q 4 

sponding to (()I::=::(), ():::::::o::()), where b = a2 - a3 - a4/2. 

b is the projection on the simple roots 282 of Sp(4) hid
den by the odd simple roots. [The relation between the Car
tan subalgebra of Sp(4) X 0 (5) and the Cartan subalgebra of 
osp(5/4) will be given in the two next sections.] 

The requirement that we are dealing with representa
tions of Sp(4) X 0 (5) implies that b is a nonnegative integer 
(this is the first consistency condition). 

In the case where b = 0 or lone requires in addition a2 

= a3 = a4 = 0 or a3 = a4 , respectively. 
The origin of these two additional requirements will 

appear more clearly when we look at explicit representa
tions . 

To get there we have still to remember that we are re
presenting the algebra 

(2.2) 

where i,j = 1,2,3,4; a/ are the generators corresponding 
to the simple roots and in this case the Cartan matrix reads 

-1 
(aij) = 

( 

2 - 1 

o + 1 
- 1 2 

-2 

It is useful to know that 

(2.3) 

n3, n4 are the number of times a 3±, al enter into the defini
tionof/3.? [cf. Eg. (2.1)], i = 1, 2,j = 2,3, 4. Ni,j is an over
all factor depending on ij, which is in general easy to figure 
out and irrelevant for us. 

An irreducible representation of osp(5/4) is obtained by 
repeated application of the odd roots /3 J - on the highest 
weight A characterized by (a), a2 , a3 ,a4 ). 

The representation will be a sum of 0 (5) XSp(4) repre
sentations; this is not trivial since the /3 J - are in a (2, 5) of 
SU(2)XO (5) and not in a representation of Sp(4)XO(5). 

A can be seen as a reducible representation of 
SU(2) X 0 (5) (characterized by a), a3 , a4 ), all its irreducible 
components merging together to build up a Sp(4) representa
tion. 

/3 J -A will be a reducible SU (2) X 0 (5) representation 
which will not merge in general into Sp(4) representations; 
but this "floor" will get contributions from/3 J;- /3 J;- /3 J;-A. 
In effect the symmetric combinations of odd negative gener
ators build up generators of Sp(4)/ U (2) belonging to the bo
sonic subalgebra. The antisymmetric combinations contri
bute to the third "floor" of the irreducible representation. 
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By this mechanism each floor of the representation gets 
an additional contribution from the product of more odd 
roots in the forms ofadditionalSU (2) X 0 (5) representations. 
These new ones together with the other ones merge into Sp(4) 
representation. 

There is now the possibility that higher floors are de
coupled as we will see; then the representation is called atypi
cal. 

In the case where the representation is called typical it is 
easy to figure out its dimensionality: it is 210 X multiplicity of 
the Sp(4) X 0 (5) representation of which A is the highest 
weight. 

A = (a 2; a2 - ~; a3; a4 ). 

This comes from the fact that the representation is a 
sum of floors which are obtained from the lowest one by 
applying completely antisymmetric combinations of odd 
roots; the corresponding multiplicity is l:10=0 (1°) = 210. 

Atypical representation: At each floor, there are well 
defined highest weights of a 0 (5) X SU (2); for example in the 
first floor it is {3 i-A, in the second floor they are 
{3~- {3i-A and{3 i - {3i-A, etc. (One can verify that a/ 
applied on these weights gives 0.) 

If {3 i + {3 i-A = h0 = 0, {3 i-A is disconnected from 
the total representation, and the Sp( 4) X 0 (5) representation 
it belongs to is decoupled and the representation is "atypi
cal." In the same way {3 ~ - {3 i-A can be decoupled, f3 i-A 
being coupled, etc. The conditions of decoupling are easily 
worked out (cf. Sec. 4). 

In this case they are 

a2 =0, 

a2 = - (a 1 + 1), 

which could never be fulfilled, 
a2 = (a3 + 1), 

a2 = (a3 + 1) - (a 1 + 1) = a3 - a 1• 

To know for which Sp(4) X 0 (5) representation all these 
weights are highest weights it is useful to notice that from 
(2.1), (2.2), and (2.3) one gets if, 

A = (ai' a2, a3 , a4 ; b = a2 - a3 - a4/2), 

then 

TABLE I. The Class II superalgebras together with their Dynkin diagrams. 

Bosonic 
Superalgebras subalgebra 

B(m, n) = osp(2m + 1/2n) O(2m + l)xSp(2n) 

D (m, n) = osp(2m12n) o (2m)XSp(2n) 

D (2, I, a) = osp(4/2)a SU(2)XSU(2)XSU(2) 

B(O, n) = osp(1/2n) Sp(2n) 

F(4) SU(2)XO(7) 

G(3) G2 XSU(2) 

2238 J. Math. Phys., Vol. 23, No. 12, December 1982 

f3 i-A = (a 1 - 1, a2 + 1, a3 + 1, a4 ; b), 

f3; - A = (a 1 + 1, a2 - 1, a3 - 1, a4 + 2; b - 1), 

f3 ~ - A = (a 1 - 1, a2, a3 - 1, a4 + 2; b), 

f3~-A =(a 1 + l,a2 -1,a3,a4;b-l), 

f3 ~ - A = (a 1 - 1, a2, a3 , a4 ; b), 

f3:- A = (a 1 + 1, a2 - 1, a3 + 1, a4 - 2; b - 1), 

f3iA = (a 1 - 1, a2, a3 + 1, a4 - 2; b), 

f3~-A = (a 1 + 1, a2 - 2, a3 - 1, a4 ; b - 1), 

f3! - A = (a 1 - 1, a2 - 1, a3 - 1, a4 ; b). 

The construction proceeds in the following way: Let 
A = (ai' a2, a3, a4 ; b) be the highest weight of the osp(5/4) 
representation. 

f3~-A = (a 1 + 1, a2, a3 + 1, a4 ; b - 1) is the next 
Sp(4) X 0 (5) highest weight; it is coupled if f3 ~ + f3 ~ -A 
= h0 = a0 #0 which corresponds to a condition oftypi

cality. 

f3 ~ - A can be part of the osp(5/4) representation only if 
b;> 1; if b = 0, f3 ~ - A had to decouple, so a2 should be 0, 
which implies a3 = a4 = O. So we get the first consistency 
condition. 

At the next floor the two highest weights are 

f3 i - f3 ~ - A = (ai' a2 + 1, a3 + 2, a4 ; b - 1) 

[the typicality conditions associated with this weight are 
a2 #0, a2 # - a 1 - 1 (the second is always fulfilled)] and 

f3; - f3 ~ - A = (a 1 + 2, a2 - 1, a3 , a4 + 2; b - 2) 

(the corresponding typicality conditions are 
a2 #0, a2 #a3 + 1). 

If b < 2 this weight has to be decoupled. If that means 
b = 0, we know that implies a4 = a3 = a2 = 0; if b = I that 
implies a2 = a3 + I and with b = a2 - a3 - a4/2 that im
plies a4 = O. These are the next consistency conditions. 

By applying progressively all the odd generators f3; - , 
that way, one can see what the whole representations can be 
made of. 

Not belonging to the representation are all the 
Sp(4) X 0 (5) muliplets where a l' a3, a4 , and b are not element 
of Z +. Let us look at a specific example. Let us take 

Odd 
generators Dynkin diagram 

fI 
(2m + I, 2n) 0--0- ... -&-0",0*0 

(2m,2n) 0--0- ... ~--O ... 

(2,2,2) < 
2n o-o ... C) • 

(2,8) ~ 
(7,2) ® O",iO 
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A = (2, 0, 0, 0; 0); it is the highest weight of a (10, 1) of 
Sp(4)XO(5). 

First jloor: [3 ~ - A is decoupled because az = 0. [3 ~ - A 
= (3, - 1, - 1,2; - 1) does not define aSp(4) X 0 (5) high

est weight, [3 i-A = (1, 1, 1, 0; 0) describes the highest 
weight of a (4, 5) of Sp(4) X 0 (5), and [3 ! -A = (1, 0, 0, 0; 0) 
is not a highest weight but a weight of the (4, 5). 

Secondjloor: [3 ~ - [3 i-A = (0, 1,0,2; 0); it is not de
coupled and is the highest weight of (1, 10) of Sp(4) X 0 (5). It 
is in fact the only Sp(4) X 0 (5) highest weight appearing in 
that floor. 

It is impossible to get to a higher floor, a 1 or b would be 
negative. 

So in summary, this atypical representation has the fol
lowing Sp(4) X 0 (5) decomposition: (10, 1) + (4, 5) + (1, 10): 
it is the adjoint. 

3.osp(N/2m) 

In this section and the next we study the cases 
N = 2m + 1 and N = 2m + 2 with m;;;.l. We consider the 
special cases of D (2, 1) and B (0, m) in Sec. 5. 

The root systems of osp(2n + l/2m)[B (n, m)] and 
osp(2n/2m)[D (n, m)], respectively are, for B (n, m), 

.10= 1 ±€j ±€j; ±€j; ±2D/;Dk ±Dd, 

.11 = 1 ±Dk ; ±€j ±Dk 1. 
and for D (n, m), 

.101 ±€j ±€j; ±2Dk ; ±Dk ±Dd, 

.1 1=1±€j±Dk J. 
where 

i=fj = m + 1, ... ,m + n, 

k =/=1 = 1, ... ,m. 

(3.1) 

(3.2) 

.10 and .1 1 correspond, respectively, to the even and odd 
roots. 

We have already noticed in the previous section that it is 
possible to classify the odd generators [which are in an irre
ducible real representation (N, 2m) of 0 (N) X Sp(2m)] into 
"positive" and "negative" generators, respectively, in a 
(N, m)and(N, m)representationofO(N)XSU(m);theSU(m) 
being regularly embedded into Sp(2m): 2m = m + m. 

This leads to the following gradation of the osp(N /2m) 
algebra in SU (m) X 0 (N): 

G_ 2( m(m + 1)12, 1) 

+ G_ dm, N) + Go[(l, N(N - 1))/2) 

+ (1 + (m 2 
- 1), 1)] + G1(m, N) 

+ G2(m(m + 1)/2, 1). (3.3) 

We choose the following system of simple roots: for 
B(n,m), 

Em+ 1 - Em + 2 ; •.. ; Em + n ], 

for D(n, m), 
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-€m+I;€m+1 -€m+Z;"';€m+n-1 ±€m+nl· 

These systems are directly connected to the Dynkin diagram 
shown in the Introduction. Following the same logic as in 
the previous section we are lead to specify the odd generators 
associated with the odd negative/positive generators. 

Let [3 : - be the generator associated to the simple odd 
root [it is a highest weight ofa (N, m) ofO(N)XSU(m)): 
f3:- :=.a;;;. 

The other odd generators are defined in the following 
way: 

[3~;f}- = [[3~;~+I)-,a';;-_j] = [[3~;{::'I,a,;;-+d, 
(3.4) 

j = 1, ... ,m - 1, k = 1, ... ,n. 

Furthermore, in the caseB (n, m), one has the following addi
tional odd roots: 

[3- 1m - j) - = [ [3 1m - j) - . - ] 
n + m n + m , an + m , 

[3- 1m - j) - - [ [3- 1m - j) - - ] 
m + k - m + k + I' am + k • 

In the case of D (n, m), 

[3 1m - j) - - [[3lm - j) - - ] 
m+n - m+n-2,am + n , 

[3 1m - j) -- - [[3lm - j) - - ] 
m+n-I - m+n-2,am + n - l , 

[3- 1m - j) - - [[3- 1m - j) - - ] 
m + k - m + k + I' am + k • 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

In terms of the simple roots the algebra to be represented is 

[ a/ aj - ] = Dij hi> i = 1, ... , m - 1, m + 1, ... ,m + n. 
(3.10) 

1[3:+,[3:-1 =hm' (3.11) 

[hj' a/] = ± aij a/ Vi,). (3.12) 

The elements aij of the Cartan matrix can be read off the 
Dynkin diagram as explained in the Introduction. 

From this one can deduce 

f [3lm - j) + [3 1m - j) - J 
t m+k , m+k 

O<)<;m - 1, O<;k<;n. (3.13) 

~k is a factor irrelevant for us and in the case of B (n, m), 
_ _ ( j k 

f [3 1m - j) + [3lm - j) - 1 = N,.. "h -" h 
t m + k , m + k )k £. m - t ~ m + t 

1=0 1= 1 

In the case of D (n, m), 

I [3 1m - j) + [3lm - j) - I 
l m+n-l' m+n-I 

I [3 1m - Jl + [3 1m - j) - I 
l m+n , m+n 

n - I ) 

-2 I hm+1 -hm+n . 
1= k+ 1 
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f /3- (m - Jl + /3- (m - Jl - j 
t m+k , m+k 

( 

j k 

=~k I h m _ 1 - I hm+1 - 2 I hm+1 
1=0 1= 1 1=k+ 1 

n-2 

- hm + n - 1 - hm + n ). (3.17) 

It is easy to connect the element k of the Cartan subalgebra 
of Sp(2m), hidden in the Cartan subalgebra 
{ hi ji = 1, ... ,m + n of the Lie superalgebra, using the rela
tion between the corresponding roots. 

In the case of B (n, m) one gets 

k = h - h - .•• - h Ih m m+l m+n-l -2 m+n" (3.18) 

In the case of D (n, m), 

k = h - h - ••• - h - l(h + h ) m m+ I m+h-2 2 m+n-l m+n· 

(3.19) 
I 

4. REPRESENTATIONS OF osp(NI2m) 
A. Typical representations 

For the reasons stated in Sec. 2 the dimensions of a 
osp(N 12m) typical irreducible representation is 2Nm X multi
plicity ofthe_O (N) X Sp(2m) representation to which belongs 
the highest A of the osp(N 12m) representation. 

Given the nonnegative integers (al, .. ·,am + n) character
izing the highest weight it is possible to figure out to which 
Sp(2m) X 0 (N) representation it belongs. (am + 1 , ... ,am + n ) 

characterizes the 0 (N) representation; (a I,. .. ,a m _ 1 , b ) char
acterizes the Sp(2m) representation. 

bis related toa, the same way askis related tohi inEqs. 
(3.18) and (3.19), i.e., b is a nonnegative integer: 

B(m,n):b=am -am+ 1 -···-am+ n _ 1 -!am+ n , (4.1) 

D(m, n): b = am - am+ 1 - ••• - am+ n - 2 - !(am+ n _ 1 + am+ n ). 

The dimension of a typical representation therefore corresponds to 

(4.2) 

dim(O-o-.~.~") = 2(2n+ l)m dim(O---D ... a~) dimto.:-o ... ~\ b = b - n - ~ (4.3) 

for B (n, m) and 

dii 0---0 ... ";.-0 ... <: } 2'"m dim(O---o .. :~) di{~'" <:} ~ b -" (4.4) 

for D(n, mI. 

B. Atypical representations 

In Sec. 2 we noticed that two kinds of mechanisms 
could make the dimensions of the irreducible representation 
smaller. 

(1) Consistency requirements: All the possible 
Sp(2m) X 0 (N) highest weights which could appear, should 
be such highest weight, which means that the set of integers 
(al, ... ,am _ 1 , b, am + 1 , ••• ,am + n) they correspond to have to 
be nonnegative. We have noticed in Sec. 2 that this was not 
always guaranteed. 

This leads to consistency conditions we will come back 
to at the end of this section. 

(2) Oecouplings: We have also noticed in Sec. 2 that 
some Sp(2m) X 0 (N) highest weights appearing in higher 
floors could be decoupled from the osp(N 12m) representa
tion because it was impossible to get back from them to the 
rest of the osp(N 12m) representation. This happens for some 
values of am' 

In order to get the different 0 (N) XSp(2m) higher-high
est weights (i.e., the higher-highest weight at each floor) 
which make up the osp(N 12m) representation, one has to 
applyantisymmetrically [the symmetrical combinations 
gives Sp(2m)IU(m) generators] the odd generator /3; - in a 
certain order which can be uniquely figured out in each case 
by the requirement that the resulting weight is a highest 
weight, i.e., all the generators corresponding to positive even 
roots have to vanish when applied on it. 

The antisymmetric product of /3 ~ - is a polynomial 
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T~- of/3{-. The condition ofdecoupling are the zeros of 
T~+ T~- A. In the case where 

T 1- = [ T(/+ 1)- /31- ] = [TI- /31-] k k, k k-)' k , (4.5) 

it is possible to work the decoupling conditions in general by 
using exactly the same techniques as we did in Ref. 4. 

The result is, for B (n, m), 
j k 

I am _ 1 - I am + 1 +j-k=O, (4.6) 
1=0 1=) 

j k n -) 

Iam - , -Iam + , -2 I am + 1 

1=0 1=) 1=k+) 

- am + n + k + j - 2n + 1 = O. (4.7) 

In the case of D (n, m), 

j k 

I am _ 1 - I am + t +j-k=O, (4.8) 
1=0 1=) 

j n-2 

I am _ 1 - I am + 1 -am + n +j-n + 1 =0, (4.9) 
t=O 1= 1 

k n-2 

- I am + t -2 I am + t 
1=) 1=k+) 

- am + n _) - am + n + k + j - 2n = 0, (4.10) 

O<.j<.m, O<.k<.n - 2. 

We saw the decoupIing condition at work in Sec. 2. 
Since all the representations at each floor should corre

spond to 0 (N) xSp(2m) representation, each highest weight 
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should correspond to a set of integers (a I, ••• ,am _ I , b,
am + I , ... ,am + n ), nonnegative. 

Because of (4.1) and (4.2) that constrains the possible 

values of am' am + I , ... ,am + n' 

If b < n consistency conditions appear analogous to the 
one we get in Sec. 2. 

These conditions are 

am + b + I = am + b + 2 = ... = am + n = ° 
for D(n, m); the case b = n - 1 is special [Eq. (4.10)], 

As we saw in Sec. 2 instead of applying blindly these 
results and conditions, in each specific case one should figure 
out explicitly the representation using the formulas of Sec. 3. 

The formulas of this section give the decoupling only of 
the higher-highest weight at each floor; one has in addition 
to look at the lower-highest weights. 

It is for this reason that in Appendix A we study an
other explicit example, D (2,3), and in Appendices Band C 
we study explicitly F(4) and G (3). 

We finish this section by a somewhat cryptic remark 
which will become clearer in the next section when we study 
B (0, n): an attentive reader will have noticed that there are 
fewer decoupling conditions in (4.6)-(4.10), than there are 
odd negative roots. Some odd generators do not lead to any 
decoupling. That is connected with the fact that the anticom
mutator of some odd generators build aSp(2m)l U (N) gener
ator, i.e., contribute to the representation ofthe lower floor. 
It is essential that the corresponding decouplings do not take 
place to get at each floor a Sp(2n) X 0 (N) representation. 

In Sec. 2 the odd generators which did not lead to any 
decoupling were f3 ~ - . 

5. SPECIAL TYPE II LIE SUPERALGEBRAS 

In this section we study B (O,n) = osp(l/2n) and 
D(2,I,a). 

A. B(O/n) = osp(1!2n) 

The system of roots is 

..10 = I ± 2b j ; ± OJ ± OJ J, i=l), 
i,j= 1, ... ,n. (5.1) 

..1. = I ± 0;) . 

The underlying bosonic subalgebra is Sp(2n), and the odd 
generators are in a 2n of Sp(2n) or a (n + ii) of SU(n). 

As simple roots we take 

(5.2) 

The Cartan matrix associated with the corresponding Dyn
kin diagram is the same as 0 (2n + 1). This is probably con
nected to the fact that the representation of B (0, n) has the 
same Casimirs to all orders as nonspinorial representations 
of 0 (2n + 1) (Ref. 6). 

The SU(n) gradation of osp(l/2n) is 

G_ 2(ii(ii + 1)/2) + G_.(ii) + Go[(n 2 
- 1) + 1] 

+ G.(n) + G2(n(n + 1)/2). (5.3) 

By (5.1) or (5.3) one can see that no anticommutators of 
odd generators associated with negative (or positive) roots 
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vanish; they all contribute to build Sp(2n)/U(n) generators. 
The clarification of the last remark of the last section 

that some readers are perhaps looking for, is a consequence 
of the observation we just made about the anticommutators 
of odd generators of B (0, n). 

In effect, as a result of that observation there is no de
coupling conditions in B (0, n) and all the representations of 
B (0, n) are typical. 

For the rest B (0, n) is a simplified version of the cases we 
studied in the two previous sections. In particular the ele
ment k of the Cartan subalgebra of Sp(2n) hidden in osp(l/ 
2n) is k = ~hn' So as a consistency condition one requires 
b = ~an to be a nonnegative integer. 

The adjoint representation corresponds to 
A = (a., a2 , ... ,an ; b) = (1, 0, ... ; 0). The only other possible 
Sp(2n) highest weight is f3 2- A = (0, 1, ... ; 0). 

A + f3 1- A corresponds to (2n)odd + [n(2n + 1 )]even 

Sp(2n) irreducible representation. 

OB2 
B. D(2, 1, a) = osP(4/2, a): B,@ __ --

OB3 

The root system is 

..10= I ±2Ej J, ..1 1 =I±E1 ±E2 ±E3 ), i=I,2,3. 

What is special about this superalgebra is that its Cartan 
matrix is 

(5.4) 

This corresponds to one of the four possible systems of sim
ple roots, 

lEI - E2 - E3 ; - 2E2; - 2E3J· 

The hidden even simple root is - 2E I' As a result the hidden 
element k of the Cartan subalgebra is related to hI' h2' h3 by 

(5.5) 

or the corresponding SU(2) representation is characterized 
by 

(5.6) 

One requires b to be a nonnegative integer . 
One has also to note the consistency conditions: b = ° 

implies a j = 0; b = 1 implies a3 + 1 = ± (a2 + 1). By us
ing our techniques it is trivial to see that the representation 
(aI' a2, a3; b) = (1 + a, 0, 0, 2) is the adjoint representation. 

Let us finally notice that when a = 1 this reduces to a 
special case of D (n, m), and when a = - 1 the Cartan ma
trix becomes the one of SU (2/2). The algebra is of Class I and 
[as can be seen from (5.5)] the representation is completely 
different; there is no more underlying SU(2) and bosonic 
subalgebra becomes in fact SU(2)xSU(2)X U(I). 

B, B2 a" c;,s. 
APPENDIX A: D(2, 3) = O-@-O'::::::'O = osP(6/4) 

B. 

The bosonic subalgebra is Sp(4) X 0 (6), the Cartan ma
trix is 
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2 -1 0 0 

-1 0 +1 0 

0 -1 2 -1 

0 0 - 1 2 0 
0 0 -1 0 2 

fJ j - on A = (a (, a2, a3, a4 , as; b) 

fJ; - A = (a ( + 1, a2, a3 + 1, a4 , as; b - 1) 
fJ ~ - A = (a( + 1, a2 - 1, a3 - 1, a4 + 1, as + 1, b - 1) 
fJ~-A =(a( + l,a2-1,a3,a4 -1,as + 1, b-l) 
fJ; - A = (a( + 1, a 2 - 1, a 3 , a 4 + 1, as - 1, b - 1) 
/3~ -A = (a( + 1, a2 - l,a 3 + 1, a4 - 1, as - 1, b - 1) 
/3~-A =(a( + l,a2 -2,a3 -1,a4,as,b-l) 

and b = a2 - a3 - !(a4 + as) [Eq. (4.2)]. 
The generators corresponding to the odd negative roots 

are 

fJj-, i=I,2, j=2,3,4,5,4,3 

As defined in Eqs. (3.4), (3.7), (3.8), and (3.9). They have the 
following effect: 

[(JJ+,fJJ-j 

h2 
h2 - h3 
h2 - h3 - h4 
h2 - h3 - hs 
h2 - h3 - h4 - hs 
h2 - 2h3 - h4 - hs 

fJ~-(a(,a2,a3,a4,a5;b)=(J7-(a(-2,a2+ l,a3,a4 ,as;b+ 1) 

(a) The adjoint representation corresponds to (a (,_ .. ,b ) = (2, 0, ... ,0). Only (J ~ - A and (J j - (J ~ - A are coupled, so the 
Sp(4) X 0 (6) content of the representation is (10,1) + (4, 6) + (1,15). 

::-. 3~2 ~( 
(b) The spinorial case: ~ 

o 
corresponds to the folIowing representation: 

( 

~
J/2 0 (~3/2 ( ;.,. 1~2 ~o 

0+ +~, 
o I 

i.e., in terms of Sp(4) X 0 (6) to (5, 4) + (4, 20 + 4). 

8, 8 2 8 3 8 4 

APPENDIX B: F(4) = ®-O*O-O 

Theadjointisa(21, 1) + (8, 2) + (1, 3)ofO(7)xSU(2). 
The system of roots is 

Ll o=[ ±Ei±Ej ; ±Ei ; ±8j, i,j=2,3,4, 

Ll( = {!( ± E2 ± E3 ± E4 ± 8) J. 
There are eight negative odd roots, the eight associated odd 
generators are fJ 1 corresponding to the highest weights of 
the 8 of 0 (7), fJ 2- = [(J: - , a 2- ] , fJ 3- = [(J 2- , a 3- ], 
(J 4- = [ (J 3- , a4- ] , fJ 5- = [ (J 3- , a 2- ] , (J 6- = [fJ 4- , a 2- ] 
= [ fJ 5- , a 4- ], fJ 7- = [ fJ 6- , a 3- ], fJ 8- = [ fJ 7- , a 2- ]. 

Modulo an irrelevant multiplicative factor the correspond
ing form of { (J / , fJ i- J are 

hi; h( - h2; h( - h2 - 2h3; 

hi - h2 - 2h3 - 2h4; hi - 2h2 - 2h3· 

We have used the Cartan matrix 

( -~ 2 

-1 
o 

o 
-2 

2 

-1 
-!) 

The hidden element k of the Cartan algebra of SU(2) is 

k = j(2hl - 3h2 - 4h3 - 2h4)' 

the number b associated to k must be an integer. 
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The dimension of a typical representation is 

2~(b - 3) dim (O--O~O). 
As an example let us study the atypical representation 

3 0 0 0 

®--O '* 0-0. 

fJ 2- fJ 1- A is a (1,21) of SU(2)X 0 (7). fJ 3- fJ 2- fJ 1- A is de
coupled since 

fJt fJt fJ 3+ fJ3- fJ2- fJ(-A 

= (hI - h2 - 2h3 - 3)(h( - h2 - l)h lA = 0. 

It is an atypical representation corresponding to the adjoint 
ofF(4). 

Notice that the (1,21) could hide a (1,7), since we build 
in fact the antisymmetric product of two 8 of 0 (7): 
(8X8)A = 21 + 7. 

The highest weight of the (1,7) which corresponds to 
(1,0,0, 1; 0) does not appear. 

8, 82 8 3 

APPENDIX C: G(3): ®-D:+O 

The bosonic subgroupisSU(2) X G2; the system of roots 
IS 

Llo = lEi - Ej , ± Ei , ± 28j, 
i = 1,2,3, EI + E2 + E3 = 0. 

Lli = { ± Ei ± 8, ± 8 j, 
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The adjoint representation of G (3) is a 
(3, 1) + (2,7) + (I, 14). There are seven odd negative and 
positive roots. The corresponding generators are taken as 
/3i corresponding to the highest weight of the Z of G2: 

/3 2- = [ /3 1- , a2- ], /3 3- = [/3 2- , a3- ], 

/3 4- = [/3 3- , a 2- ] , /3 s- = [/3 4- , a 2- ], 

/3 6- = [/3 s- ,a3- ], /3 7- = [/3 6- ,a2- ]. 

The corresponding forms of { /3 / , /3 ;- I are hI, hI - h2' 
hI - h2 - 3h3, hI - 2h2 - 3h3, hI - 3h2 - 3h3, 
hI - 3h2 - 6h3 , hI - 4h2 - 6h3 • We have used the Cartan 
matrix 

is 

(-! 2 
-1 -D 

The hidden element k of the Cartan subalgebra of SU (2) 

k = !(h l - 2h2 - 3h3), 

leading to the requirement that b = !(a l - 202 - 3a3 ) be a 
nonnegative integer. 

The adjoint representation corresponds to 
(aI, a2' a3) = (4, 0, 0) = A. /3 1- A is a (2,7) of 
SU(2)XG2,/32- fJ.I-A isa(I,14),and/33- /32- /3iA isde
coupled because 

/3t /32+ /33+ /33- /32- /3 I-A 

= (hI - h2 - 3h3 - 4)(h l - h2 - l)h lA = O. 

This is then an atypical representation. In fact no other 
SU(2)XG2 representation is coupled to that one. 

APPENDIX D: C(4) 

Though this corresponds to a type I superalgebra for 
the sake of completeness we look at this case corresponding 
to the following Dynkin diagram: 
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The bosonic subalgebra is Sp( 6) X U (1). 
The positive and negative odd roots are in separate 6 of 

Sp(6). There is no consistency condition and the conditions 
of typicality are 

a l #0, a l #a2 + I, a l #a2 + a3 + 2, 

a l #a2 + a3 + 204 + 4, a l #a2 + 203 + 204 + 5, 

a l #202 + 203 + 204 + 6. 

So, straightforwardly one gets 
I 0 0 0 

®--O--O* = 1 + 6 fundamental, 

2 I 0 0 

®--O--O~o = 6 + 21 + 1 + 6 adjoint. 

Note added in proof An approach to the representation 
of superalgebra has been developed by Balantekin and Bars 7 

using Young supertableaux. It is in close relation to the ap
proach of Kac described here and in Ref. 4, as is shown in 
Ref. 8. 
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We consider tensor products made out of a number of identical copies of the defining 
representations of Lie groups that are asymptotically free and complex. Decomposition of the 
tensor products into the terms with definite permutation symmetry is made by using the index 
sum rules and the congruence class. The results can also be used to find the branchings ofSU(M) 
into a Lie group G, where M is equal to the dimension of the defining representation of G. 
Application of our results to preon dynamics is indicated in two examples. 

PACS numbers: 02.20.Qs, 11.30.Pb, 11.10.Np, I1.50.Li 

J. INTRODUCTION 

Gauge theories are generally regarded as the theories of 
elementary particle interactions. In a gauge theory, whether 
it is a grand unified theory of "preon dynamics," one gener
ally starts out with a certain nonabelian gauge group and 
writes down an invariant Lagrangian in terms of particle 
fields which transform as certain representations of the given 
gauge group. The fermion representations are usually re
quired to satisfy additional conditions. I For instance, in 
many models the fermion representations should be com
plex2 to prevent large masses for the known particles. An
other requirement is that the representation should be free of 
triangle anomalies3

; otherwise the theory will be unrenorma
lizable. The third condition often adopted is that the repre
sentations should be asymptotically free in the full gauge 
degree offreedom,4 not just in the SU(3) color subgroup. 
Recently there have been efforts to obtain complete lists5 of 
both irreducible and reducible representations that are com
plex, anomaly-free, and asymptotically free. We use these 
requirements only to get a natural limit on the representa
tions considered in this paper. 

Having chosen the representations under due condi
tions, one has to construct a gauge-invariant form of the 
Lagrangian. Here, one generally needs to know the proper
ties of tensor products of the representations. Not only does 
one then need to specify how the tensor products can be 
computed, i.e., obtain the Clebsch-Gordan series, but also 
how they reduce to a direct sum of irreducible representa
tions, each of which exhibits a definite permutation symme
try. The method of the decomposition6 of the tensor product 
of n identical representations into the component with defi
nite permutations property is called the algorithm of "pleth
ysm.,,7 

al Permanent address. 
bl Supported in part by the U. S. Department of Energy under Contract No. 

DE-AC02-76ER03130.AOO9-Task A. 

For example, consider a Yukawa coupling of the form 
(fL ®fL)ifJ in an SU(N) gauge theory, wherefL is thefermion 
field which belongs to the irreducible representation B. We 
then have R I=P 

fL ®fL = EB EBB EB tj (1) 

of which the first two terms are symmetric under inter
change offL while the third term is antisymmetric with re
spect to the interchange offL' Hence if, for example, ifJ be-

longs to ~ , then the corresponding Yukawa coupling 
must be antisymmetric under the interchange of other labels 
such as the family indices. The alluded permutation proper
ties of each of the three components under the interchange of 
fL can be understood as follows: Consider the fundamental 
representation 0 of SU(M), where M is equal to the dimen
sion of the defining representation Bin SU(N), i.e., the di
mension of the fermion representationfL' The group SU(M), 
in the fundamental representation, consists of all special uni
tary transformations of the M components offL; the SU(N) 
transformations onfL form a subgroup, embedded in SU(M). 
This is referred to as nonregular embedding of SU(N) into 
SU(M) in this paper. The symmetric part of( fL XfL)' i.e., the 
first and second terms ofEq. (1), corresponds to OJ in 
SU(M), whereas the third term of Eq. (1) corresponds to the 
antisymmetric representation B of SU(M). Such a method 
of decomposition with given permutation properties is what 
we call the algorithm of phethysm. Thus the computation of 
plethysm is equivalent to the direct computation of branch
ing of SU(M )~SU(N). 

In this paper, we present the computation of plethysm 
for the complex and asymptotically free representations of 
Lie groups SU(N) (type AN_I)' SO(4N + 2) (type D2N + 1 ), 

and E6 • The results of this paper have been applied to preon 
dynamics8 for each of these groups with the correct Fermi 
statistics constraints and reported in a separate paper.9 In 
particular, for SU(N) the results are given for the seven of 
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1 2 3 r-l r 
su(r+l) 0 -0 -0 - "" -0 -0 Ar 

r-l 
o 

1 2 3 r-2< 
SO(2r) 0 - 0 - 0 - ... - a 

a r 

Dr ,r = odd integer 

1 2 4 
0-0-0-0-0 

I 

FIG. I. Oynkin diagrams for simple Lie algebras admitting complex repre
sentations. The weight systems follow the corresponding numberings in 
(a l ,a2,· .. ,a,). 

nine irreducible, complex and asymptotically free represen
tations 1; for SO(4N + 2), the results are given for the lowest
dimensional spinor representations of D s, D 7, and D9 (note 
that D3 is isomorphic to A 3); for E6, we give the computation 
ofplethysm for the fundamental representation ~Z. We have 
considered the direct products of at least two copies of the 
representation in all of these groups and in some cases the 
direct products up to ten copies of the representation. In fact, 
the recent suggestionS that the quarks and leptons are bound 
states of certain fundamental "preons" requires in general 
such computation of plethysm in conjunction with the re
quirement of Fermi statistics in the ground states. 10 Two 
examples showing the relevance of the results of this paper 
for preon dynamics will be discussed in Sec. IV. The compu
tation of plethysm involving tensor products of several 
copies of the representations is also needed in tumbling 
gauge theories. 11 

The paper is organized as following: In Sec. II, we pre
sent the method of plethysm based on the index sum rules 
and congruence numbers. Section III contains the results of 
the decomposition of tensor products with definite permuta
tion symmetry. The results can also be used to find the 
SU(M ) branching into a Lie group G for the case of nonregu
lar embedding of G into SU(M). Then we give two examples 
of application of our reuslts to preon dynamics in Sec. IV. 
Appendix A contains continuation ofSU(N) indices to real 
N which allows us to use large values of N without the need 
to calculate large sums. Finally we present in Appendix B 
transposition rules for SU(N )-plethysm. 

II. METHOD OF PLETHYSM COMPUTATION 

In this section we describe the method of the decompo
sition of the tensor products into the components with defi
nite permutation property. This involves two steps: The first 
step is to calculate the tensor products of some copies of 
representations, and the second step is to reduce the tensor 
products to a direct sum of components, each of which has 
definite permutation property. 

There are several ways of handling these steps. For ex
ample, one may use the complete weight systems of the re
presentation l2 to obtain the tensor products and find the 
highest weight terms successively. This method, however, is 
not only cumbersome when the dimension or rank is large 
but is not complete to identify the terms with definite permu
tation property. One may, on the other hand, use the method 
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of the projection operators. 13 As the projection operator 
takes an irreducible representation of SU(M) into the repre
sentations of a group G directly, where M is the dimension of 
the defining representation of the fermion fields in G, the 
identification ofthe terms with given permutation properties 
are achieved automatically without recourse to the reduc
tion of tensor products. But this method too becomes rapidly 
impractical as the dimension or rank becomes large. 

The method we adopt in this paper is based on the pro
perties of the zeroth, second, third, and fourth indices of 
representations as well as classification of the representa
tions by congruence number. It is known that l4 the indices of 
the representations of Lie groups provide useful clues in the 
search of Clebsch-Gordan series as well as branching rules. 
In addition, the congruence number15 reduces further the 
search problem by classifying the representations. Generally 
speaking, a representation and its complex conjugate do not 
have the same congruence number, thus the congruence 
class is useful in groups like D2N + 1 and E6, where the indices 
alone cannot distinguish a representation from its complex 
conjugate. Note that D2N + I and E6 are anomaly-free while 
in AN the triangle anomaly, i.e., the third index, of a repre
sentation has opposite sign of that of the complex conjugate 
representation. It should be emphasized that the indices and 
congruence number satisfy certain elegant relationships that 
can be used easily even when the dimension of the represen
tation or rank of the group becomes huge. 

Now we proceed to introduce the indices of the repre
sentations of a semisimple Lie algebra. In general, the indices 
are defined differently depending on whether their order is 
even or odd. 

The index of order 2m of a representation R is defined 
by 

12m (R) = I (M,M)m, (2) 
MEW(R) 

where W(R) is the weight system of Rand m = 0,1,2, .... 
Though the indices of higher orders are known, we will use 
in this paper only up to the fourth index as these low-order 
indices can be computed simply 14 from the use of the highest 
weight of R. It should be obvious that lo(R ) is the dimension 
of R as every weight contributes 1 to the sum (2). The third 
order index of R is defined l4 by 

13(R) = a I (PM)3, (3) 
MEW(R) 

where PM is the projection ofthe weight W (R ) on a properly 
chosen direction in weight space. The third order index 13 is 
trivial, i.e., zero from the property of W(R ) for all Lie alge
bras except for SU(N) with N~3. As noted before, 13 for 
SU(N) is the triangle anomaly number. The normalization 
constanta ofEq. (3) can be fixed in such a way that 13 = 1 for 
the fundamental representation ofSU(N) (N~3). The first 
index of any representation of any Lie group is zero and thus 
plays no useful rule. These indices can be used both to calcu
late tensor products and to determine branching rules. 

To calculate the tensor product of the representations R 
and R 'one has to determine the multiplicities Ii of represen
tations Ri which appear as a direct sum: 
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R®R'='LI;R;. (4) 
$1 

The total indices of R ® R ' are related to the individual in
dices of Rand R ' in the following wayl4: 

Io(R ® R ') = Io(R )Io(R '), 

I2(R ® R ') = I2(R )Io(R ') + I 2(R ')Io(R ), 

I3(R ® R ') = I3(R )Io(R ') + I3(R ')Io(R ), 

I4(R ® R ') = I4(R )Io(R ') + I4(R ')Io(R ) 

+ [2(r + 2)/r]I2(R )I2(R '). 

(5) 

(6) 

(7) 

(8) 

Here r is the rank of the Lie algebra. The total indices of the 
right-hand side of Eq. (4) are given by sums of individual 
indices of the representations R;: 

(9) 

Combining Eqs. (5)-(9), one obtains four relations which will 
be referred to as the index sum rules for tensor products 
henceforth. These relations form four linear equations for 
the multiplicities I;, which determine the l; 's completely if 
there is a unique integer solution. For sufficiently small re
presentations (which tum out to be sufficiently large for all 
our purposes) there is only one source of ambiguity, the com
plex anomaly-free representations. Since the indices 10 , 12 , 

and 14 are identical for R; and R r, they can only be distin
guished by the 13 relation, which for anomaly-free represen
tations is identically zero. Since complex anomaly-free irre
ducible representations are extremely large in SU(N), I this 
problem occurs in practice only in the groups SO(4n + 2) 
and E6 • This ambiguity can easily be settled by means of the 
congruence class. 15 

The congruence class is the generalization of "N-ality" 
for SU(N) to any simple Lie algebra. All representations of a 
Lie algebra can be assigned to such a class. This class is 
identified by one or two numbers C (R ), defined modulo a 
certain integer nc. For the details of this assignment we refer 
to Ref. 15. For our purpose, the important properties are the 
fact that complex conjugate representations have different 
congruence numbers and that each representation R; in Eq. 
(4) has the same congruence number, related to the con
gruence classes of Rand R ' in the following way: 

C(R;) = C(R) + C(R') (mod nc)' (10) 

This additional relation resolves the ambiguity. 
Having determined the right-hand side ofEq. (4), we 

now have to identify terms with definite permutation pro
perties. This problem is equivalent to finding the branching 
rules for SU(M):::> G, when a representation D of G (hereafter 
referred to as the "defining representation") is embedded in 
the fundamental representation of SU(M). Of course, M 
must be equal to the dimension of D in G. 

Irreducible representations of SU(M) can be specified 
by Young diagrams. On the other hand, Young diagrams 
also have an interpretation as representations of the permu
tation group. This dual interpretation is the basis of our re
sults. 

A representation R of SU(M), given by a Young dia
gram Y m with m boxes, branches into a direct sum of repre
sentations of the subgroup G: 
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(11) 

where the Ij's are integer mUltiplicities. The permutation 
group interpretation tells us that the left-hand side ofEq. (11) 
corresponds to those terms in the mth tensor power of D 
which have symmetry properties given by Y m' To determine 
the multiplicities, we use the SU(M) interpretation of (11). 
The branching is governed by the following index sum 
rules9

•
14 : 

Io(R) = 'L Ij Io(Rj)' 
j 

j 

(12) 

(13) 

(14) 

The scale factorsp2 andp3 are only dependent on the way the 
subgroup is embedded in SU(M). We emphasize that they do 
not depend on R. Therefore, we can calculate them by choos
ing R equal to the fundamental representation of SU(M), 
which branches to the representation D of G: 

P2- I = I2(D ), 

P3- I = I3(D ). 

(15) 

(16) 

Here we have used the standard normalization, 12 = 13 = 1 
for the fundamental representation of SU(M). A relation si
milar to (13) and (14) for 14 holds only for a few special cases 
and cannot be applied to SU(M) branchings. 14 Notice that 
relation (14) is only nontrivial for SU(N). 

The tensor product is used only to limit the number of 
representations Rj on the right-hand side ofEq. (11). The 
most effective way of doing this is to use recursion in the 
number of boxes m of Y m' When the results for all Young 
diagrams Y m _ I are known, one can multiply each of them 
with D and use relations (12)-(14) to decompose the tensor 
product into the terms with permutation properties defined 
by m-box Young diagrams. With this procedure the direct 
sums belonging to all m-box Young diagrams, with the ex
ception of totally symmetric and totally antisymmetric ones, 
are determined several times, which can be used either as a 
consistency check or as additional information to rule out 
possible ambiguities which might arise from Eqs. (12)-(14) 
alone. In practice we did not encounter any persistent ambi
guities. 

In the special case G = SU(N) the procedure can be 
made much more effective in the following way. The results 
we are calculating can be expressed entirely in terms of 
SU(N)-tensors, without any reference'to the rank of the 
group. Therefore all branchings can be generalized to arbi
trary N, with the understanding that Young diagrams with 
more than N rows should be ignored. Thus one can use the 
index relations with arbitrary N. For an n-box Young dia
gram the formula for 10 is an nth order polynomial in N, and 
those for 12 and 13 have order n - 1. Therefore, ifn and mare 
the number of boxes ofSU(N) and SU(M) diagrams, one gets 
roughly 3nm equations for the mUltiplicities from Eqs. (12)
(14), a few of which tum out to be dependent. Since the num
ber of terms in the tensor product grows faster than the num-
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ber of equations with increasing n or m, this method has its 
limitations. In general, even with the help of a computer, it 
turned out to be very hard to go beyond nm = 12. 

In Appendix A we derive formulas for the indices 
which proved to be very useful for our calculations, since 
they are continuous in the rank of the group. This allowed us 
to exploit the N independence property of the index sum 
rules more effectively. In Appendix B we derive rules which 
relate the plethysms for a Young diagram Yn ofSU(N) to 
those for the transposed Young diagram. 

III. RESULTS 

Generally grand unified theories and preon dynamics 
require fermion representations which are anomaly-free, 
complex, and asymptotically free. A complete list of these 
representations has already been compiled. In SU(N), there 
is no complex irreducible representation that satisfies the 
requirement of both anomaly freedom and asymptotic free
dom. I Thus one considers the reducible complex representa
tions formed out of the anomaly-free combinations of the 
irreducible complex representations which are asymptoti
cally free. It has been shown that there are nine such irredu
cible representations in SU(N). Of all the representations of 
Lie algebras, the only complex irreducible representations 
which are both anomaly-free and asymptotic free, are the 
following: the 16-, 126-, 144-dimensional representation of 
Sot to); the lowest dimensional spinorial representations of 
Sot 14) and Sot 18); and the 27 -dimensional representation of 

E6 • 

Now we proceed to present the results of computations 
of plethysm for the seven asymptotically free and complex 
representations W], [22], W], [2,1], [2,1 2], [2], and W] of 
SU(N) (see the notation for the Young diagrams below), the 
five irreducible representations of SO(4N + 2) mentioned 
above, and the lowest dimensional representation of E6 . 

A. SU(N) 

Since irreducible representations for an SU(N) can be 
represented by simple Young diagrams, the use of the Young 
diagrams is convenient. We will denote a typical Young dia
gram that has a boxes in each of the first n rows followed by b 
boxes in each of the next m rows and so on by [an ,b m ," ] . 

These Young diagrams are used for both the defining repre
sentations ofSU(N) and the representations ofSU(M), being 
the dimension of the defining representation. 

Table I shows the terms up to the tensor product of 12 
copies with the definite permutation properties under the 
interchange of defining representations [2] and [12] of 
SU(N). In other words, the results contained in Table I cor-

SU(5) SU(N) SU(N) U(I) 

a D D QI 

{3 B D Q2 

a- D 0 -QI 

P B 0 -Q2 
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I 

respond to Young diagrams ofSU(M) having up to ten boxes. 
Table II summarizes the results for the four representations 
W], [22], W], and [2,1] ofSU(N) up to three boxes in the 
SU(M) Young diagrams. 

B. SO(4N+2) 

Table III gives the results for the spinorial representa
tionofSO(10) up to five boxes in theSU(16) Young diagrams. 
Tables IV and V contain the results for the spino rial repre
sentations ofSO(14) and SO(18) up to four and two boxes in 
the SU(M) Young diagram, respectively. The results for the 
126- and 144-dimensional representations ofSO(10) are 
summarized in Table VI up to three boxes. 

C. E6 

Table VII summarizes the results up to six boxes. As we 
mentioned before, the 27-dimensional representation is the 
only E6 representation which satisfies asymptotic freedom. 

IV. APPLICATION OF THE RESULTS TO PREON 
DYNAMICS 

The results of this paper can be applied to preon dyna
mics in which quarks and leptons are viewed as the bound 
states of the elementary preons. Here, we give two such ex
amples.9 

A. (5 + 10*)L of SU(5) metacolor group as the preon 
representation 

The SU(5) representation (5 + to*k is anomaly-free, 
where L denotes the left-handed chiral state. In order for the 
preons to be confined, the preon representations should sa
tisfy asymptotic freedom. The anomaly-free representation 
can then be repeated up to 13 times without losing asympto
tic freedom. Suppose that we allow the representation 
5 + to* to repeat N times, where N is an integer less than 14. 
Such repetition then introduces the metaflavor group 
U(N) X U(N), which is broken to SU(N) X SU(N) X U( I), tak
ing into account the instanton effects due to the metacolor 
group SU(5). . 

Let us denote the metacolor representation as 

(5 + to*)L = a + {3. (17) 

The transformation properties of a and {3 under metacolor 
group SU(5) and metaflavor group SU(N)XSU(N)XU(I) as 
well as the spin group SUL (2)x SUR (2) are summarized as 
follows: 

SUL (2) SUR(2) 5-ality 

D I 

D 3 

D 4 

D 2 
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TABLE I. The reduction of tensor products of up to six copies of [2] and [12] ofSU(N) with the symmetry of the Young diagram given in the first column. Sym
metric products are given for up to eight copies of the defining representation, antisymmetric products for up to twelve copies. The table can also be used to 
obtain the branching ofSU(M) into the representation ofSU(N), when the defining representation ofSU(N) is embedded in the fundamental representation of 
SU(M); Mis the dimension of the defining representation ofSU(N). For [2] and W], Mis N(N + 1)/2 and N(N - 1)/2 respectively. 
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TABLE I. (continued I 
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TABLE II. The reduction of the tensor products of(13] and [14] ofSU(N) up to four copies with the given symmetry property of the Young diagram in the first 
column. The table can also be used to obtain the branching ofSU(M ) into the representation ofSU(N). where the defining representation ofSU(N) is embedded 
in the fundamental representation of SU(M) such that M is the dimension of the defining representation of SU(N). 
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4
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4
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4
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4
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8

J 

[2
4

,lJ [3
2

,2,1
4

J [22,1
8

J [3,2
4

,lJ 2 x [33,2
2

,1
3

J 2 x [26,1
4 

J 

[2
2

,1
5

J [3,2
4

,lJ [2,110J 
[3,2

3
,1

3
J 2 x [33,2,1 5 J [2
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9
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7
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8
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2
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2
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3
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4
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8
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TABLE III. The reduction of the tensor products of[2,l], [2,2], and [2,11] of 
SU(N) up to three copies with the given symmetry property of the Young 
diagram in the first column. The table can also be used to obtain the branch
ing ofSU(M) into the representations ofSU(N), where the defining represen
tations [2,1], [2,2], and [2,12] are embedded in the fundamental representa
tion of SU(M), respectively. Here M is the dimension of the defining 
representation ofSU(N). 

-

5U(M) 

[I] 

['] 

[1] 

[3] 

[2,1] 

(13) 

2251 

i 
i 

I 

DefininR Representations of SU(N) 

['1] ['.'] 

['.'] [4'] [4."] P.'.1
3

] 

[3.'!1] [4 "j [4 1
4j [24] 

gsl] [3
l

.1 ] [3
l 'l ] [2' ,14] 

[24] [3.' .1] 

[4.1 ] [4.3.1] [4.'.1] [3.'.1 ] 

P'] [3." .1] p' .'] [3.1
5
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5
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[4.,'.1) 14 ,3',,) [4' ,,' J 2 x (33, 13 ] 

[4.' ,1
3

] [5,3.' ,I') [4'",1'] 3 x (32, 22 ,1 2 J 
[4

2
,1] 14'., .1'] [4',14] [3'] 
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,1
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2

,1
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TABLE IV. The reduction of the tensor products of the spinor representa
tion (0,0,0,0,1) of 0 5 up to five copies with the given symmetry property of 
the Young diagram in the first column. The table can also be used to obtain 
the branching of SUI 16) into the representations of 0 5, where the defining 
representation (0,0,0,0,1) of 0 5 is embedded to the fundamental representa
tion [1] ofSU( 16). Square brackets are used to denote the Young diagrams of 
SUI 16) in the first column. Representations of 0 5 are given in Oynkin nota
tion in parentheses as defined in Fig. 1. 

SU(l6) Defining representation of Os 
11] (0,0,0,0,1) 

T 
[2] (0,0,0,0,2) (l,O,O,O,O) 

(i2] (0,0,1,0,0) 

0,0,0,0,3 l.u.u.u." 

['.1] (0,0,1,0,1) (O,O,O,I,O) 

(1,0,0,0,1) 

[1'] (0,1,0,1,0) 

[4] (0,0,0,0,4) (1,0,0,0,2) 

(2,0,0,0,0) 

[3,1] (0,0,1,0,2) (1,0, I ,0,0) 

(0,1,0,0,0) (1,0,0,0,2) 

(0,0,0,1,1) 

[2') (0,0,2,0,0) (0,0,0,1,1) 

(0.0.0.0.0) (l,0,O,O,2) 

(2,0,0,0,0) 

["I'] (O,l,O,l,l) (0,0,0,1,1) 

(0,1,0,0,0) (1,0,1,0,0) 

[14] 

I 
(1,0,0,2,0) 

(0,2,0,0,0) 

[5) (0,0,0,0,5) (',0.0.0.1) 

(1.0,0.0,3) 

[4.1) (0,0,1,0,3) (1,0,0,1,0) 

(1,0,0,0,3) (0,1,0,0,1) 

(I ,0,1 ,0,1) (2,0,0,0,1) 

(0,0,0,1,2) 

[3.'] (0,0.'.0,1) ('.0.0.0.1) 

(1,0,1,0,1) (0,0,0,0,1) 

(1,0,0,0,3) (1,0,0, I,D) 

(0.0.0.1.2) (0,1.0.0.1) 
(0 0 ! I 0) 

[3.1'] 0,0,0,1,0) (0,1,0,1,2) 

2 x (0,1,0,0,1) 0,1,0,1,0) 

(0,0.0.1,') (0,0.1,1.0) 

(1,0,1,0,1) (0,0,0,0,1) 

[i,I] (0,1,1,1,0) (2,O,O,u,I) 

(I ,0,1 ,0,1) (0,0,0,0,1) 

(O,O,O,I,2) (1,0,0,1,0) 

(0,0,1,1,0) (0,1.0.0.1) 

1'.1
3

) (1,0,0,2,1) (0,1,0,0,1) 

(0,2,0,0,1) (0,0,1,1,0) 

(l,O,O,I,O} (l, 1 ,0,1 ,0) 

(15) (0,0,0,3,0) (1,1,0,1,0) 

Here, 5-ality is the congruence number and QI and Q2 are 
chosen in such a way that the [SU(5WU(1) anomaly vanish
es. There are four candidates for the massless bound states 
coming from the four singlet states of meta color SU(5): 

a5, afJ2, a2p, p5. (18) 

The representations for the bound states are to be construct
ed from these candidates by imposing further Fenni statis
tics so as to preserve total antisymmetry under metacolor
metaftavor-spin transfonnation. The transfonnation under 
orbital angular momentum can be assumed to be symmetric. 
The metacolor singlet states constrained by Fenni statistics 
actually lead to the definite metaftavor wave function as we 
will see below. 
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TABLE V. The reduction of the tensor products of(O,O,O,O,2) and (1,0,0,0,1) 
of Os, and (0,0,0,0,0,0,0,0,1) of 0 9 up to two copies with the given symmetry 
property of the Young diagram in the first column. The table can also be 
used to obtain the branching of SU(M) into Os and 0 90 where the defining 
representation (0,0,0,0,2) and (1,0,0,0,1) of Os and (0,0,0,0,0,0,0,0,1) of 0 9 

are embedded in the fundamental representation [I) ofSU(M). Here Mis the 
dimension of the defining representation. Square brackets and parentheses 
are used for the Young diagrams and Oynkin diagrams, respectively. 

5U(M) Defining Representations 

[I] (0,0,0,0,2) of DS (1,0,0,0,1) of Os (0,0,0,0,0,0,0,0,1) of 09 

[2] (0,0,0,0,4) (2,0,0,0,2) (0,0,0,0,0,0,0,0,2) 

(2,0,0,0,0) (0,1,1,0,0: (0,0,0,0,1,0,0,0,0) 

(1,0,0,0,2) (1,0,0,1,1) (1,0,0,0,0,0,0,0,0) 

(0,0,2,0,0) (1,1,0,0,0) 

(3,0,0,0,0) 

2 x(O,O,O,O,2) , 
(1,0,0,0,0) 

[/] (1,0,1,0,0) (2,0,1,0,0) (0,0,0,0,0,0,1,0,0) 

(0,0,1,0,2) (1,0,0,1,1) i (0,0,1,0,0,0,0,0,0) 

(1,1,0,0,0) 

2 x(O,O,I,O,O) 

(0,1,0,0,2) 

In order to construct the ground state wavefunction 
consistent with Fermi statistics, it is convenient to use the 
antisymmetric representation of one SU(/) group, where 
/ = 2MN, i,e" the product of the dimensions of the spin, 
metacolor, and metaftavor representations of the defining 
states a, /3, a, or p. Note M = 5 and 10 for a(Ci) and /3 (f3), 
respectively. 

OfthefourcandidatesofEq. (18), we take the state/35 by 
way of explanation. Since there are five identical /3's to form 
a fermion bound state, we take the totally antisymmetric 
representation [15] ofSU(/) = SU(20N) and consider its 
branching to SUmc (5) X SUmf(N) X SUsPin (2). This branching 
consists of three steps: 

SU(20N) _ SU(lON)X SU(2) - SU(1O)XSU(N)XSU(2) 
step I step 2 

- SU(5) X SU(N) X SU(2). (19) 
step 3 

The first and second steps are special cases of the branching 
type SUI pq):> SUI p) X SU(q), which have already been dis
cussed extensively in the literature. 16 Our results apply to the 
third stage, i.e .• SU(1O)_SU(5). This type of branching, i.e., 
SU(M l- the defining group particularly when M is large 
cannot be found in the existing literature to our knowledge. 

The branching of [15] under the first step is 16 

W]_[3,12] ® [3,12] + [5] ® W] + W] ® [5] 

+ [4.1] ® [2.1 3
] + [2.1 3

] ® [4,1] + [3.2] ® [22.1] 

+ [22.1] ® [3,2]. (20) 

where the first factor in each term is the representation of 
SU(lON) and the second factor is that ofSU(2). Since we 
know that the fermion bound state /3 5 must have spin ~ and 
left-handed chirality, only the last term is permissible. so 
that the SUI ION) representation is uniquely determined to be 

2252 J. Math. Phys., Vol. 23, No. 12, December 1982 

[22.1]. Now we proceed to observe the branching ofSU( ION) 
-SU(10) X SU(N): 

[22.1]_[4,1] ® [3.2] + [3.2] ® [4.1] + [2.1 3
] ® [22.1] 

+ [22.1] ® [2.1 3
] + [4.1] ® [3.12] + [3,12] ® [4.1] 

+ [2.1 3
] ® [3.12] + [3.12] ® [2.1 3

] + [3.2] ® [3.2] 

+ [22.1] ® [22,1] + [3,2] ® [3.12] + [3,tZ] ® [3,2] 

+ [22.1] ® [3,t2] + [3,1 2] ® [22,1] + 2[3,t2] ® [3,t2] 

+ [15] ® [3.2] + [3.2] ® PS] 
+ [5] ® [22,1] + [22.1] ® [5] 

+ [4.1] ® [2.1 3
] + [2.1 3] ® [4,1] + [2.13] ® [3.2] 

+ [3,2] ® [2.1 3] + [4,1] ® [22,1] + [22.1] ® [4,1] 

+ [3,2] ® [22,1] + [22,1] ® [3,2]. (21) 

Again the first factor in each term ofEq. (21) is the SU(lO) 
representation and the second factor is the SU(N) representa
tion. 

Now we come to the most important stage of identify
ing the metacolor. i.e., SU(5) singlets from the branching 
SU(1O)-SU(5). for which our results of Sec. III playa cru
cial role. Of all representations of SUI 10) in Eq. (21). we see 
from Table I that only the terms containing the representa
tion [3,tZ] of SUI 10) can give the metacolor singlet states: 

[3,12]_[5,3,12] + W,2] + [4.3,2,1] + [4,3,1 3] 

+ 2[J2,2,1 2] + [4,23] + [4,22,tZ] + [33,1] 

+ [3,23,1] + 2[3,22,1 3] + [4,2,14] 

+ [3,2,1 5
] + [25

] + [23,14] + [3,1 7
], (22) 

where [25
] is obviously the SU(5) singlet. In this way. the 

metaftavor representations of SU(N) are determined to be 

2[3,tZ], [2,1 3], [3,2], [22,1], [4,1]. (23) 

Similarly, the metaftavor representations of as, ap 2, 

and a 2/3 can be obtained. These and other related subjects of 
preon dynamics are presented elsewhere.9 

B.27L of E. metacolor group as the preon 
representation 

The second example is E6 metacolor group with preon a 
in the 27-dimensional (000010) representation. This repre
sentation belongs to congruence class 2 and can be repeated 
up to 22 times without losing asymptotic freedom. Such re
petition introduces the metaftavor group SU(N) in addition. 

The bound state a 3 is a singlet of E6 and is a candidate 
massless bound state. The metaftavor representation of the 
bound state a 3 is determined by Fermi statistics in the simi
lar way as in Subsec. A. 

The branching necessary for satisfying Fermi statistics 
in the bound state a 3 is again through several steps: 

SU(54N) - SU(27N)X SU(2) - SU(27)XSU(N)xSU(2). 
step I step 2 

(24) 

In the first step, the totally antisymmetric [1 3
] of SUI 54N) 

have the following SU(27N)xSU(2) branching: 

W]-[2,1] ® [2,1] + [3] ® W] + W] ® [3]. (25) 

Only the first term can give spin ~, and hence we find that the 
SU(27N) representation is [2,1]. Under step 2 this branches 
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TABLE VI. The reduction of the tensor products of the spinor representation (0,0,0,0,0,0,1) of 0 7 up to four copies with the given symmetry property of the 
Young diagram in the first column. The table can also be used to obtain the branching of SU(64) into the representation of 0 7, where the defining 
representation (0,0,0,0,0,0,1) of 0 7 is embedded in the fundamental representation [I] of SU(64). Square brackets are used to denote the Young diagrams of 
SU(64) in the first column. Representations of 0 7 are given in Oynkin notation in parentheses as defined in Fig. I. 

SU(64) 

[lJ 

[2J 

[1
2

J 

[3J 

i2,lJ 

( 1
3

J 

[4J 

[3,lJ 

Defining representation of 07 

(0,0,0,0,0,0,1) 

(0,0,0,0,0,0,2) 

(I,D ,0 ,0 ,0 ,0 ,D) 

(0,0,0,0,0,0,3) 

(1,0,0,0,0,0,1) 

(0,0,0,0,1,0,1) , 

(0,0,1,0,0,0,1) 

(0 1 0 0 0 1 0) 

(0,0,0,0,0,1,0) 

(1,0,0,0,0,0,1) 

(0,0,0,0,0,0,4) 

(0,0,1,0,0,0,2) 

~~,g,~ ,g,g,g'~l 

2 x (l,O,O,O,O,O,2) 

(0,0,0,0,1,0,2) 

(0,1,0,1,0,0,0) 

(1,0,0,0,1,0,0) 

2 x (1,0,1,0,0,0,0) 

(0,0,1,0,0,0,0) 

(0,0,0,0,1,0,0) 

(0,0,1,0,0,0,1) 

(1,0,0,0,0,0,1) 

(0,0,0,0,0,1,0) 

(0,0,0,1,0,1,0) 

(2,0,0,0,0,0,0) 

(0,0,0,1,0,0,0) 

(I,D ,0,0,1,0,0) 

(0,0,1,0,1,0,0) 

(0,0,1,0,0,0,2) 

(0,1,0,0,0,0,0) 

2 x (0,0,0,0,0,1,1) 

(0,0,0,1,0,0,0) 

(0,1,0,0,0,1,1) 

SU(~4) 

(0,0,1,0,0,0,2) 

(0,0,0,0,2,0,0) 

(0,0,2,0,0,0,0) 

(0,1,0,0,0,1,1) 

(0,2,0,0,0,0,0) 

(0,0,0,1,0,1,1) 

2 x (0,0,0,1,0,0,0) 

(0,0,1,0,1,0,0) 

2 x (0,0,0,0,0,1,1) 

2 x (1,0,0,0,0,0,2) 

(0,0,1,0,0,2,0) 

(0,0,0,2,0,0,0) 

(0,0,0,0,0,0,0) 

(2,0,0,0,0,0,0) 

(0,0,0,0,0,0,0) 

2 x (1,0,0,0,1,0,0) 

(0,0,0,0,0,1,1) 

(2,0,0,0,0,0,0) 

(0,0,0,1,0,0,0) 

2 & (0,1,0,0,0,0,0) 

(1,0,1,0,0,0,0) 

(1,0,0,0,1,0,0) 

(0,1,0,0,0,1,1) 

(0,1,0,1,0,0,0) 

(0,0,0,1,0,0,0) 

(0,0,0,0,0,1,1) 

(1,0,0,0,1,0,0) 

TABLE VII. The reduction of the tensor products of the (0,0,0,0,1,0) of E6 up to five copies with the given symmetry property of the Young diagram in the 
first column. The table can also be used to obtain the branching ofSU(27) into the representation ofE6, where the defining representation (0,0,0,0,1,0) ofE6 is 
embedded to the fundamental representation [I] ofSU(27). Square brackets are used to denote the Young diagram ofSU(27) and parentheses are used to 
denote the Oynkin diagrams of E6 as defined in Fig. I. 

SU(27) 

[lJ 

[2J 

[1
2

J 

[3J 

[2,lJ 

[1
3

J 

[4J 

[3,lJ 

[22J 

[2,1
2

J 

[1
4

J 

[SJ 

2253 

Defining representation of E6 

(0,0,0,0,1,0) 

(0,0,0,0,2,0) (1,0,0,0,0,0) 

(0,0,0,1,0,0) 

(0,0,0,0,3,0) (0,0,0,0,0,0) 

(1,0,0,0,1,0) 

(0,0,0,1,1,0) (0,0,0,0,0,1) 

(1,0,0,0,1,0) 

(0,0,1,0,0,0) 

(0,0,0,0,4,0) (0,0,0,0,1,0) 

(1,0,0,0,2,0) (2,0,0,0,0,0) 

(0,0,0,1,2,0) (0,0,0,0,1,0) 

(1,0,0,0,2,0) (0,1,0,0,0,0) 

(1,0,0,1,0,0) (0,0,0,0,1,1) 

(0,0,0,2,0,0) (2,0,0,0,0,0) 

(1,0,0,0,2,0) (0,0,0,0,1,1) 

(0,0,0,0,1,0) 

(0,1,0,0,0,0) (0,0,1,0,1,0) 

(0,0,0,0,1,1) (l,O,O,l,O,O) 

(0,1,0,0,0,1) 

(0,0,0,0,5,0) (0,0,0,0,2,0) 

(1,0,0,0,3,0) (1,0,0,0,0,0) 

(2,0,0,0,1,0) 
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SU(27) 

[4,lJ (0,0,0,1,3,0) (0,1,0,0,1,0) 

(1,0,0,1,1,0) (1,0,0,0,0,1) 

(1,0,0,0,3,0) (1,0,0,0,0,0) 

(0,0,0,0,2,1) (0,0,0,1,0,0) 

(2,0,0,0,1,0) (0,0,0,0,2,0) 

[3,2J (0,0,0,0,2,0) (2,0,0,0,1,0) 

(0,0,0,2,1,0) (0,0,0,0,2,1) 

(l,O,O,O,3,O) (0,0,0,0,2,0) 

(1,0,0,1,1,0) (0,1,0,0,1,0) 

(0,0,0,1,0,1) (1,0,0,0,0,1) 

(0,0,0,1,0,0) (1,0,0,0,0,0) 

[3,1
2

J (0,0,1,0,2,0) 

(1,0,0,1,1,0) (l,O,O,O,O,l) 

(0,1,0,0,1,0) (0,1,0,0,1,0) 

(0,0,0,0,2,1) (0,0,0,1,0,1) 

2 x (0,0,0,1,0,0) (1,0,1,0,0,0) 

[22,lJ (2,0,0,0,1,0) (0,1,0,0,1,0) 

(0,0,0,1,0,0) (0,0,0,0,2,0) 

(1,0,0,0,0,1) (0,0,1,1,0,0) 

(1,0,0,0,0,0) (0,0,0,1,0,1) 

(0,0,0,0,2,1) (1,0,0,1,1,0) 

[2,1
3

J (0,1,0,0,1,1) (0,0,0,1,0,1) 

(1,0,0,0,0,1) (l,O,l,O,O,O) 

(0,1,0,0,1,0) 

[l
S

J (l,O,O,O,O,2) (0,2,0,0,0,0) 
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into [2.1] ® [2.1] + [3] ® [2.1] + [2.1] ® [3] + W] ® [2.1] 
+ [2.1] ® W]. Finally, Table VII shows that the E6 singlet 

(0,0,0,0,0,0) belongs to the [3] of SU(27), and the metaftavor 
representation of a 3 is determined as [2,1] of SU(N). 
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APPENDIX A: CONTINUATION OF SU(N) INDICES TO 
REALN 

The indices of a representation, defined by Eqs. (2) and 
(3), can be calculated from the knowledge of the complete 
weight system, for any representation. For the lower indices 
explicit expressions for arbitrary representations have been 
obtained in many papers. 3.14 These formulas usually contain 
sums up to the rank of the group, which makes a continu
ation to real N impossible. 

One may wonder why we are interested in such a con
tinuation, since the groups themselves cannot be continued 
in the rank in a sensible way. For our purpose these formulas 
are advantageous in three ways. First of all they allow us to 
use large values of N without the need to calculate large 
sums. In the procedures of Sec. II large values of N are un
avoidable if N is restricted to integer values. For the expres
sions derived in this Appendix, the computing time depends 
only on the structure of the Young diagram, not on N. Sec
ondly, since the index sum rules (12)-(14) can be generalized 
to arbitrary integer N if G = SU(N), they can also be general
ized to real N, when continuous functions for the indices can 
be found. This provides another way to avoid large values of 
N, since the N dependence can now be probed by small, non
integer values of N. Finally, there exists an intimate relation 
between a continuation of N to negative values and transpo
sition of the Young diagram, which will be exploited in Ap
pendix B. 

Continuous formulas are already known for the dimen
sion of an SU(N) representation and for the second- and 
third-order index of a few small representations. 1,3 We will 
present a general formula for the second and third index and 
indicate how the results generalize to indices of arbitrary 
order. 

Our starting point will be the integer-N formulas for the 
indices. We will use the results of Perelomov and Popov. 17 
The relation between the symmetrized Casimir operator J a 

(in Ref. 17 denoted as fa) and the indices defined by Eqs. (2) 
and (3) is 

f 2(R ) = [fo(R )/(N 2 - I)]J2(R ), (AI) 

f3(R ) = [2N /(N 2 - I)(N 2 - 4)]fo(R )J3(R ). (A2) 
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The symmetrized Casimir operators can be expressed in 
terms of the quantities 

N 

Sa = I (L f - R f), 
i= 1 

where 

L j =/; -fIN+N-i, 

R j =N-i, 

(A3) 

(A4) 

(AS) 

and /; is the length of the ith row of the Young diagram 
representing R. The number of boxes of this Young diagram 
is f We take from Ref. 17 the following formulas for the 
symmetrized Casimir operators: 

J2 =S2' 

J3 = S3 - 3/2(N - 1 )S2' 

(A6) 

(A7) 

The sums we want to avoid appear in (A3). Continuous ex
pressions can be obtained by summing the parts of the sum
mand which do not depend on/; explicitly, and using the fact 
that the/;'s vanish for i>p, wherep is the number of rows of 
the Young diagram. The structure of the Young diagram 
appears in the results in the form of the following "mo
ments": 

p 

Mnm = Ij"[./j]m (m;;;.l, n;;;'O). (AS) 
j=1 

Straightforward computation yields then the following ex
pressions: 

J2(R) = (1 + N)MoI - (1/N2)M~1 + M02 - 2MJJ , (A9) 

J3(R) = (- 1/2 + 3/2N + 2N 2)MoI - (9/2 + 3/2N)M~1 
+ (2/N2)M~1 
+ (M02 - 2MJJ )(3N - 3MoI/N) 

+ M03 - 3MI2 + 3M21 - 3/2(N - 1)J2(R). (AlO) 

The crucial point is that the moments Mnm depend only on 
the Young diagram, but not on N. 

Although (A9) and (AlO) have the desired properties, 
they can be simplified by means of the transposed moments, 
defined as 

q 

Tnm = I j"[ g(j)]m, (All) 
j= I 

where q is the number of columns and g(j) the length of the 
jth column of the Young diagram. Several relations between 
the moments and the transposed moments can be derived. 
We will only give the ones for n + m<3: 

MOl = TOl =f, 

TIl = 1/2(Mo2 + MOl)' 

3T21 - TI I = M03 + M 02' 

TJ2 + T JJ = MJ2 + M JJ • 

(AI2) 

(Al3) 

(A14) 

(AlS) 

Additional relations are obtained by interchanging M and T. 
These relations can be proved by induction: They are trivial 
for the single-box Young diagram, and when a box is added 
to an arbitrary Young diagram the left-hand sides and right
hand sides of(A12)-(AlS) change by the same amounts. We 
use these relations to express the indices in terms of the sym
metric and antisymmetric moments: 
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Snm = 1/2(Mnm + Tnm ), (AI6) 

Anm = 1/2(Mnm - Tnm). (AI7) 

Then we obtain the following expressions l8
: 

J2 = I(N - liN) + 2A02' (AlS) 

J3 = - ~/(1 - N 2) - 3P + 2/31N 2 

+ (3N - 611N)A02 + S03 - 3S12 + 3S21 • (AI9) 

These formulas reveal the transformation of the indices un
der transposition of the Young diagram. Transposition is 
defined as an interchange of rows and columns, or equiv
alently a reflection of the Young diagram with respect to the 
diagonal. The moments Mnm and Tnm are interchanged by 
transposition, so that Snm is unchanged and Anm changes 
sign. The effect of this is equivalent to a replacement of N by 
- N, apart from an overall sign. More precisely, when 

Ip( Ym ,N) denotes the pth-order index ofthe representation 
ofSU(N) defined by the m-box Young diagram Y m' then the 
following relations hold: 

Io(y~,N) = (- ItIo(Ym, - N), 

I2(y~,N) = (- It -II2(Ym, - N), 

I3(Y~,N) = (-It-1I3(Ym' -N), 

(A20) 

(A21) 

(A22) 

where T denotes transposition. Relation (A20) is a conse
quence of the well-known dimension formula 

10 = (1/ H) II (N + i - 11, (A23) 
iJ 

where the product is over all boxes of the Young diagram, 
located in thejth row and ith column; H (the product of the 
"hook lengths") is just a numerical factor. 

The extension of our results to higher indices is straight
forward, but becomes rapidly complicated. 

APPENDIX B: TRANSPOSITION RULES FOR SU(N)
PLETHYSMS 

In this appendix we will formulate and derive relations 
between tensor products with definite permutation proper
ties of a Young diagram and its transpose. 

To simplify the notation, we introduce an operation of a 
Young diagram Y m on a Young diagram Yn , denoted as 
Y m * Yn • This operation is defined as the mth tensor power of 
Yn , symmetrized according to Y m' The result of this oper
ation is a direct sum of Young diagrams with nm boxes: 

(Bl) 

where i labels different Young diagrams. The multiplicities Ii 
can be read off from Tables I and II, for example, 

W]*[2] = [32] Ell [4Y], 

[2]*W] = [23
] Ell [2,14]. 

This should clarify our notation. 

(B2) 

(B3) 

The transposition rules can now be formulated as fol
lows: 

2255 

(i) If n is even, 

Ym*Y~ = (ym*yn)T, 

(ii) If n is odd, 
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(B4) 

Y~ *Y~ = (ym*yn)T. (B5) 

To illustrate this, we apply these rules to (B2) and (B3): 

[13] * W] = [13] * [2] T = ([ 13] * [2]) T 

= [23
] + [3,1 3

], (B6) 

W]*[3] = [2]T*[13]T = ([2]*[13]f 

= [32] + [5,1]. (B7) 

The first expression can be checked with Table I. The repre
sentation [3] is not included in the table, but one can easily 
check that the index sum rules (12)-(14) are satisfied. This 
example also illustrates the main application of the transpo
sition rules, namely, to supplement the tables in such a way 
that all defining representations with not more than four 
boxes are included. 

The validity of these rules can be demonstrated by a 
continuation of the rank of the group to negative values. 
Consider the index sum rules satisfied by (Bl): 

(BS) 

where 

M=Io(Yn,N). (BIO) 

These rules follow from Eqs. (12)-(16); we use the notation 
introduced in Appendix A for the indices ofSU(N). Since the 
multiplicities Ii satisfy (BS)-(B 10) for any value of M, we can 
replace Nby - N. Then we use relations (A20)-(A22) to 
obtain 

Io(Ym,( - lrIo(Y~,N)) = ( - Itn L Ii IO(Y:.!"n,N), 
i 

Ip(Ym,( - l)nIo(y~,N))( -It-lIp(y~,N) 

= ( _ 1 )mn - 1 ~ /. I (Y iT N) 
~ 'p mn' . 

If n is even, (Bll) and (BI2) reduce to 

where 

MT =Io(Y~,N). 

(Bll) 

(BI2) 

(B13) 

(BI4) 

For odd n we obtain the same results, but with Y ~ instead of 

Ym · 

These are exactly the equations for Ii which one would 
have to solve to calculate the direct sums which are equal to 
the left-hand sides of (B4) and (B5). We conclude that the Ii's 
appearing in (B 1) satisfy these equations when they are asso
ciated with the transpose of Y:"n • This is exactly the content 
of the transposition rules (B4) and (B5). This derivation is not 
completely rigorous because we have not shown that the sum 
rules have a unique solution. In fact, although we have not 
found such a case, we expect that at some stage ambiguities 
will exist, since for large representations Y m and Yn the 
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number of equations becomes much smaller than the num
ber of variables I;. Such an ambiguity invalidates the deriva
tion, but, of course, not the result. 
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The problem analyzed is to find functionsf ± ' meromorphic in C ± , respectively, with values that 
are linear operators on a Banach space, and such that their boundary values on R satisfy the 
equationf_ = (j)f+, where the operator-valued function (j) as well as the positions of the poles of 
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generalization of Marchenko's fundamental equation. The results are applied to inverse 
scattering and inverse spectral problems. 
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I. INTRODUCTION 

A version of Hilbert's twenty first problem 1 may be 
stated as follows: Two functions are sought, one analytic in 
the upper half of the complex plane, the other in the lower 
half, and their boundary values on the real axis are linearly 
related by means of a given function. In one form or another 
this question has always stood at the center of the inverse 
scattering (inscat) problem. In its simplest version, if an ei
genvalue of the S matrix for a central potential is given, its 
solution is the Jost function. A less trivial version arises in 
the case of coupled SchrOdinger equations.2 The matrix Hil
bert problem that is involved there was first solved by J. 
Pleme!? by means of a linear integral equation. 

The specific reason for attacking a more general form of 
it now is that a variant of it has been found at the core of the 
three-dimensional inscat problem, i.e., to determine the po
tential in the Schrodinger equation in R3 from scattering and 
bound-state data.4-9 Again the solution has been reduced to 
that of a linear integral equation, a generalization of Mar
chenko's fundamental equation. 10 

The generalized form of the Hilbert problem studied in 
this paper deals with operator-valued functions, and its solu
tions are operator-valued analytic functions. As required for 
its physical applications, the data functions are assumed to 
differ from unity not by functions that are norm square-inte
grable, but by functions that are "strongly square-integra
ble6

•
s" on the real line. 
An outline of our main results is as follows. Theorem 1 

(Sec. V) establishes a one-to-one relation between the general 
Hilbert problem here called H ~(.4,(j)) and a more special one 
here called if i(A- ,11 ) on a larger space. Theorem 2 (Sec. VI) 
reduces the problem in which a solution with simple poles is 
sought to one whose solution is to be holomorphic. If the 
Hilbert problem has a solution then Theorem 3 (Sec VII) 
establishes the existence of an index, analogous to that of 
scalar and matrix Hilbert problems. Theorem 4 (Sec. VIII) 
reduces the Hilbert problem without poles to a generaliza
tion of Marchenko's fundamental linear integral equation. 
Theorem 5 (Sec. IX) shows that in the special case in which 
the underlying space is a Hilbert space and the given func
tion differs from unity by a Hilbert-8chmidt operator with 
other restricted properties, the index is recognizable by 

means of an analog of Levinson's theorem II as it is in the 
matrix case. 

Some of the analytic tools needed are provided in an 
appendix. 

II. DEFINITIONS 

We shall use the following terminology and definitions 
in this paper. A 

( 1 ) .4 is a Banach space 12; .4 = .4 ® .4 is the space of two
component vectors whose components are in.4. The duals of 
.4 and A- will be denoted by .4t and A-t . 

(2) fJJ = fJJ(.4) is the set of bounded linear operators 
.4_.4;@ = fJJ (A-) is the set of 2 X 2 matrices with entries in 
fJJ (.4). 

(3) The operators in fJJ may be defined by means of their 
integral kernels. We define A • as the linear operator in fJJ 
whose kernel is the complex conjugate of that of A; A t is the 
adjoint, i.e., the operator .4t _.4t whose kernel is the hermi
tian conjugate of that of A. The restriction of At. to .412 will 
be denoted by A. If both AEfJJ and AEfJJ then we shall say 
that AE&J. We shall also use the notation A. = A - I, and 
ran A, nul A, dom A, and dim ran A, etc., for the range, the 
nullspace, the domain of definition of A, and the dimension 
of ran A, etc., respectively. 

(4) 2" is the set of all functions [either R_~ (.4) or 
R_86i (l), depending on the context] for which 3c such that 
for all aE.4 

f: 00 dk IIF(k )a1l 2 + f: 00 dk IIF(k )all 2 <cllall· 

(5) J¥'± are the sets of all functionsfE2' that are 
boundary values of analytic functions holomorphic in C + , 13 

respectively c- , that are such that for 1m k> 0 (or 1m k < 0) 
lim IIf(k)1I = 0 as Ik 1-00, and such that iffEJ¥'± then 
jEJ¥'± . See the Appendix for some relevant remarks and 
Lemmas. 

(6) J/ ± are the sets of all functions with the same pro
perties as in J¥'± , except that they are meromorphic in C+ 
orC-. 

(7) Iff(k) is a given function then/' is the function 
/,(k) = f( - k ). A 

(8) A function, C ± -fJJ (or C ± _fJJ), is said to have a 
zero at k if 0 is in the point spectrum off(k ). IffEJ¥'+ and for 
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all fixed aEh and all kEC+ f(k )a =I- 0 thenfis called zero-Jree. 
(Similarly for feJr-.) 

(9) If in a neighborhood including k = K,/(k ) and 
[f(k )] -I are meromorphic, at k = K f(k ) and [f(k )] -I both 
have poles, and there exists no aEh such that lim f(k )a = 0 as 
k---+K, then we will say thatf has a super pole at K. 

III. STATEMENT OF THE HILBERT PROBLEMS 

We define the following Hilbert problems. 
Problem H ~(h,w): Suppose a function w, R---+~(h), is 

given, such that(w - I)E2' and(w- I - I)E2'. Also given is 
a set u of n = n + + n _ pairs, each consisting of a complex 
number K;:; EC+ or K;;' EC-, respectively, and a finite dimen
sional subspace 2;:; or 2;;; , respectively, of h, with 
m = I, ... ,n ± . [We shall refer to the set of number K';: as 1'+, 
the set of K;;; as 1'-, the set of - K;;; as - 1'-, and 
7 = 7+U( - 7-). The sum of the dimensions of the spaces 
2;:; and 2;;; will be denoted by Aa.] Find a pair offunc
tions f ± ' R---+~ (h), such that (f ± - 1)EvU' ± , with simple 
poles 14 at K;;, respectively, and residues 1;; there such that 
ran 1;; = 2;;, and such thatf ± satisfy the equation 

f- =wf+· (1) 

If u = (/J we denote this problem by H ~ (h,W). 
Problem H~(h,W): wand u are given as in H ~(h,W). 

Find a pair of functionsf ± ' R---+~ (h), such thatf ± EvU' ±, 
analytic in C ± except for the possibility of simple poles at 
K;;, respectively, and residues 1;; there such that 
ran 1;; C2;;, and such thatf ± satisfy (1). If u = (/J we 
denote this problem by Hg(h,W). 

We shall also use the notation H ~ *(h,w) = H ~(h,W*), 
H~ *(h,w) = H~(h,W*) and we shall sometimes omit the h 
or both the h and the w. (In Plemelj's terminology H ~ * is the 
accompanying problem to H ~.) 

The above defined Hilbert problems will be shown to be 
directly related to another set of Hilbert problems that ap
pear to be more restricted but in fact are equally general. 

Problem Hi (A',n ): Suppose a function n, R---+~ (A'), is 
given such that (n - I)E2', and it satisfies the equation 

n' = qn -Iq, (2) 

where 

q = (~ ~). 
Also given is a set ~ of n pairs, each consisting of a number 
K m EC + and a finite-dimensional subspace K m of A', 
m = I, ... ,n. (We shall refer to the set of Km as 7, and to the 
sum of the dimensions of the spaces K m as A I') Find a 
function tP, R---+~(A'), such that (tP - 1)EvU'+ with simple 
poles at K m and residues 1m there such that ran 1m = K m' 
and tP satisfies the equation 

tP' = nqtPq. (3) 

If ~ = (/J we shall denote this problem by H ~(A',n). 
Problem H~(A',n): n and A' are giverras in H 1 (A',n ). 

Find a function tP, R---+~(A'), such that tPEvU'+, analytic in 
R + except for the possibility of simple poles at K m and resi
dues 1m there such that ran 1m CKm, and tP satisfies (3). If 
~ = (/J we shall denote this problem by Hg(A',n). 
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A ~eshall~so~sethenotationH i*(h,n) = H 1 (A',n* ), 
H~*(h,n) = H~(h,n*). 

It should be noted that because of (2), the problems in 
which the order of the operators on the right-hand side oft 1) 
and (3) is reversed can be solved by means ofsolvingH i(n 'I. 

IV. PRELIMINARY RESULTS 

We start with several Lemmas concerning H ~ and par
ticularly H 6. They will all be stated first and then proved 
seriatim. 

Lemma 1: If H ~(w) has a solution then this solution is 
unique if and only if H~(w) has only the trivial solution 
f± =0. 

Lemma 2: If H ~ has a unique solutionf + , then bothf + 
andf_ are zero-free. ~ 

Lemma 3: If H b has a zero-free solutionf + such that 
(f:;: 1 - 1)EvU' ±, then it is unique. ~ 

Lemma 4: If H ~(w) has a unique solutionf ± ,andf ± is 
such that (f:;: 1 -1)EvU'±, thenHb *(w) has the unique solu
tiong± =f±* andf± ,g±,f± ,andg± are all zero-free. 

Lemma 5: If H ~(w) and H ~ *(w) have solutionsf ± and 
? ± ' respectively, then these solutions are unique,/ ± ,g ± ' 
f ± ' and g ± are all zero-free, and g ± = f ± * . 

Proof of Lemma 1: The difference between any two so
lutions of H ~ (w) solves H ~ (w). Let g ± solve H ~ (w); then so 
does ag ± for all constants aEC. Iff ± solves H ~(w) then so 
doesf ± + ag ± for almost all a. (For a finite set of a the 
residues may cancel out!)D 

Proof of Lemma 2: Supposef+ has a zero at k = K; let P 
be a projection on nulf+(K). Then the pair off unctions 
g+ =f+ P(k-K)-I andg_ = f- P(k-K)-l solvesH~. 
By Lemma 1, therefore, H ~ does not have a unique solution. 
Similarly iff_ has a zero.D 

Proof of Lemma 3: Suppose f ± are zero-free and 
(f:;: 1_ 1)EvU' ±. Then, in fact, (f:;: 1 - l)eJr±. Letg ± be 
another solution of H b. Thenf = Ig _ - 1 = f :;: Ig + - I, 
the left-hand side of which is in 2-, and the right-hand side 
in 2+. By Lemma AS (see the Appendix for the Lemmas 
enumerated by Ax), therefore,f= 19_ = f:;: Ig+ = 1. Now 
iff:;: I orf = 1 had a zero thenf ± - 1 could not be in 2±. 
Thereforef:;: I are zero-free, and by Lemma AI, 
f+ =g+,/_ =g_.D 

Proof of Lemma 4: By Lemma 2,/ ± are zero-free and 
since by assumption (f :;: I - 1)EvU' ± , in fact 
(f:;: 1 - l)eJr±, and hence! ± are also zero-free. Since (1) 
impliesthatf_* =w*f+*,g± =f±* solves Hb*. Since 
f ± and! ± are holomorphic, g ± and g ± are zero-free, and 
by Lemma 3, g ± is the unique solutions of H b *.D 

Proof of Lemma 5: From (1) we get 
g _ f _ - 1 = g + f + - 1. The left-hand side being in $'

and the right-hand side in 2+, Lemma AS implies that 
g _ f _ = g + f + = I. It follows that f ± are zero-free. Fur
thermore, sincef ± have bounded left inverses, they cannot 
have zero in their continuous spectra anywhere. Since by 
Lemma A3 they have inverses for sufficiently large Ik I, by 
Lemma A2 they cannot have zero in their residual spectra 
anywhere either. Consequently f:;: I = g ± ' 
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(f ± I - l)eJY±, and by Lemma 3./ ± is unique. The rest 
follows by Lemma 4.0 

V. CONNECTION BETWEEN H'o AND H'o 
Suppose that n satisfies Eq. (2) and F ± solves 

H ~(~,n). If u is such that 1"+ = - 1"- and K,;; = qK;;, 
then it follows from (1) that", ± = qF =F 'q also solves 
H ~ (~,n ). If the solution of H ~ (~,n ) is unique, therefore, 
F _ = qF +' q, and thus the function <P = qF +q solves 
H ~(~,n). Therefore, for special sets u and for n satisfying 
(2), provided that it has a unique solution, the problem 
H ~(~,n) becomes identical to the seemingly more restricted 
H ~(~,n). In fact every H ~(A',w) can be related to a problem 
H 1 (~,n ), as follows. 

It is clear from a simple calculation that if H ~(A',w) has 
a solution! ± then 

<p=('f+ 0) 
o !_' 

(4) 

solves H l(~,n), where 

n = (W~-I ~) (5) 

and I consists of the n = n + + n _ pairs K';; and 

~m = (Ko';;)' t7l m = 1, ... ,n+, 

-KI- and 

HI = (~I_). 1= l, ... ,n_. 

We shall make the connection first for H b(A',w), in the 
form of: 

Theorem 1: H b (A',w) has a unique solution if and only if 
H b(~,n) [where n is related to w by (5)] has a unique solu-

'" A tion. The solutions of H b(A',w) and H b(A',n) are related by 
(4). 

Proof Suppose n is of the form (5) and that <P is a solu
tion of ~b(~,n). Write it in the form 

<P = (:, :,). 

Then (3) is equivalent to the two equations 

d = wa, c = wb, 

and since (<P - l)eJY+, it follows that (a - l)eJY+, 
(d - l)eJY-, beJY+, ceJY-. Hence the pair a, d solves 
H b(A',w), and the pair b, c solves Hg(A',w). The function 

"'_ (a +ab b) 
- c' d' +ac' 

also solves H b(~,n) for almost all aeC. Therefore, if the 

(6) 

(7) 

A A 

solution of H b(A',n) is unique, it follows by Lemma 1 that 
b = c = 0, and <P has the form (4) where! ± solvesH b(A',w). 
But then! ± must be the only solution of H b(~w);)fthere 
were two, they would lead to two solutions of H b(A',n) by 
(4). 

Conversely, suppose that H b(A',w) has a unique solu
tion. Then that solution leads, via (4), to a solution of 
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H b(~,n). If H b(~,n) has any other solution of the form (6) 
then the uniqueness of the solution of H b (A' ,w) allows us to 
conclude from (7) by Lemma 1 that b = c = O. Thus any 
other solution of H b(~,n) is also of the form (4), where! ± 
solves H b (A',w). But these! ± must then equal the first 

A A 

solution. Hence the solution of H b(A',n) given by (4) is 
unique too.o 

Note that if n has the form (5) then it satisfies Eq. (2). 
Conversely, if n has the diagonal form 

and it satisfies (2), then v = W'-I. 

VI. REDUCTION OF H~ TO H'o 
The Hilbert problem with poles may be reduced to one 

without poles. Using the set u we construct two rational 
functions II ~ such that (II u± - 1)e..L ± with simple poles 
at k = K~, such that the ranges of their residues there equal 
K~,and [(II~ )-I-I]eJY± with 
nul (II~ )-I(K~) = K~, as follows. 

Let B ~ = (B ~ )2e&B , m = 1 , ... ,n, be a set of projec
tions on (C ~)-IK~, where 

C~=(I+BI± 2KI± ) ... 
K;; -Kf-

X(1 +B ±_ 2K~_1 ) 
m I ± ± ' 

Km -Km _ t 

(8) 

then 

II~ = (I + B t± 2Kt± ) ... (1 + B n± 2Kn± ). (9) 
k-Kt± k-Kn± 

Clearly IIu± (k) has simple poles at k = K~ and nowhere 
else. Its residue at K~ is 

R~ =2K~C~B~D~, 

where 

Since ranB ~ = (C ~)-tK~, ranR ~ = K~ as re
quired. Also, since 

(II~)-t=(I+Bn± 2Kn± ) ... (l+B t± 2Kt± ). 
k +Kn± k +Kn± 

(II ~ ) - t has all its poles in C =F, and II u± is zero-free in C + . 
Furthermore, it is readily seen that 
nul(II~ )-t(K~) =K~ and '.lm IIII~ II = 1 as Ik 1-00. 
Thus II ~ has all the needed properties. 

We remark that the projections B ~ are not uniquely 
determined by these requirements (as the kernels of the B ~ 
need not be Hermitian) and they may be chosen with other 
compatible properties that may be convenient. 
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Now define 

fU± = (ll~ )-If±, 

OJU = (ll"- )-IOJll: . 

Then (1) leads to 

(10) 

(11) 

f"- = OJU f: . (1 U) 

We now pose H 6 (OJ). If OJ is such that (OJ - I )E2' and 
(OJ - I - I )E2', then OJU has the same properties, and we have 

Theorem 2 (The reduction theorem): H ~(OJ) has a 
unique solutionf ± ' and this solution is such that 
(f;;; I - l)EvR ±, if and only if H 6 (OJU) and H 6 *(OJ) [where 
OJU is related to OJ by (11)] have solutions. 

Lemma 6: If H 6 (OJ) has a unique solutionf ± ,and this 
solution is such that (f;;; I - I)EvR ±, then 
(f;;; I -1)E£'±. 

Proof of Theorem 2: Suppose that g ± solves H 6 (OJU), 
and H 6 *(OJ) also has a solution. Then by Lemma 5, g ± is 
the unique solution of H 6 (OJ) and it has an inverse holomor
phic in e ±. Thenf ± = II ~ g ± satisfies Eq. (1), and since 
g ;;; I exists, f ± has the same poles in e ± as II ~ and its 
residues have the same ranges. Furthermore, 
(f ± - I)EvR ± and (f ;;; I - I)E£' ±. If it were not unique, 
by Lemma 1, H~(OJ) would have a nontrivial solution, and 
hence so would H g (OJ U

); thus g ± would not be the unique 
solution of H 6 (OJ). 

Conversely, suppose that H ~(OJ) has the unique solu
tionf ± and (f;;; 1_ l)EvR ±. Thenf~ ,defined by (10), 
satisfy Eq. (I), and ll~ being so designed that (ll~ )-1 an
nihilates the residues off ±,J~ have no poles, and 
(fu± - I)E£'±. Thus it solves H 6 (OJ). If this solution of 
H 6 (OJ) were not unique, by Lemma 1, H g (OJU) would have a 
nontrivial solution, hence so would H~(OJ) and hence, again 
by Lemma 1, the solution of H 6 (OJ) would not be unique. 
Furthermore, (f~ )-1 = f;;; Ill~ so that 
[(fu± ) - I - 1] EvR ± . Consequently by Lemma 4, H 6 * (OJ U

) 

also has a unique solution.D 
Proof of Lemma 6: By Theorem 2 H 6 (OJU) and H 6 *(OJU) 

have solutions. The first part of the proof of Theorem 2 
proves that then (f ;;; I - I)E£' ± .0 

The use ofEqs. (10) and (11), by Theorem 2, allows us to 
reduce the solution ofH ~(OJ) to thatofH 6 (OJ), provided that 
it has a unique solution and the inverse of this solution is 
meromorphic. Lemma 6 implies that a unique solution of 
H ~(OJ) cannot have superpoles. A simple example of non un i
queness with superpoles is provided by f1 = I and 
</> = 1 + E(k 2 + 1)-1, where qEq = E, E2 = O. 

The reduction technique may, of course, be transfered 
to H H~,f1). If f1 is defined in terms of OJ as in (5) then we 
define 

("U n I = 0+ ll~ ,). 

f1I = (llI')-If1qllIq, 

</>I = (llI)-I</>. 

Then f1 I is related to OJU by 

I _ ((OJU')-I 0) f1 - , o OJU 
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(12) 

(13) 

(14) 

and (I) or (3) leads to 

</>I, = f1Iq</>Iq. 

We then have the immediate corollaries of Theorem 2 and 
Lemma 6: 

Theorem 2': H 1(f1) has a unique solution </> and this 
solution is such that (</> - 1 - l)EvR +, if and only if H 6 (f1 I) 
and iI 6 *(f1 I)[ where f1 I is related to f1 by (13)] have solu
tions. 

Lemma 6': If H 1(f1) has a unique solution </>, and this 
solutionis such that(</> -I - I)EvR+, then(</> -I - I)E£'+. 

VII. THE INDEX 

The question to be answered next is whether two differ
ent Hilbert problems with the same function OJ (or f1) can 
both have solutions. That this is possible if the two problems 
differ only in the location of their poles, but not in their 
number, is to be expected, because that is the case in the 
"scalar" Hilbert problem. 

Lemma 7: Let Il and (J' be two sets as specified in the 
definition of H ~ (OJ), such thae5 Au = A 1"' If H 6 (tv) has a 
unique solutionf ± and (f;;; I - I)E£'+, then H ~ (OJ) also 
has a unique solution with a holomorphic inverse. 

It is clear that this Lemma has its equivalent for H 1 but 
we shall not explicitly state it. 

On the other hand, if the "numbers of poles," in the 
sense of Au and AI"' are not equal for two sets (J' and Il, then 
two such Hilbert problems cannot both have solutions. For 
this result to hold it is important that solutions with super
poles be excluded. The example given above Eq. (12) shows 
that if superpoles are admitted then their number may vary. 

Theorem 3 (Index theorem): If H ~(OJ) and H ~ (OJ) have 
unique solutions, and the inverses of these solutions are mer
omorphic, then Au = AI"' This number will be called the in
dex of OJ. 16 

We shall also state its equivalent form for H 1(f1): 
Theorem 3': If H 1(f1) and H ~(f1) have unique solu

tions, and the inverses of these solutions are meromorphic in 
e +, then A I = A r' This number will be called the index of 
f1.16 

Proof of Lemma 7: Letf + have a simple pole at k = K 

with residue I. Define 

g+ =f+r, r = I + C(v - K)/(k - v), 

whereC 2 = C. IfI(I- C) = Otheng+ hasnopoleatk = K, 

but if VEe + it has a simple pole of residue J = f + (v)C at 
k = v (assuming thatf+ has no pole or zero at v). Thus if 
ran(I - C) = nul C = null then dim ran J = dim ran I. We 
may choose an arbitrary subspace JY' with dim JY' 
= dim ran I and make ran J = JY' by choosing 

ran C = f+(V)-IJY', provided only thatf+(v)-IJY'n nul I 
= 10 j. If we choose ran (1 - C):J nul I with n = dim 

ran C < dim ran I then g + has a simple pole at k = K whose 
residue 1(1 - C) is such that dim ran [1(1 - C)] 
= dim ran I - n and it also has a simple pole at k = v with 

residue J = f + (v)C (v - K), such that dim ran J = n. Thus 
the sum of the dimensions of the ranges of the residues at the 
poles atg+ equals that off+. 

N ow iff ± satisfies (1) then so does g ± ' where 
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and if veC + , g _ has the same poles as f _. If veC- then the 
dimension of the range of the residue of a pole of g + has been 
reduced by n, and a new pole of g _ has been introduced with 
a dimension ofthe range of its residue equal to n. Thus we 
may shift poles from g + to g _. Similarly, poles may be shift
ed ing_ and fromg_ tog+. 

Finally, if(f;;; I -l)EJY± then (g;;; I -l)EJY. The 
only pole of r is at K and its residue is annihilated by f ;;; In 

We shall prove the theorem in the form of Theorem 3'. 
Proof of Theorem 3': By Lemma 6' the unique solutions 

A A 

et> and 1/1 of H i(!1) and H }(!1), respectively, have inverses 
that are holomorphic in C+. Define X = I/I-Iet>. Then from 
(3), X' = qXq. Therefore X is meromorphic in C, and so is its 
inverse: (x -l)E...ff+~-, (x -I -l)E...ff+~-. The 
poles of X in C + are those of et>, in C - those of et> " and the 
polesofx -I are those of 1/1 and 1/1', respectively. If any of the 
zeros of 1/1-1 (or 1/1'-1) coincide with poles of et> (or et> ') we 
shift them by the method used in the proof of Lemma 7. 

Assume now that we have shifted the pole positions of 
X, if necessary, away from zeros of 1/1-1 and 1/1'-1. Then the 
dimensions of the residues of the poles of X equals those of 
the corresponding ones of et> and et> ' (and those of X - I, those 
of 1/1 and 1/1'). We now remove the poles of X stepwise. With
out loss of generality we may assume that the sum of the 
dimensions of the nullspaces at the zeros of X is not smaller 
than the sum of the dimensions of the ranges of the residues 
at its poles. Let A be a zero of X, and K a simple pole with 
residue R. Let B = B 2 be the projection on a one-dimension
al subspace (spanned by 7]) of ran R such that BX(A ) = O. 
This projection exists, provided that ran R <t: ran X (A ). If nec
essary we use the method given in the proof of Lemma 7 to 
change ran R. Define 

(
A -K) fll=I+B --, XI=fllX. 
k-A 

SinceBx (A) = O,XI isanalyticatA. Atk = K,XI has a simple 
pole with residue R I = (1 - B )R. Therefore ran RIC ran R. 
Furthermore, if 3 a such that 7] = RIa then 7] = RIa 
= (1 - B )Ra, and hence B7] = 0; and if 7] = Ra then 

RIa = (1 - B )Ra = (1 - B)7] = O. Thus 7] is not in ran RJ> 
and dim ran R I = dim ran R - 1. Since 
XI(A) = X (A) + (A - K)BX'(A), where X' = dX/dk, and 
BX (A) = 0, XI(A)a = 0 implies X (A)a = 0 and Bx'a = 0; 
therefore dim nul X dA ) = dim nul X (A ) - 1. [nul X (A ) 
nnul X '(A ) = ! 01 because the poles of 1/1 are simple.] 

This procedure is repeated until all the poles of X have 
been removed. The remaining factor X r must then, by 
Lemma AS, equal 1. In each step the dimensions of the 
ranges of the residues of X and of its nullspaces have been 
lowered by 1; therefore the sums of these dimensions are 
equal.D 

The class of Hilbert problems H ~((U) that have a well
defined index according to this theorem is, by Theorem 2, 
exactly the class that is reducible to H 6 ({UU) and H 6 *({UU), 
and as we shall now see, that is solvable by a linear integral 
equation. This does not, however, mean that a direct method 
is available for determining if a given function {U (or!1 ) has an 
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index, and ifso, what its numerical value is. We shall return 
to this question in a more restricted context in Sec. IX. 

VIII. SOLUTION OF H'o BY AN INTEGRAL EQUATION 
A 

We now reduce the solution of H 6 to the solution of a 
linear integral equation, which is a generalization of Mar
chenko's fundamental equation. 

Theorem 4: Suppose that!1 has the properties assumed 
in H 6 (!1 ). Define 

G (a) = _1_ foo dk [!1 (k) _ l]qeika; 

211" - 00 

(15) 

let [5 and [5. be the operators on L 2 (R+) ® A" whose kernel 
functions, R+ ® R+ -~ (A"), are G (a,/3) = G (a + P) and 
G # (a,/3) = G ( - a - P), respectively. Suppose further that 
[5, g, [5., and g. are compact. Then: 

(a) The four problems H 6 (!1 ), H 6 *(!1 ), H 6 (!1'), 
H 6 *(!1') have solutions if and only if neither [52 nor [5~ has 
the eigenvalue 1. 

(b) These solutions are unique and the solution of 
H 6 (!1 ) is given by 

et>(k)=l+ Loo da7](a)eika
, (16) 

where 7] is the unique solution in .!L' of the integral equation 
fora>O, 

7](a) = G(a)q+ 100 

dpG(a+p)7](f3)q. (17) 

~ A '" 

The solutions of H 6 *(!1 ), H 6 (!1 '), and H 6 *(!1') are analo-
gously given in terms of G., G', and G I' 

(c) If 1 is in one of the spectra of [52 and [5! but not in 
A A or 

both, then H 6 (!1 ) and H 6 *(!1 ) do not both have solutions, 
and neither do both H 6 (!1') and H 6 *i.!1').:.. ~ 

We remark that the solutions of H 6(!1 ) and Ho(!1 -I) 
are determined by (a) and (b). 

Proof of Theorem 4: (a) Suppose first that H 6 (!1 ), 
A A A 

H 6 *(!1), H 6(!1 '), andH 6 *(!1') have solutions. By Lemma 5 
they are unique. Let et> solve H 6 and define 

7](a) = - dk [et>(k) - l]e- ika
, 

1 foo 
211" - 00 

(18) 

which exists in the .!L' sense; since (et> - l)eK+, 7](a) = 0 
for a < O. Now Eq. (3) may be written 

et> i - 1 = !1 - 1 + (!1 - l)q(et> - l)q + q(et> - l)q, 

the Fourier transform of which reads l7 

7] = Gq + G *.,,'q + q1]'q. (19) 

For a > 0 this equation, explicitly written out, is Eq. (17), 
since 1]'(a) = 1]( - a) = 0 for a> O. In operator form we may 
write it on R+ 

1] = Gq + [51]q, 

or once iterated, 

7] = Gq + [5G + [527]. 

(17') 

(17") 

Suppose now that 1 were in the spectrum of [52. It fol
lows that E, C = 1, is in the spectrum of [5; let v be a corre
sponding eigenfunction, [5 v = EV, with components VI and 
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V 2• The function 

p = (VI - EVI) 
V2 - EV2 

then satisfies [§ pq = -p. Let S be its Fourier transform, 

s (k) = 1'" dap(a)eika
• 

The equation [§ pq = -p then implies, by Lemma A4, that 

s'+nqSq=~+ 

and it follows from (2) that y satisfies the equation 

y' =n'qyq. 

Therefore y is a solution of H g (n '). But since by assumption 
H ~(n') and H ~ -(n') both have solutions, by Lemma 5 the 
solution of H ~ (n ') is unique, and by Lemma 1, the only 
solution of H ~ (n ') is y = O. Consequently p = 0, and the 
supposition that 1 is in the spectrum of [§2 is false. Similarly 
it follows that 1 is not in the spectrum of [§ ~ . 

(b) Conversely, suppose that neither [§2 nor [§~ have 
the eigenvalue 1. Since (n - I)E.2" implies that GE.2", and 
since [§ is compact, the inhomogeneity in (17") is in.2" and 
hence (17") has a unique solution 
11 = (I - [§2)-1(Gq + [§ G); 

thus 

[§l1q = [§(I- [§2)-IG - Gq + (1- [§2)-IGq = 11- Gq, 

and the solution oft 17") solves (17'), i.e., (17). If( 17) had more 
than one solution then its homogeneous form would have a 
nontrivial solution, and hence so would that of(17"). There
fore the absence of 1 in the spectrum of [§ 2 guarantees the 
existence of a unique solution in .2" of (17); its transpose is 
the unique solution in .2" of the transpose of (17). 

Let 11 be this solution; then lP, defined by (16), by 
Lemma A4, is such that 

lP' - nqlPq = VlEiJtP+. 

It follows from (2) that VI satisfies the equation 

VI' = - n 'qVlq. (20) 
Define 

S (a) = _1_ J'" dk VI (k )e - ika. 

211" - '" 
Then, just as (3) leads to (17), so (20) leads to the homogen
eous integral equation for a>O, 

s(a)= - 100 

d{3G( -a-{3)sl/3)q, 

orin operator form, S = - g .Sq, oriterated,s = g~s. But 
since by assumption g. is compact and 1 is not in the spec
trum of [§ ~, g ~ is also compact and 1 is not in its spectrum. 
Consequently S = 0, and hence VI = O. Thus lP satisfies (3), 
and by LemmaA4, (lP - I)EiJtP+; thereforeitso1vesH ~(n). 
In the same manner we solve H ~ -(n ), to which [§ • is relat-

A 

ed exactly as [§ is to H 6. By Lemma 5 therefore the solution 
lP of H ~ is unique. Similarly for H ~ (n ') and H ~ -(n '). 

Part (c) is proved by recognizing that if [§~ does not 
have the eigenvalue 1 but [§ 2 does, then the homogeneous 
integral equation that corresponds to (20) can only have the 
trivial solution and hence VI = O. As a result, the nontrivial 
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solution of the homogeneous form of (17) leads to a nontri
vial solution of H g (n ), and hence H b (n ) cannot have a 
unique solution, by Lemma 1, and so by Lemma 5, iI ~(n) 

A 

and H ~ -(n ) cannot both have solutions. Similarly if [§; has 
the eigenvalue 1 but [§ 2 does not, and for H b (n ') and 
H ~ ·(n ').0 

IX. THE CASE OF HILBERT-SCHMIDT OPERATORS 

If h is a Hilbert space and very much stronger assump
tions are made on Q) then Fredholm determinants may be 
defined and the index (ifit exists) may be determined directly 
from Q) without solving a Hilbert problem. This is done as 
follows. 

Lemma 8: Suppose that h is a Hilbert space, that n has 
all the properties assumed in Theorem 4, and in addition, 
lin - libEL 2(R) (where 11-112 denotes the Hilbert-Schmidt 
norm), tr (n - I)EL 2(ft) (where tr denotes the trace), and [§ 

is Hilbert-Schmidt. Then the solution lP of H ~ (n ) is such 
that IIlP - 1112EL 2(R), tr (lP - I)EL 2(R), and for kEC+, 
IIlP (k) - 1112 < 00, tr [lP (k) - I] is holomorphic, 
lim IIlP(k) - 1112 = o and lim tr [lP (k) - I] = Oas Ik 1-00. 

Proof Since lin - libEL 2(R) from (15), IIG 112EL 2(R+). 
Because furthermore by assumption II [§ 112 < 00, it follows 
from (17) that II 11 I bEL 2(R+), and hence by (16) 
IllP - 11l2EL 2(R) as well as IllP - 1112 < 00 for kEC+ and 
lim IIlP - III = 0 as Ik 1-00. Taking the trace of(17) we get 
fora>O 

tr 11 = tr Gq + tr[§l1q. 

We have 

1" daltr [([§l1q)(a)] 12 

= 1'" da I 100 

d{3 tr G (a + {3 )111/3)q r 
< 100 

da( 100 

d{3I1111/3 )q1l2 IIG (a + {3 )112 r 
< 100 

da 100 

d{3I1G (a + {3 )11/ 100 

dylll1(ylll/ 

< 00, 

so tr [§l1qEL 2(R+). Also tr GqEL 2(R+) because by assump
tiontr (n - I)EL 2(R).Consequentlytr l1EL 2(R+),andhence 
by (16), tr (lP - I)EL 2(ft), tr (lP - I) is ho10morphic in C+ 
and tends to zero as Ik 1-00 there.D 

Corollary. If n I satisfies the assumptions of Lemma 8 
[where n.I is defined by (13 I], then a = det nand y = det lP 
(where det denotes the Fredholm determinant) exist, (a - 1) 
and (y - l)EL 2(R), Y is the boundary value of an analytic 
function meromorphic in C+, and lim y(k) = 1 as Ik 1-00. 
The total number of its poles in C+ counting an mth-order 
pole m times, equals A. I' 

This corollary follows immediately from Lemma 8 and 
the properties of the Fredholm determinant. 

Now note that Eq. (3) implies that a = r' /y. Therefore, 
on the one hand, 

J: 00 d log a(k ) = - 2 J: 00 d log y(k ), 
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and on the other hand, completing the contour in C+ by a 
large semicircle, 

J: 00 d log y(k ) = 21Tiv, 

where vis the total number of zeros ofy(k) in C+, minus the 
total number of its poles there; v = A..x. Writing a = lalei.B, 
and assuming that n is continuous, this leads to 

{3(00) -{3(0) = 21TA..x, 

or by Theorem 3', to 
Theorem 5: If n satisfies the assumptions of Lemma 8 

and is continuous then 

arg det n ( 00 ) - arg det n (0) = 21TA., (21) 

where A. is the index of n as defined by Theorem 3'. (It is 
assumed here that arg det n is defined so as to be contin
uous.) 

This theorem has its immediate analogue for UJ in 
H~(UJ): 

Theorem 5': If UJ is continuous and such that n, as de
fined by (5), satisfies the hypotheses of Lemma 8, then 

arg det UJ( 00) - arg det UJ( - 00) = 21TA., (22) 

where A. is the index of UJ as defined by Theorem 3. (It is 
assumed that arg det UJ is defined so as to be continuous.) 

These theorems are the analog of what is known in scat
tering theory as Levinson's theorem. II If the assumption 
that tr (n - I)EL 2(R) is dropped then one can still get analo
gous results for modified Fredholm determinants but they 
are more complicated to state and to prove. 

Note that Eq. (2) implies det n' = lIdet n. It therefore 
follows from Theorem 5 that nand n ' cannot both have 
positive indices. Theorem 3' then implies that we have the 

Corollary to Theorem 5: If both if l(n) and if ~(n') 
have unique solutions and the inverses of these solutions are 
merom orphic in C+ then ~ = r = (/), i.e., both indices van
ish. 

The following interesting question remains unans
wered: Is the vanishing ofthe left-hand side of (21) a suffi
cient condition for if 6 (n ) and if 6 (n ') to have unique solu
tions? 

X. APPLICATION TO THE THREE-DIMENSIONAL 
INVERSE SCATTERING PROBLEM 

The following family of Hilbert problems arises in the 
inscat problem for the Schrodinger equation in three dimen
sions. The space h = L PIS 2), p > 4, where S 2 is the unit 
sphere in R3

, and a point on S 2 is denoted bye. Let QEf!4 (h) 
be defined by (QJ) (e) = J( - e) forJEh. If Sis theSmatrix 
andSx = ExSEx -I, where Ex is the operator (onh) of multi
plication by exp(ike·x), xER3

, then Sx is unitary and satisfies 
therelationsS~ =S~,Sx = QSxQ. The Hilbert problem of 
interest is H ~(S!), and if it has a unique solutionJ ± then, 
J- = Qf'+ Q. 

In the reduction of H ~ (UJ), UJ = S ~, to H 6 (UJ") one re
quires the projections B ~ on (C ~ ) - I ~, where 
~ = E ~ £' m , and E ~ is the operator of multiplication by 
eXp(Kme·X), - ~ being an eigenvalue. As a result, B~ de-
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pends on x. This x dependence is much more complicated if 
the kernel of B ~ is required to be Hermitian than it would be 
if no such requirement were imposed. In Refs. 7 and 8 the 
only Hilbert problem considered was the one stated above, 
and the kernel of UJO was also restricted to be unitary. This 
requires the kernel of B ~ to be Hermitian. 

We may now drop this restriction and construct the 
projections B ~ successively as follows: Let 
(1- Bm)£'m = O. Then 

B~ =E~BIEI-x, 

C2 = ! 1 + B I[2K/(K2 - KI)]J 

B~ = E~C 2- IE l-xE~B2E 2-xE~C2E I-X, etc. 

The kernels of the resulting operators Jl ': will not be uni
tary, but the problem H ~ (S~) can be transformed to if 1 and 
then reduced to if 6, with no need for Hermitian projections 
B~. 

XI. APPLICATION TO A THREE-DIMENSIONAL 
INVERSE SPECTRAL PROBLEM 

If the Hilbert problem that leads from the S matrix to 
the generalized Jost functionf>-8 has a solution then there 
exists a uniquely defined "regular" solution,p of the Schro
dinger equation in three dimensions that is an entire analytic 
function of k and has the symmetry ,p , = Q,p. This solution 
obeys a Parseval relation with the spectral weight function 
dp. The inverse spectral (inspec) problem consists of the con
struction of the potential in the Schrodinger equation from a 
given dp. It is solved by solving a generalization of the linear 
Gel'fand-Levitan (GL) equation.f>-8 An alternative method 
for the solution of the inscat problem consists of the con
struction of dp from a given S matrix via the generalized Jost 
function as an intermediary, and the subsequent solution of 
the inspec problem by means of the GL equation. 

On the other hand, an alternative procedure for the so
lution of the inspec problem that has not hitherto been consi
dered is to attempt to find the generalized Jost function from 
the spectral function dp, to construct the S matrix, and then 
to use the generalized Marchenko equation to solve the ins
cat problem. The relatively complicated structure of the gen
eralized GL equation makes this a method of some interest. 

According to Ref. 6, Eq. (7.13), the spectral function is 
expressed as 

E>O, 

E<O, 

in terms of the generalized Jost function, 18 

M=(Jl*)-1 (23) 

and Mm is an operator of finite rank such that its kernel is 
Mm(e,e ') = ~bX~(e )X~*(e '). ThefunctionJ(k ),R_f!4(h), 
E£'+ and it has simple zeros at k = iKm such that the 
X~,b = 1, ... ,Nm , span its nullspace there. ThescaJe of the 
X~ is defined by Eq. (5.20) of Ref. 6. 

On the other hand, the S matrix is expressed in terms of 
J asf>-8 
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and the generalized Marchenko procedure allows a unique 
construction of the underlying potential in the Schrodinger 
equation from S. 

It is clear from this account that if, in general, J - I were 
uniquely determined by (23) together with the positions of its 
poles and the ranges of its residues, then dp would contain 
redundant information, namely, the scale of the X ~. This is 
consistent with the realization that if the Hilbert problem 
H ~(M) is posed then the expected solutionf+(k) = J(k), 
f _ (k ) = [J ·(k .)] -I, is such thatf + has zeros, and hence by 
Lemma 2 it cannot be unique. 

In the absence of bound states, however, there is no 
such obstacle. In that case, if M satisfies the requisite condi
tions, H 6 (M) may be reduced to the solution of a linear 
integral equation by the method contained in Theorems I 
and 4, and the inspec problem may be solved by the tools of 
the inscat problem. If there are bound states then no such 
procedure is known. 

APPENDIX: ANALYTIC AUXILIARIES 

Iffis an analytic function, .d-3B (h), .d C C, thenp· is 
an analytic function, .d_3B(ht), whose kernel is the trans
pose of that off; its restriction to h equals]: 19 Sincejis an 
operator h_ht it will be regarded as an analytic function 
only ifjE3B . 

The inversef-I (in the operator sense) of an analytic 
functionfis an analytic function except if one ofthree possi
bilities occurs: 

(a)f(K) has a zero. In that casef(K)-1 does not exist. 
(b) Zero is in the residual spectrum off(K), i.e.,ft(K) has a 

zero. Then ranf(K) decomposes h = ho Gl ranf(K), ho =1-1 0 J, 
and the left inverse off(K) either is undefined on ho or it has a 
zero; in neither case can it be its right inverse. 

(c) Zero is in the continuous spectrum off{K). In that 
case f(K) - I exists but is not in 3B . 
In all three casesf(K) - I is not analytic at k = K. Ifjis analytic 
and has a zero at K then ft. also has a zero and hencef -I is 
not analytic there. 

If in some region .d,J is meromorphic and has a simple 
pole at K, then so doesft., and eitherf- 1 andft.- 1 have 
zeros at K, orf - 1 andft. - 1 have simple poles, or both. [That 
is, there may be two vectors a and bEh such thatf -Ia has a 
pole at K and limf(k )-Ib = 0 as k-K.J 

We shall state and then prove a sequence oflemmas that 
are needed. 

Lemma A 1: Iff and g are analytic functions, ~3B, 
holomorphic in an open region.d C C, such that/is zero-free 
in.d andfg = I, then gf = 1, i.e.,J = g-I in.d. 

Lemma A 2: Supposefandg are analytic in an open set 
.d andfg = g f = 1 there. Let K be a boundary point of.d such 
that 3AE3B andAfo = I, wherefoE3B, lim Ilf(k) - /oIl = 0 
as k_K. ThenfoA = 1 and limllg - A II = 0 as k_K. 

This lemma implies that a region in C in which bothf 
andf - I are analytic cannot have limit points at which zero is 
in the residual spectrum off 

Lemma A 3: If (/ - 1)EJr"+ then for sufficiently large 
Ik I,J-I(k) exists, is analytic, and as Ik 1-00 in C+, 
limllf-I(k) - III = o. 
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LemmaA 4: Iff(a)E.Ytheng(k ) = S;daf(a)eikaEJr"+. 
Lemma A 5: IffEJr"+n.JZ"'- thenf = O. (This lemma 

may be regarded as a generalization of a Corollary of Liou
ville's theorem.) 

Proof of Lemma A 1: g f = 1 would be false only if at 
some point KE.d h non trivially decomposes, 
h = ho Gl ran g(K), and either nulf(K) = ho or domf(K) 
= ran g(K}. Butfbeing holomorphic, domf = h everywhere 

in.d, and nUlf= /OJ by hypothesis.o 

Proof of Lemma A 2: g = A + A (fo - fIg implies 

Ilgll<(lIA 11)1(1 -IIA IllIf - foil) 

so that IIg(k )11 remains bounded as k-K. Then 
A - g = A (/ - fo)g and hence IIA - gil <IIA II 
Ilgllllf - foll-o· Finally, (/ - fo)g + fo(g - A ) = 1 - foA 
implies 111- foA 11<llgllllf - foil + Ilfolllig -A 11-0, and 
hencefoA = 1.0 

ProofofLemmaA 3: Since lim Ilf - 111 = Oas Ik 1-00, 
for Ik I sufficiently largef-I(k) exists and is holomorphic. 
Thenf- I - 1 = (/-1 - 1)(1 -f) + (1 -f) and therefore 

Ilf-
1 

- 111« Ilf - 111)1(1 -Ilf - 111)-0.0 

ProofofLemmaA 4: By Parseval's theoremgE.Y. Take 
k = A + iv> 0, and UEh. Then by Schwarz's inequality 

Ilg(k)UI1 2«f'" da Ilf(a)Ulle-vuY 

< 1"" da Ilf(a)uI1 2 100 

d{3e-
2Vfi

<Cllullv-
1 

and similarly for gu and their derivatives. Hence g(k )u and 
g(k)u are analytic in C+, and therefore, so areg(k) andg(k). 
Since for all UEh 

Ilg(k)ull /llull<Cv- 1 

it follows that lim Ilg(k HI = 0 as v-oo.o 
Proof of Lemma A 5:jEJr"+ implies that 

g(a) = S~ 00 dkf(k )eika exists as a function in .Y and 
g(a) = 0 for a> O. Similarly,JEJr"- implies thatg(a) = 0 for 
a < O. But the only L 2 function with support at one point is 
g = O. Hencef = 0.0 
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"'This definition differs by a minus sign from that customary in the matrix 
case. 

17Here • denotes a convolution. 
'"Note that the notation in Refs. 7 and 8 differs from that in Ref. 6, and what 

is called J here and in Refs. 7 and 8 corresponds to J in Ref. 6. 
'OWe are using here Ref. 12. 

Roger G. Newton 2265 



                                                                                                                                    

A class of discontinuous integrals involving Bessel functions 
Charles Schwartz 
Department 0/ Physics, University o/California, Berkeley, California 94720 

(Received 13 April 1981; accepted for publication 11 September 1981) 

A general theorem, which appears to be newly discovered although it is of a very classical sort, 
gives simple evaluations for a large class of infinite integrals containing Bessel functions in 
product with other suitably constrained analytic functions. 

PACS numbers: 02.30. + g 

Consider the following two classes of infinite integrals 
involving Bessel functions, where b is a real positive number: 

II = f: dttl"+IJI"(bt)f(t), 

12 = f: dt tl" NI" (bt )f(t). (1) 

There may be constraints upon the values of f.1, and uponf(t ) 
in order to give convergence of the integrals at the end 
points; although in many instances one may add the conver
gence factor e - Et and take the limit €-D + . The following 
three conditions are imposed upon the otherwise arbitrary 
functionsf(t ). 

(i)f(t ) is an analytic function in the right half-plane, Re t:>O; 
(ii)f(t) is an even function along the imaginary axis, 
f(it) = f( - it); (2) 
(iii)f(t) is bounded for large It I by ea11m 

t I and b > a:>O. 

In the nomenclature of Boas, I fIt ) is an even entire function of 
exponential type a. 

Theorem: The integrals II and 12 vanish. 
The proof involves writing the Bessel functions II" and 

NI" as linear combinations of the Hankel functions H~I and 
H~I and then, by virtue of the assumed analyticity, moving 
the contour ofthe H~I integral up to the positive imaginary 
axis and the contour of the H ~I integral down to the negative 
imaginary axis. The portions of the contour integrals along 
the arc at infinity vanish by condition (iii); and the portions 
along the two halves of the imaginary axis cancel by virtue of 
condition (ii) plus the identity 

( + irH~I( + it) = - ( - irH~I( - it). (3) 

COMMENTS 

As regards the integral II' the theorem can be extended 
to include negative real values of b and the condition (which 
gives rise to the identification of these as "discontinuous" 
integrals) reads 

Ib I > a:>O. (4) 

A familiar theorem in Fourier transforms gives 

f~ = dt eibtF(t) = 0, (5) 

where F(t) is any entire function of exponential type a and 
I b I > a. This may be seen as a special case of our theorem, by 
combining the integrals II for the two cases f.1, = + ! and 
f.1, = ! . It is also possible to restate our theorem in the 

language of Hankel transforms but this does not appear to 
add anything new. 

The most powerful application of the theorem comes 
from the following. 

Corollary: If condition (i) is relaxed to allow some poles 
in the integrals II and 12, then we get the residues picked up 
in moving the contours as described in the above proof. 

For example, assuming the complex number z lies in the 
first quadrant [andfsubject to the conditions (2)] 

f: dt tl" + I II" (bt )f(t )/(t 2 - Z2) = !1Tizl"H~I(bz)f(z), (6a) 

f: dt tl" NI"(bt)f(t)l(t 2 
_Z2) = !1TzI"-IH~I(bz)f(z). (6b) 

Alternatively, taking x on the real positive axis and using the 
Principal Value prescription, we find the pair of integral 
transforms: 

p.V.f= dt tl" + I II" (bt )f(t )/(t 2 - x 2
) = - !1TxI"NI" (bx)f(x), 

o (7a) P.vJ: dt tl" NI" (bt )f(t )I(t 2 - x 2
) = !1TXI" - )11" (bx)f(x). 

(7b) 

FURTHER COMMENTS 

Other interesting relations can be gotten from (6) by 
differentiating with respect to z, or by taking the Fourier 
transform with respect to z, or by taking the limit z-D: 

f= dt tl"-I II" (bt)f(t) = 21"-1 rl,p)f(O), 
o bl" 

Ref.1, > o. 

(8) 

Looking at the standard reference books2.3 and tables4
-

8 

of known integrals with Bessel functions one will find a great 
many particular results that fall within the theorem and cor
ollary given here. Examples of the sorts offunctionsf(t) en
countered are 
t 2N; Iv (at )t - v; Iv(a(t 2 + p2)(1/21)(t 2 + p2) -(1/2Iv (9) 

and products of these. Generalized hypergeometric func
tions of the type 

nFn + ) (r), r2, ... ,rn ;s), S2' ... 'Sn + I; -! a2(t 2 + p2)) (10) 

also satisfy the conditions given. The possibilities are 
endless. 

It is most surprising that I have not been able to find any 
prior mention of the general results reported in this paper. 
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I would also guess that the theorem could be extended 
to consider a class of functions larger than the Bessel func
tions as the kernel of the integrals. 

1 R. P. Boas, Entire Functions (Academic, New York, 1954). 
2G. N. Watson, A Treatise on the Theory 0/ Bessel Functions. 2nd ed. (Cam· 
bridge University, Cambridge, England, 1962). Chap. XIII. 
,'w. Magnus and F. Oberhettinger, Formulas and Theoremsfor the Func-
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tions of Mathematical Physics (Chelsea, New York, English translation, 
1949). This is the reference for the Bessel function notation used in this 
paper. 

4A. Erdelyi et 01., Higher Transcendental Functions (3 vols.) and Tables of 
Integral Transforms (2 vols.) (McGraw-Hill, New York, 1953-55). 

'Yo L. Luke, Integrals of Bessel Functions (McGraw-Hill, 1962). 
61. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Pro
ducts (English translation, Academic, New York, 1965 and 1980). 

7 A. D. Wheelon, Tables of Summable Series and Integrals Involving Bessel 
Functions (Holden-Day, New York, 1968), 

"F. Oberhettinger, Tables of Bessel Transforms (Springer, Berlin, 1972k 
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The commutant of a multiplication operator 
A. H. Nasr 
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah P. O. 9028, Kingdom of 
Saudi Arabiaa) 

(Received 18 May 1982; accepted for publication 30 July 1982) 

We detennine the class of all operators commuting with a multiplication operator defined by a 
general piecewise continuous strictly monotonic function. 

PACS numbers: 02.30.Bi, 03.65. - w 

1. INTRODUCTION AND NOTATIONS 

Let q be a real function defined on the finite interval 
[a,b ]. Every such function defines in the spaceL2(a,b ) I a mul
tiplicationoperatorQ defined by (Qf)(x) = q(x)f(x).Inquan
tum mechanics, every multiplication operator Q corre
sponds to a potential field with the value q(x) at the point 
xE[a,b ].2 

In the present paper we detennine the class of all 
bounded operators A acting in the space L 2(a,b ) and com
muting with a given multiplication operator Q. This class of 
operators is called the commutane of Q. We recall that the 
commutant of Q (precisely, the self-adjoint elements of it) 
consists of the operators corresponding to observables that 
can be simultaneously measured with a potential given by 
q(X).2 It is easy to see that if q is a continuous strictly mono
tonic function on a bounded subset J of the real line R (i.e., 
separating the points of J) then, each linear bounded opera
tor A commuting with q is a multiplication operator (see 
Refs. 3 and 4), i.e., there exists a function a(x) such that 

(Af)(x) = a(x)f(x) VfEL2(J)· 

2. COMMUTANT OF n-PIECEWISE STRICTLY 
MONOTONIC FUNCTIONS 

Let q be a continuous function. We say that q is an n
piecewise strictly monotonic function if there exists a subdi
vision of the interval [a,b] by the n-points 

a=xO <xI <X2<"'<Xn =b, 

such that q is strictly monotonic on each subinterval 
[X;_I'X;]. 

We recall that the commutant of2-piecewise strictly 
monotonic function is detennined in Ref. 4. Here we deter
mine the commutant of a general continuous n-piecewise 
strictly monotonic function for arbitrary finite n. 

Arrange the set of numbers [q(xo), q(xl), .. ·,q(xn) 1 in as
cending order giving them the new symbols [y;, 
i = 0,1,2, ... ,k I; 

Yo <YI <Y2 < ... <Yk' k<.n. 

Let i l <i2 < ... <in" nj<n be the subset of [1,2, ... ,n J 
such that the interval 

11,;,1 = q-l(Yj_ I 'Yj)n(x;m _ I ,x;m )#0, 

m = 1,2, ... ,nj , 

alOn leave from Ain Shams University, University College for Women, 
Heliopolis, Cairo, Egypt. 

where 0 denotes the empty set and q-I(yj _ I ,yj) 
= [X:q(X)E(Yj _ I ,yj) J (see Fig. 1). The collection of subinter

vals 

[11,;,1, j = 1,2, ... ,k; m = 1,2, ... ,nj J 

can be partitioned into k equivalence classes by introducing 
the equivalence relation R defined by 

I (j,)RI(j')r->vJ(I (j,)) = q(I(j,)) 
m, m 2 "'r'"f''j m, m 2 ' 

where 

q(I~',)) = [y = q(x):xEl~:)J, i = 1,2. 

It is easy to verify that this is an equivalence relation.5 The 
equivalence classes are 

'llj = [I\J1,Iyl, ... ,I~1J, j = 1,2, ... ,k. 

It is clearthatuf= I u::; = 111,;,1 coincides with the interval [a,b] 
except for the endpoints of the subintervals 11,;,1 which is a 
finite set (i.e., has a Lebesgue measure 0). 

Introduce a transfonnation p defined almost every
where (a.e.) on the interval [a,b] (except at the set of end
points of 11,;,1) by the rule: for all xEl 1,;,1, pxEll~ + I )(mod n,) such 
that q( px) = q(x), i.e., every point x belonging to some inter
val 11,;,1 goes to the point x = px in the following subinterval 
of the same equivalence class where the numeration is taken 
modulo nJ (i.e., the last subinterval is mapped into the first in 
the same equivalence class). In this case, it is clear that 

pn,x=x VXE 0 11,;,1 and VjEI1,2, ... ,kl. 
m=l 

Taking N equal to the least common multiple of 
[n l,n2, ... ,nk I, we see that (except at the endpoints of 11,;,1) 

Y3 

Y, 

Y, 

Yo 

pNX = x a.e VXE[a,b], 

x = 
4 

FIG. 1. An n-piecewise strictly monotonic function with n = 4, k = 4; 
n I = 2, n2 = 3, n, = I, n4 = 2; N = 6. 
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i.e.,pN = e (a.e.), where e is the identity transformation. Con
sequently, Ie, p, p2, ... ,pN - I J forms a cyclic group of trans
formations of [a,b ] into itself. 5 

The transformation p generates an operator P acting on 
L2(a,b ) by the formula 

(P/)(x) =/(px) 'tI/EL2(a,b) 

[I( px) is well defined as a function in L 2(a,b ), since it is de
fined a.e.]. 
The family IE, P, P 2 , ••• ,P N - II forms a cyclic group of oper
ators on L 2(a,b ), where E is the unity operator and P N = E. 

Lemma 1: The N roots of the unity 11, w, w2, ... ,WN - II, 
w = exp I 21Ti/ N I are the eigenvalues of the operator P. 

Proof Consider the eigenvalue problem P/ = zf Since 
P N = E, we have zN = 1, i.e., the eigenvalues lie in the set of 
the N roots of the unity 11, w, ... ,wN 

- I J. It remains to show 
that'tlse 10, 1,2, ... ,N - 1 J, the value W S is an eigenvalue of P, 
i.e., has a corresponding nonzero eigenvector. In fact, 
'tI/EL2(a,b) the function 

1 N-I 
I. = - L Ws(N - rip 1. 

N r=O 
(1) 

is easily seen to be nonzero for some/EL2(a,b) and satisfies 
the relation 

1 N-I 
= - L Ws(N- rlpr+ '1 

N r=O 
PI. 

= ~ [Ni2 Ws(N- rlpr+ '1 + w1] 
N r=O 

= ~ [Nil Ws(N- r+ lip 'I + w1] 
N r=1 

1 [N - I ] = WS 
- L Ws(N - rip 'I + / = w1s. 
N r=1 

i.e.,fs is an eigenvector corresponding to the eigenvalue WS 
•• 

Denote by Ms the eigenspace corresponding to the ei
genvalue W S for s = 0, 1,2, ... ,N - 1. 

Lemma 2: The space L2(a,b ) can be represented as the 
direct sum of the eigenspaces IMs, s = 0,1,2, ... ,N - I J, 

L 2(a,b) = MoeMI e .··eMN_ I, 

where e denotes the direct sum. 
Proof Let/EL2(a,b ) be an arbitrary element. We have to 

prove that (see Ref. S)/can be uniquely represented in the 
form 

N-I 

/= L I., fseMs· (2) 
s=o 

Takingfs in the form of (1), we see that 
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The uniqueness of the representation (2) of/is proved as 
follows. Let 

N-I 

/= L I;, /;eMs ' (3) 
s=o 

Subtracting (3) from (2) and putting I. - /; = gs' we get 
N-I 

L gs = 0, gseMs· 
s=o 

Acting, successively, on the last relation by P, p 2
, ••• ,p N

-
I 

and noting that P rgs = wr.sgs, we get a system of N homogen
eous equations 

N-I 
L wr.sgs = 0, r = 0,1,2, ... ,N - 1, 

s=o 
whose determinant of coefficients is 

W(N - 11·1 wIN - 11·2 

W1.(N - II 

W 2.(N - II 

W(N - II·(N - II 

This determinant, being a special case of van der Monds 
determinant, is equal to the product 

II (w r 
- W

S
), 

O<r<N-I. O<s<N- I. r<s 

(4) 

which is different from 0. From this, it follows that the sys
tem of Eqs. (4) has only the zero solution 
go =gl = .,. =gN-I = 0. Hence,fs =/;, for all 
s = 0,1,2, ... ,N - 1.. 

Lemma 3: For every seI0,1,2, ... ,N - 1 J, the subspace 
Ms is invariant with respect to multiplication by the function 
q. 

Proof LetfseMs be an arbitrary element. We have 

(P(qfs))(x) = q(px)fs(px) = q(x)(Pfs)(x) = wSq(x) I. (x), 

i.e., qfseMs'. 
Let n = IJ:J = 1(11 UI(21 u···ul(k) ItJI e'll. 

m l m 2 m k ' mj J' 

j = 1,2, ... ,k J. Denote by L2(J) the space of all square summa-
ble functions defined on J. Let R sJ: Ms -L2(J) be the restric
tion mappings of Ms on J for all se I 0, 1,2, .. . ,N - 1 J and all J, 
then we have 

Lemma 4: Each restriction mapping R sJ: Ms -L2(J) is 
invertible for all s and all J. 

Proof It is clear that if the restriction I. IIml. of a func
tionfseMs is given, then the values offs on the remaining 
components of 'llj can be determined from the equations 

(P1s)(x) =fs(prx) = wr·1s(x), r = 1,2, ... ,nj - 1. 

Consequently, for J = 1~1, ul~~ u ... ul~l, if the restriction 
I. IJ is given then,fseMs can be uniquely determined (a.e.) on 
the whole interval [a,b] by applying, successively, the rela
tion 

(PI. )(x) = w1(x). 

This proves that R ;:; I exists .• 
LetA be a linear bounded operator acting in L 2(a,b ) and 

commuting with the multiplication operator defined by the 
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function q. According to the decomposition (2), it is suffi
cient to get the law of action of A on each subspace Ms' Let 
M sJ be the restriction of Ms on J, for all JEfl. It is clear that 
MsJ = L2(J). Define the operator AsJ on MsJ by the formula 

AsJfsJ = (A!s)IJ for all fsJEMsJ' (5) 

where!s = R s7 1sJEMs' 
Lemma 5: For allJEfl, the operator AsJ actsonMsJ as a 

multiplication operator. 
Proof Let qJEMsJ be the restriction of q on JEfl. We 

show now thatAsJ commutes with qJ' In fact, we haveqJfsJ 
= (qfs)J. Using (5) and the assumption that A commutes 
with q we get 

AsJqJfsJ = AsJ(qfs)J = (Aqfs)IJ = (qA!s)IJ 

= qJ(A!sh = qJAsJfsJ· 

SinceqJ is separating the points ofJ, thereforeAsJ is a multi
plication operator on M sJ ' i.e., there exists a function bsJ 
such that 

(6) 

Lemma 6: For every sEIO,1,2, ... ,N - 1 J, the family of 
functions I bsJ; JEfl J is compatible in the sense that if J1Efl, 
J2Efl, and J{V2 = Jo, then bsJ, (x) = bsJ, (x) for all xEJo· 

Proof We have 

AsJ,fsJ, = bsJ,fsJ, 

AsJ/ sJ, = bsJ/ sJ, 

Taking 

XsJ, = {~ :: 

for all fsJ, EMsJ, '} 
for all fsJ, EMsJ,· 

{
Ion Jo, 

XsJ, = ° J \ T on 2 "0' 

(7) 

It is clear that R .7, IX sJ, = R .7, IX sJ,' Denote the resulting 
function by Xs' Substituting in (7) and using the definition of 
the operator AsJ , we get 

(AxslIJ, = AsJ,XsJ, = bsJ,XsJ" 

(AXs)IJ, = AsJ,XsJ, = bsJ,XsJ,· 

The last two relations imply bsJ, IJo = bsJ, IJo '. 

The compatibility of I bsJ' JEfl J permits the definition 
of a function b (sl defined a.e. on the interval [a,b] such that 
the restriction b (SIIJ coincides with the function bsJ defined 
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by Lemma 5. Consequently, taking (5) in mind, we see that 
Eq. (6) takes the form 

A!s=b(s1. V!sEMs' s=O,l, ... ,N-l. (8) 

This means that the operator A acts on Ms as a multiplica
tion operator by the function b (sl. Using (8) and the decompo
sition (2) we see that 

N-I 
Af = L b (s1. for all fEL 2(a,b). 

s=o 

Substituting from (I) in (9) and putting 

1 N-I 
a,=- L b(slws(N-'I, 

N s=o 

we get 

Af = Nil b(SI_l Nil Ws(N-'IP1 
s=o N ,=0 

= Nil (..!.. Nil b(SIWS(N-'I)P1 
,=0 N s=o 
N-I 

= L a,P1 for all fEL2(a,b). 
r=O 

i.e., we have proved the following. 

(9) 

Theorem: Every continuous n-piecewise strictly mono
tonic function q defines a transformation p and a natural 
number N such that for every linear bounded operator A 
commuting with the multiplication operator defined by q, 
there exists N functions (ao,a I,· .. ,a N _ 1 J such that 

N-I 

Af = L a,P 1 for all fEL 2(a,b), 
r=O 

where P is the operator generated by p; 

(Pf)(x) =f(px). 

'w. Rudin, Functional Analysis (McGraw-Hili, New York, 1973). 
2p. A. Dirac, The Principles a/Quantum Mechanics (Oxford V.P., Oxford, 
1944). 

3M. A. Naimark, Normed Rings (Noordhoft', Groningen, The Netherlands, 
1960). 

4 A. H. Nasr, "Observables simultaneously measured with the potential," 1. 
Math. Phys. (to appear). 

'G. Birkhoft' and S. Mac Lane, Modern Algebra, 4th ed. (Macmillan, New 
York, 1977). 
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Carleman embedding and Lyapunov exponents 
R. F. S. Andrade 
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We investigate the solutions of those autonomous systems with quadratic nonlinearities in a N
dimensional vector space together with the solutions of their first variational equation systems by 
means of the Carleman embedding. An iterative procedure based on this result is developed to 
evaluate the Lyapunov exponents of the considered systems. We test the method by giving some 
results for the Lyapunov exponents of the Lorenz model. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

The concepts of Carleman embeddingl and Lyapunov 
exponents are related to the study of nonlinear differential 
equation systems and have been intensively investigated re
cently.2-6 Loosely speaking the former is a method for solv
ing the proposed system after embedding it into an infinite 
set of linear equations, whereas the latter reports about the 
asymptotic behavior of two trajectories (with respect to each 
other) which are close together at the initial time. 

In this paper we bring these concepts together in that 
we use the method of Carle man to evaluate Lyapunov expo
nents. We consider here those autonomous systems in a N
dimensional vector space with the form 

dy; 
dt = F;(! Y; j) 

= I aij Yj + Ibij/YjY/' i,j,l = 1,2, ... ,N, 
j j/ 

(1 ) 

where the aij and the bij/ are constant. 
System (1) describes many different models in hydrody

namic and chemical reactions, etc., which display nontrivial 
dynamics, with the presence, e.g., of strange attractors and 
sequences of period-doubling bifurcations. The results we 
get here can be easily extended to include systems with high
er polynomial nonlinearities. 

The central point of our method lies on the fact that the 
infinite matrix M (to be defined later) resulting from the Car
leman embedding of the system (1) gives rise not only to the 
solution of (1) itself, but also to the solution ofthe system of 
first-variational equations of (1), 

doy; 
-d =IaijoYj 

t j 

+ Ib;j1 (Yj(t)oy/ +y/(t)OYj) , 
jI 

(2) 

whose knowledge is required for the evaluation of the Lya
punov exponents. The solution of (2) indicates how the dif
ference oY between two trajectories evolves with time, and 
we have explicitly writtenYj(t) on the rhs of(2) to call atten
tion to the fact that it is not a simple autonomous linear 
equation system at all. 

Generally one can find approximate solutions for (1) 
and (2) with the help of numerical techniques. The method 
developed here gives a clear insight into the relation between 
the solutions of (1) and (2), and has simplifying advantages 

for the numerical computing that is required if we want to 
give the explicit values of the Lyapunov exponents. 

This article is organized as follows: In Sec. II we intro
duce the concept of the Carleman embedding and use it to 
write down the solutions of (1) and (2). The equivalence 
between the Taylor series solution of(2) and the one given by 
the Carleman embedding is explicitly proven. In the Sec. III 
we define the Lyapunov exponents and discuss their mean
ing. Finally, a discussion of the numerical procedure, some 
results for the Lorenz model, and concluding remarks are 
presented in the Sec. IV. 

II. THE CARLE MAN EMBEDDING 

A. The solution of the basic system 

Let us write the system (1) with the help of vector nota-
tion; 

dx = Ax + BX[21 

dt 
(3) 

where x is the column vector of N components Y; andA is the 
matrix of components a ij. The nonlinear terms are described 
by theN XN 2matrixB [B;k = bij/' wherek = (j,l) and is to 
be labeled according to the lexicographical order], and by 
the vector X[2 I = x ® x, where ® denotes the Kronecker pro
duct. It is convenient to introduce the L th Kronecker power 
by X[L I = X[L - 1 I ® x,x[ 1 I = x, as well as the matrices 

Al=A, 

L = 2,3,.··, 

B1=B, 
(4) 

with I denoting the N X N identity matrix. They will appear 
throughout the work with the method of Carleman. 

The Carleman embedding of the system (3) amounts to 
first considering the components of x[21 as independent var
iables, and then to writing down their equations of motion. It 
can be easily shown that 

(5) 

Then we consider successively the X[3 1, X[41,. .. , as indepen
dent, which leads to the infinite linear system 
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(6) 

We write X and M for the infinite-dimensional vector 
and matrix appearing in (6), and let their block components 
be denoted by capital indices as XL = X[L J and 

M L.K = ALoL.K + BL 0L.K + I . 

The component XI of the solution of (6) should also 
furnish the solution of the system (3). Nevertheless one must 
proceed carefully, for the system (6) may have a broader class 
of solutions than that of (3); e.g., one can find Coo solutions 
for (6) whose component Xl does not satisfy (3).7 However, 
the analytical solutions of(3) and of XI in (6) are equal, which 
can be shown by comparing the terms of their Taylor series. 

The formal analytical solution for X in (6) is 
X (t) = eMT X (0). If we are only interested in the component 
XI' we may write 

(7) 

We introduce now a generalized power operation 
between theN XNmatrixA and theN XN 2 matrixBwhich 
enables the writing of both the Carleman solution and the 
general term of the Taylor series solution of (1) and (2) in a 
very compact way. So, if n, rnEZ we define the matrix 
(A "IBm) by 

(A"IBm) =Oifnorrn<O, (8a) 

(A °IB 0) = I (8b) 

(A "IBm) = (A "IBm-I)Bm + (A "-IIBm)A m+ 1 , 

(8c) 

where the A" and Bm are the matrices defined in (4). 
The definitions (8c) implies that the elements of 

(A "IB m) given in terms of those of A and B contain always 
an n-fold product of elements of A and an rn-fold product of 
those of B. 

This justifies calling the definition (8) a kind of general
ized power. In particular we have (A "IB 0) = A" and 
(A °IB m) = B lB2B 3,,·Bm. 

Now it is straightforward to verify that 

(M"lt,L = (A"+ I-L IB L - I ), (9) 

and after inserting (9) into (7) we get 

Xl(t) = i t~"±l (A"+l-LIBL-I)XL(O). (10) 
"~o n. L ~ I 

The expression (10), which was derived only with the 
help of the Carleman method, constitutes also the Taylor 
series solution of (1), which can be directly verified by using 
the definition (8) to evalutate the nth time derivative of x in 
(1). In the next subsection we illustrate the use of the matrices 
defined in (8) to verify a similar result for the case of the first 
variational system (2). 
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B. The solution of the variational equation system 

Now we will show the solution of(2) may be given with 
the help of the Carleman embedding matrix as 

00 M aXL(O) 
ox(t;xo,oxo) = I (e ')I.L -- oxo · (11) 

L~ I ax(O) 

In order to prove Eq. (11) it is convenient to write (2) in 
terms of Kronecker operations to get 

d 
- ox = Aox + B (x ® ox + ox ® x) . 
dt 

(12) 

Further, we define the following N L X N matrices Y L' 

L;;>1: 

YL =X®YL _ I +I®XIL-IJ, L=2,3,.··, 
(13) 

Yl=I. 

The YL are very important for our proof, since it can be 
shown that they satisfy the relation 

(14) 

We can also use the YL to bring (12) into a more compact 
form 

d 
-Ox = (A + BY2)ox . 
dt 

(15) 

The solution of (15) written with the aid of the Taylor 
series is 

00 t" d" I ox(t) = I --Ox . 
"~o n! dt n ,= 0 

Using the bracket operation defined in (8) and YL , we will 
show that 

d n I n + 1 -Ox = I (An+I-LIBL-I) YL(O)OXO ' (16) 
dt n t~O L = I 

We proceed by induction over n. For n = 1, (16) is evident, 
for it reduces to (15). If we assume (16) to be valid for n - 1, 
we get 

£ox = i (A n-L IB L - l ) ~ (YL ox). (17) 
dt" L~I ~ 

In order to go further we need identity (18), which can be 
easily derived with some algebraic manipUlations with the 
help of Kronecker operations and of Eq. (15), 

~ (YL ox) = (AL YL + BL YL+ tlox . (18) 
dt 

After inserting (18) into (17) we arrive at 

" I (A"-LIB L - I) [AL YL +BL YL+d ox,(19) 
L~l 

and using the definition of the bracket operation it follows 
that 

£ Ox = i [(A n + 1 - L IB L - 1) 
dt n L~ 1 

_(An+I-LIBL-2)BL_I] YLox 

+ i (A "-L IBL-I)BL YL+ lOX. (20) 
L~l 
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We now observe that all the terms in the second and 
third series cancel each other with exception of 

- (AnIB-I)Bo YI =0 

and 

(AOIBn-I)Bn Yn+ 1 = (AOIBn) Yn+ l • 

Then Eq. (16) follows immediately. 
The solution of (12) given by the Taylor series is thus 

ox(t;xo,oxo) 

= f nil t: (A n+ I-L IB L - I ) YdO)oxo , (21) 
n ~o L ~ I n. 

which reduces to (11) if we use (9) and (14). 
The Carleman method shows very clearly the relation 

between the solutions of (1) and (2). This fact has not only a 
formal relevance, but also for practical purposes it enables 
the development of a numerical procedure furnishing the 
solutions of both equations which are required for the eva
luation of the Lyapunov exponents. 

III. L YAPUNOV EXPONENTS 

Let us now introduce the notation which is most used 
when one is concerned with the problem of defining Lya
punovexponents. Let us write the solution of(3) as 

x(t) = T'xo, X o = x(t = 0) , (22) 

where the map T', which describes the evolution of any 
point in the phase space, is the flow induced by the vector 
field F(x). Let DT'xo be the matrix of partial derivatives 

J(T'xot 
(DT'xo)ij =. (23) 

J(xot 

The map DT,xo may be so interpreted: two trajectories start
ing at x and x + ox, where ox is a small vector, will differ by 
DT'xoDx at a time t. HenceDT' entails the same information 
as the solution of(2), and if knowledge of the explicit form of 
T' is not possible, DT' is formed by collecting the N column 
eigenvectors of (2). The rhs of (2) is time dependent through 
x(t) and by the above quoted method one can only give an 

approximation for DT' which is valid only for short time 
intervals. On the other hand, the Carleman method enables 
the evaluation of DT' by direct differentiation of T' [identi
fied with the time-evolution operator in (7)] as has become 
clear from the last section. 

The concept of Lyapunov exponents of the dynamical 
system (1) may be introduced in different ways.2.3.8.9 A very 
illustrative one is to say that the point X o of the phase space 
has Lyapunov exponents AI <A2 ... <AN if there exist sub
spaces E Ie E2 C ... C EN of our vector space with the fol
lowing properties: 

E
j 

= {oxllim J.. ln [ IIDT'xoox II ]<A
j

} , (24a) 
h<x> t Iloxll 

dim Ej = j , (24b) 

lim J.. ln [ IIDT'xoDx II] = A.. 
h<x> t Ilox II J 

if oxEEj but oxrUij _ 1 • (24c) 
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Definition (24) becomes easy to visualize if we consider 
a linear autonomous system with real eigenvalues. In such a 
case the Lyapunov exponents Aj coincide with the eigenval
ues of the system. The subspace Ej is the set of all vectors 
which are written as linear combinations of the eigenvectors 
corresponding to the j smallest eigenvalues of the system. 

The largest eigenvalue Aj of Ej is projected out by (24c). 
Two trajectories differing by oxEEj will converge or diverge 
according to the negative or positive sign of Aj • Since an 
arbitrary vector ox will almost always belong to EN' the AN 
is the exponent which really decides about the diverging 
character of the trajectories. Moreover, it is easier to evalu
ate than any other Aj • 

The question concerning the existence of such expo
nents has been answered by Oseledec. 1O The convergence of 
the limits in (24) is assured for almost all x o, provided aT' 
invariant measureJ.l exists. The concrete evaluation of Lya
punov exponents has also been investigated, e.g., in refer
ences.2.3 Our method presented in Sec. IV goes along the line 
of some of the ideas of the quoted works. We make use of the 
Carleman method, which besides simplifying the evaluation 
of the DT', offers the possibility of easily increasing the accu
racy of the numerical work. 

IV. APPROXIMATE SCHEME AND DISCUSSION 

The major difficulty we are faced with while working 
with the Carleman embedding lies in the exact determina
tion of the time evolution operator eM' which, as has become 
clear from the previous discussion, is equivalent to summing 
up the Taylor series for the trajectory x(t ). However, we can 
use the Carleman method as a starting point for approxima
tive schemes which are useful in connection with computing 
facilities. In what follows we will take the Lorenz model 1 1 

x = a(y -x), 

y= -y+rx-xz, 

Z= -bz+xy 

(25) 

as an example and evaluate its largest Lyapunov exponent 
A3• This model belongs. to the class of systems described by 
(1), and has been chosen as testing object because some re
sults on its Lyapunov exponents have been published, which 
will be used for comparison with ours.3 In (25), (7, r, and bare 
constant parameters, whilex,y, andzdenote the variablesy;, 
i = 1,2,3. 

We consider the Carleman solution (10) for the Lorenz 
model. Our approximation scheme starts by cutting off M to 
get M s ' which contains only the first s + 1 diagonal and the s 
upper-diagonal blocks. Then the approximate time-evolu

tion operator eM" (determined, e.g., by numerical methods), 
applied to the cut off vector formed by the first s + 1 block 
components XL' leads to an approximate trajectory which 
differs from the exact one by terms of the order t s + I. This 
fact induces us to proceed as usual in the numerical methods 
for differential equations: Ifwe want to integrate Eq. (1) until 
a time T, we divide it in subintervals at length 'T' such that the 
error introduced in the approximate solution is sufficiently 
small, and integrate until Tstep by step. The iteration proce
dure for the trajectory with the help of the matrix Ms is based 
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TABLE I. Values for the largest Lyapunov exponent of the Lorenz model 
with the standard values of the parameters u = 10, b = 8/3, r = 28. s char
acterizes the cutoff matrix M, and gives also the accuracy of integration, 
across a step T, of the order ofr'. We have taken T = 0.01, and the values of 
A are given after a number n of 1.4 X 105 iterations. We list the results for five 
arbitrary trajectories, characterized by their starting points. 

f-~~m~l 

IPo~~ 
~.o'1.0'1.0) I 0.8981 

l--f----

I (-0 

(3. 

( -0 

. ] ,27.0,0. ]) 

0,-2.0,5.0) 

.0,]1.0,12.0) 

.1,27.0,-0.11 

i (\.9084 

I 
i 0.9024 

0.90 ]] 

0.9153 

0.9009 

O.8 Q 69 

, 
0.9045 

0.9093 

0.90R9 

on the following scheme: 
s+, M 

(i)X,(nr)= I (e S\,LXL(nr-r), 
L~' 

0.9023 

0.9059 

0.9017 

0.9032 

0.9046 

(26) 

For the Lyapunov exponents ,1,3' which we will hereaf
ter call A (xo,8x), we have 

, ( r» _ l' 1 1 [II DTnTxo 8xo II] 
/L xo,ux - 1m - n 

n~oo nr II 8x II 
1
. 1 

= 1m- (27) 
n~oo nr 

In[ IIDTT(xn - ,)Drr(xn - 2) ... DTT(xo)8XII] 

X 118x II ' 
where we have used the properties 

DTIr+ '1lx = DTT(T'1x)DTTX 

and 
xn = x(nr). (28) 

Equation (28) follows immediately from (11) in the exact 
summation and is valid also within our approximation 
scheme if r is small and s large. Writing DTT(xn _ ,)8xn _ , 
= 8xn IIDTT(xn _ \ )8xn _ , II, 8xo = 8x, we get from (27), 

,1, (xo,8x) = lim _I_In [yf IIDTT(xk)8xk II ] 
Hoo nr k~O 118xkll 

. 1 n~' IIDTT(xk )8Xk II 
=hm-Lln . 

n~oo nr k ~ 0 118xk II 
(29) 

i 

I 
I 

I 
i 

,1, (xo,8x) is then evaluated within our scheme with the help of 
the expressions (26) and (29). In each step we evaluate the 
X\(nr) and the DTT(xn _ \ )8xn _ \, besides the XL (nr), 8xn, 
and DT T(X n ) which are necessary to go further with the itera
tive procedure. 

We present some of our results for the Lorenz model 
obtained with the help of the above described method in 
Tables I and II. Those in Table II may be compared with the 
calculations of Shimada, 3 who has obtained the same value 
for,1, as ours. The results in the Table I, where values of,1, for 
different start points and increasing size of the cut off matrix 
Ms are presented, show a rather good convergence and sup
port the suggestion that, for the Lorenz model, ,1, should not 
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TABLE II. Results for the Lyapunov exponent of the Lorenz model with 
the Shimada values for the parameters u = 16, b = 4, r = 40. Here we have 
also T = 0.01 and n = 1.4 X 105. The starting point of the trajectory used in 
the evaluation of A is (1.0, 1.0, 1.0); s has the same meaning as in the Table I. 

I \ I ].3704 1 1. 3620 1. ~37n7 

depend upon the starting point. 
We see two major practical advantages in our approxi

mation scheme. In evaluating the Lyapunov exponents we 
just have to work with one time-evolution operator, which 
takes into account both the trajectory and its variation. This 
makes the separate integration of the Eqs. (1) and (2) unnec
essary, requires just one basic time intervalr within the pro
cedure, ensures equal accuracy for the evaluated time devel
opment of x and 8x, and reduces the sources of possible 
rounding off errors. 

The second interesting point refers to the possibility of 
easily increasing the accuracy of the procedure without any 
further difficult than increasing the size of the cut off matrix 
Ms. This remains in contrast with the normally used Runge
Kutta methods: despite their major advantage of requiring 
only the knowledge of the first time derivative of the varia
bles, they become increasingly complicated if we want to get 
higher accuracy, and new formulae must be derived for each 
new case. 

Concluding, we point out that the Carleman embed
ding has provided a useful method for evaluating Lyapunov 
exponents of a large class of systems. It is based on a rigorous 
analytic result and on an iterative numerical procedure to 
avoid the problem of the impossibility of determining the 
exact time-evolution operator. Whereas the solution oft 1) by 
means of the Carleman embedding has already been ana
lyzed, an investigation of the interdependency between the 
first variational equation and the Carleman method was 
needed. 

Moreover, the evaluation of Lyapunov exponents ena
bles us to test the viability of iterating the Carleman method 
itself, for Lyapunov exponents are quantities which may be 
used for comparision between our results and others. On the 
other hand, comparing individual trajectories of systems 
with sensitive dependence on the initial point, as that of Lor
enz, which were obtained by two different numerical meth
ods, makes no sense at all. 

ACKNOWLEDGMENT 

The author thanks Professor A. Rauh for helpful dis
cussions and suggestions. 

IT. Carleman, Acta Mathematica 59,63 (1932). 
20. Benettin, L. Oalgani, and J. M. Streleyn, Phys. Rev. A 14, 2338 (1976). 
31. Shimada and T. Nagashima, Prog. Theor. Phys. 61,1605 (1979). 
4W. H. Steeb and F. Wilhelm, J. Math. Anal. Appl. 77, 601 (1980). 
5R. F. S. Andrade and A. Rauh, Phys. Lett. A 82,276 (1980). 
'L. Brenig and V. Fairen, J. Math. Phys. 22, 649 (1981). 

R. F. S. Andrade 2274 



                                                                                                                                    

7J. Schriiter, "Some Comments on the Carleman Linearization Proce
dure," Preprint-AG Theoretische Physik, Universitat Paderbom, Pader
born, West Germany. 

'Y. Y. Nemytskii and Y. Y. Stepanov, Qualitative Theory of Differential 
EquationsjPrinceton U. P., Princeton, NJ, 1960). 

2275 J. Math. Phys., Vol. 23, No. 12, December 1982 

90. E. Lanford, "Strange Attractors and Turbulence," in Hydrodynamic 
Instabilities and Transition to Turbulence, edited by H. L. Swinney and J. 
P. Gollub (Springer, Berlin, 1981). 

lOY. I. Oseledec, Trans. Moscow Math. Soc. 22, 649 (1968). 
liE. Lorenz, J. Atmos. Sci. 20,130 (1963). 

R. F. S. Andrade 2275 



                                                                                                                                    

Fractional approximations for linear first-order differential equations with 
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A method is described to obtain fractional approximations for linear first-order differential equations with 
polynomial coefficients. This approximation can give good accuracy in a large region of the complex 
variable plane that may include all of the real axis. The parameters of the approximation are solutions of 
algebraic equations obtained through the coefficients of the higher and lower powers of the variable after 
the substitution of the fractional approximation in the differential equation. The method is more general 
than the asymptotical Pade method, and it is not required to determine the power series or asymptotical 
expansion. A simple approximation for the exponential integral is found, which gives three exact digits for 
most of the real values of the variable. Approximations of higher accuracy than those of other authors are 
also obtained. 

PACS numbers: 02.30.Hq, 02.60.Gf 

I. INTRODUCTION 

A main problem in physics is how to find approxima
tions to functions defined by differential equations when no 
explicit solutions can be found. The usual way is to find ei
ther power series, which are usually valid for only small val
ues of the variable, or asymptotical expansions, which are 
convenient for large values. 1 However in many problems in 
physics we have to compute the function in intermediate 
regions, in which either both approximations are not valid or 
too many terms of the power series need to be used in order 
to get the necessary accuracy. 

For a finite interval we can find the most efficient polyn
omial approximation by means of orthogonal polynomials 
(Chebyshev or Jacobi).2-4 The r-method gives a procedure 
where the parameters of the polynomial approximation are 
obtained by equating like powers of the variable in the differ
ential equation. Since the number of equations are higher 
than unknowns they use the parameter r related to the Ja
cobi or Chebyshev polynomials in order to get a system of 
compatible equations. This procedure leads to fractional ap
proximations by a transformation of the variable or by the 
Pade procedure. On other hand, we have published recently 
an extension of Pade method5

•
6 where both the power series 

and asymptotical expansions are used to give fractional ap
proximations. These can give the proper accuracy to the 
function in extensive regions of the complex plane of the 
variable. Those regions can include the whole real axis. As 
an extension of our method we show in this paper how to find 
fractional approximations to functions which are defined by 
linear first order differential equations with polynomial coef
ficients. In this new method we do not have to determine 
either the power series, or the asymptotical expansions of the 
function. It is well known that the solution ofthe above dif
ferential equations can always be obtained in a form which 
involves two quadratures. 1.7 However those integrals can 

not usually be performed and the use of rational approxima
tions can be convenient. 

In our method the unknown function is substituted in 
the differential equation by the quotient of two polynomial 
functions of unknown coefficients. In this way a set of alge
braic equations for the coefficients can be found. However 
the number of equations is in general higher than the un
knowns. Ifwe use only the lower powers of the variable as in 
the power series method, the result will be equivalent to find
ing the Pade approximation to the exact function, which is 
usually convenient for small values of the variable. 

As a different procedure we could use the equations 
derived by equating to zero the coefficients of the higher 
powers in about the same number as the lower powers, there
fore neglecting the algebraic equations coming from inter
mediate powers of the variable. This is similar to using the 
asymptotical expansion together with the power series as in 
the asymptotical Pade method. 5

•
6 Now the rational approxi

mation will be valid for small and large values of the varia
bles as in the plasma dispersion function case. On the other 
hand, the degree of numerator and denominator polynomi
als can not be chosen arbitrarily as in the usual Pade method 
and there is a compatibility equation for the degrees of both 
polynomials. 

In this paper we consider only the first order differential 
equations; further extension to higher order differential 
equations will be dealt with elsewhere. 

In our procedure, the parameters of the fractional ap
proximation are determined directly instead of going first 
through a polynomial approximation as in the r-method. 
For this reason, the fractional approximation is more fitted 
to the differential equation and not only the coefficients, but 
also the degrees of the polynomials numerator and denomi
nator are dependent on the differential equation. On the oth
er hand, since our fractional approximation behaves as the 
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function at the infinite, this is suitable to be used instead of 
the function when the infinite is important, for instance, 
when an integration to infinity is required. Furthermore, our 
method leads to the parameter of the approximation in a 
straight way by simple algebraic equation, without require
ment of intermediate step, Jacobi polynomials or computa
tional techniques. The accuracy of the approximation in
creases by increasing the degree of the polynomials of the 
fraction. 

The method has many applications: A particular case 
would be the function Z (z). 8 An additional example consi
dered here is the exponential integral E I(z).9-11 In this case, 
we have found a very simple rational approximation which 
gives at least three correct digits for almost all real positive 
values of z, except for values near zero. The function E I (z) 
appears very often in physical problems where the Maxwel
lian distribution function is used and sometimes inside a defi
nite integral. 12 For these cases we have also obtained an ap
proximation with an undetermined parameter to be adjusted 
in order to get much better results. An approximation of 
higher degree is also obtained in order to compare with those 
found by other authors. The accuracy of our method for 
intermediate values is similar to that using the r-method and 
computational techniques. However, the behavior at infinity 
is much better and outside the interval of good accuracy, the 
behavior is more like the function. It does not happen, as in 
Hasting's approximation, that for values smaller than one 
the approximation worsens rapidly. In relation with the frac
tional approximations by Bellman-Luke, 11.3 our approxi
mation is in general much better. 

In Sec. II we show the general procedure for rational 
approximations in first-order differential equations. The ex
ponential integral EI(z) is treated in Sec. III. The discussion 
of technical aspects and conclusions are given in Sec. IV. 

II. THEORETICAL TREATMENT 

We consider the general first-order differential equa
tion of the type 

dw ¢ (z) - - <P (z)w = ¢(z), (1) 
dz 

where ¢ (z), <P (z), and ¢(z) are polynomials of degree I, r, s, 
respectively. A solution which involves two quadratures is 
described in many textbooks. 1.7 However, in most cases, an 
explicit solution can not be found. 

For instance, if ¢ (z) = 1, <P (z) = 2z and ¢(z) = - 2, one 
solution is the plasma dispersion function Z (z) which is not 
easily calculable. 8 

In explicit form ¢ (z), <P (z), and ¢(z) are defined as 
Irs 

¢ (z) = L akz\ <P (z) = L bkzk, ¢(z) = L CkZk. (2) 
k=O k=O k=O 

In order to avoid singularities at z = 0 we will consider 
ao # O. If that coefficient were zero, we should consider the 
expansion around a new point, i.e., z + a, where now ao#O. 

2277 

Let us write the solution as a rational function 

w(z) = Pn(z) = ~7=oPjzj 
Qm (z) ~j= oqjz} 
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(3) 

Substituting Eq. (3) in Eq. (1) we obtain 

¢ (z) [ P ~ (z)Qm (z) - Pn (z)Q ;" (z)] 

+ <P (z}Pn (z)Qm (z) = ¢(z) [Qm (z)] 2. (4) 

By grouping the powers of z, the preceding equation is writ
ten as 

(5) 

where conventionally we consider aj' b j' or Ck to be zero 
when i> I,} > r, or k > s, respectively. Similarly pj or qj are 
zero if i> nor}> m, respectively. 

The coefficients in both sides ofEq. (5) should be equal 
in order that the function w(z) verifies the differential equa
tion. However, if we do that, we find in general more equa
tions than unknowns. Therefore a method should be given in 
order to delete some of the equations or as in the r-method 
additional unknowns shall be included. We follow the first 
possibility; then we need only (m + n) equations, although 
the number of unknowns is (m + n + 2). But one of the coef
ficients can be chosen arbitrarily because of the proportion
ality factor, and the initial condition gives also an equation 
for the p's and q's. 

One way of obtaining the correct number of equations is 
by equating the coefficients of the powers of z from zero to 
(m + n - 1). Thus we obtain one of the Pade approxima
tions to the exact function w{z). This approximation will be 
convenient for small values of the variablez, but not for large 
values. However, we have shown in a previous paper, that a 
much better approximation is obtained if we use the asymp
totical expansion together with the power series.5 The most 
convenient choice was to select two more terms of the power 
series than of the asymptotical expansion. In a similar way 
we now have to use the higher powers of z together with the 
lower powers. To keep a complete analogy, we should 
choose for the actual procedure more lower powers than 
higher powers. For instance if (m + n) is odd we can select 
the coefficients of the powers from zero to (m + n - 1 )/2, 
and the remaining equations will be obtained from the high
er powers. 

We look now at the highest power in z. On the left-hand 
side ofEg. (5) we get a number mUltiplied by Pnqm' Since we 
want an equation to define the p's and q's, the only possibility 
is that the highest power appears on the right-hand side too. 
Several cases have to be considered. To simplify, let us as
sume first that r> I - 1. Now the compatibility of the equa
tion requires that 

m + n + r = s + 2m, m = n + r - s, (6) 

thus only n could be chosen arbitrarily. 
Considering now the second case, I - 1 > r, we have 

m + n + 1- 1 = s + 2m, m = n + 1- 1 - s, (7) 

and m is also determined when n is given. However, in this 
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case, there is incompatibility if 1- 1 = s, since m = n causes 
the coefficient of zm + n + 1- 1 to become zero. We will not 
consider this possibility in this paper. 

From our previous discussion it is clear that we can not 
choose m and n arbitrarily as in the usual Pade approxima
tion. Once n is chosen, m is determined by the Eq. (6) or (7). 
Since the procedure for the above two cases is very similar, 
for clarity we will refer hereafter only to the first case. Expli
citly for (r - s) odd, the p's and q's are defined by the initial 
condition and the coefficients of the powers 

(8) 

In this way we obtain from the lower powers one equation 
more than from the higher powers. And since the initial con
dition defines essentially Po, this is equivalent to an equation 
of the lower power. This would be equivalent to using two 
terms more of the power series than of the asymptotical ex
pansion. The case when (r - s) is even can be solved similar
ly. 

Referring now to the plasma dispersion function, the 
differential equation is 

Z'(z) + 2zZ(z) = - 2, 

with the initial condition 

Z (0) = i .fiT. 
For n = 1 

Z(z) = Po + P1Z 
1 + q1z + qzZ2 

(9) 

(10) 

(11) 

We get the proper number of equations for equating the coef
ficients of the power zo, z, and Z4. The values of P and q are 
coincident with those obtained for Z31(S) in Ref. 5. 

For n = 2, the equations are obtained from the coeffi
cients of the powers zo, z, Z2, and z5, Z6. The result is coinci
dent withZ42(z). For n = 3, we consider ZO,Z,Z2,Z3, andz6,z7, 
and Z8, and the result is Z53(Z). As an additional case we will 
consider the exponential integral function, which also shows 
the procedure in the case where there is a singularity at the 
origin. 

III. APPROXIMATIONS FOR THE EXPONENTIAL 
INTEGRAL FUNCTION 

The function 

y(x) = eXE1(x), 

where 

( 12) 

(13) 

is a solution of the confluent hypergeometric function for 
a = b = 1. 1,9 However, for our method, we prefer to consid
er it as a solution of the first-order differential equation 

dy 
--y= 
dx 

(14) 
x 

Now for x = 0, the coefficient ao is zero. If we proceed as in 
the plasma dispersion function case, we will find that our 
system of equations is incompatible. Thus we have to consid-
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er the expansions at a different point. It is preferable not to 
specify the point at the beginning. Thus we denote by a the 
expansion point and we consider the new independent vari
able z defined as 

x =z+a, 

so that 

y(x) = w(z). 

The differential equation is now 

dw 
(z+a)-- (z+a)w = - 1, 

dz 

and in relation with our previous parameters 

1= r = 1, s = 0, m = n + 1. 

(15) 

( 16) 

(17) 

(18) 

Considering the simplest case n = 1, m = 2, the approximat
ed function is 

W1(z) = W(Z) (19) 
for n = 1 

For the highest power in z, we found 

(20) 

and from the independent term and first-order power we get 

w1(z) = [(po + pta) Z)0(1 + q(a) z + pta) Z2)] 
D(a) D(a) D(a) 

(21) 

then 

Yl(X) = poD (a) + p(a)(x - a) , 
D (a) + q(a)(x - a) + p(a)(x - a)2 

where 

pIa) = - 2 + (1 + 3a)po - a2p~, 

q(a) = (1 - a) + ala - 2)po + 2a2po2, 

D(a) = 2a(1 - apo - apo2). 

(22) 

(23) 

The parameter Po is specified by the initial conditions. The 
point a can be chosen arbitrarily, but Po is related to a. For 
instance if we consider a = 1, then 

Po = eE1(l) = 0.596347, (24) 

and 

XE ( ) 0.92465 + x e x ----------=_ 
1 0.36598 + 1.86142x + x 2 

(26) 

This approximation is the simplest approximation ever 
found of EI(x). For x > 0.45, the larger relative error com
pared with the exact function is about 3.10- 3 for x around 
10. 

In Fig. 1 we are plotting in a log-log graph the relative 
error versus x. As a reference we are plotting also the Bell
man approximation of the same degree 

eXE1(x) = [(j +x)l(x +X2)] (Bellman). (27) 
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FIG. I. Relative error of y,(x) = (0.92465 + x) 

'. 

x 

X(0.36598 + t.86l42x + x 2
)-' of this work (plain line) andji(x) 

'. 

100 

= (113 + x)(x + x 2) -, ofR. Bellman (pointed line) with respect to the func
tion eXE,(x). 

There are some typographical errors in the original Bellman 
paper that we have corrected. 13 

Considering now the approximation of the next higher 

degree 
- +- +- 2 

W2(Z) = w(z) = p~ PI~ P~ (28) 
(for n = 2) 1 + q1z + q~ + q3:z3 

From Eq. (4) or (5) we obtain the following algebraic equa
tions: 

(29a) 

power z: 

(Po + peA I - P d + (q Jio + 2q;Po - 2p2)a = 2q 1> (29b) 

power Z2: (qJio + PI + 2q;po - 2p2) 

+ (q2Po + qJiI + P2 + 3q~0 + q;PI - qJi2)a 

= 2q2 + q12, (29c) 

power r: (q~1 + q;P2 + q?fi2) + (q~2)a = 2q2q3' (29d) 

power Z6: q?fi2 = q32. (2ge) 

By choosing a = 3, we obtain 

Po = e3EI(3) = 0.2620837, 

PI = 0.1216373, 

P2 = q3 = 0.1319082.10- 1
, 

ql = 0.7360306, 

q2 = 0.1744005, 

e"E x _ 1.204763 + 3.221360x + x2 

I( ) - 0.406386 + 3.470576x + 4.221354x2 + x 3 

The Bellman approximation of the same degree is 

I + 2x+X2 
eXEI(x) = T6 • 

~ + 3x2 
+X3 
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FIG. 2. Relative error of: Y2(X) = (1.204763 + 3.221360x + x 2) 
X (0.406386 + 3.470576x + 4.221354x2 + .i')-' of this work (plain line); 
y(x) = (0.250621 + 2.334733x + x 2

) X(1.68l534x + 3.330657x2 + x 3
)-' 

ofC. Hastings, Jr. (segmented line), andy(x) = (1116 + 2x + x 2
) 

X((9/8)x+ 3x2 + x 3)-'ofR. Bellman (pointed line), with respect to the 
function eXE,(x). 

In Fig. 2 we plot the relative error of our approximation (M
ZAp.) (plain line), the Hasting one (HAp.) ofthe same de
gree (segmented line) and the Bellman one (B.Ap.) (pointed 
line). For large x our approximation is better than Bellman's 
and much better than Hasting's. For values around one, or 
for intermediate values, our approximation and H.Ap. are 
similar (a little better H.Ap.) and both are much better than 
B.Ap. For values less than x = 1, our approximation is much 
better than others (except inside a narrow interval of 
0.03 <x < 0.08 in B.Ap.). The exact function e"EI(x) be
comes infinite when x goes to zero. Both HAp. and B.Ap. do 
the same and our approximation becomes finite. However 
HAp. and B.Ap. go to infinity much faster than eXEI(x) and 
the error is immediately very large. 

An additional advantage of our approximation in rela
tion to H.Ap. is that all the parameters of our approxima
tions can be obtained in a direct way without using any com
puter technique. 

Returning to the simple general approximation given 
by Eq. (22), we point out that it can be· useful in cases of 
definite integrals involving the exponential integral. The 
point a can be chosen now as coincident or near the lower 
limit of the integral. In this way the accuracy of the definite 
integral will be improved without using higher order polyno
mials. 

In relation to Eq. (26) and Eq. (31), we can get an idea of 
the region where the approximation will fail by looking for 
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the poles of the denominator. The zeros of the polynomial 
(0.36598 + 1.86l42x + x 2

) in Eq. (26) are on the negative 
real axis, therefore this approximation will be convenient on 
the right-hand side of the complex plane. This is in agree
ment with the behavior we know of E1(x), that goes logarith
mically to 00, when x goes to zero. Clearly, the approxima
tion fails around the origin. Similarly for Eq. (31). The polyn
omial (0.406386 + 3.470576x + 4.22l354x2 + x 3

) has three 
real roots on the negative axis, and the approximation will be 
convenient on the right hand side of the complex plane. 

IV. CONCLUSIONS 

We have described a method of obtaining fractional ap
proximations for the solutions of first order differential 
equations with polynomial coefficients. In this method the 
degree of the numerator polynomial Pn (z) can be specified 
arbitrarily, but the degree of Qm (z) is determined once n is 
fixed. For higher values of n the accuracy of the approxima
tion is improved. 

The present method is a generalization of the asymp
totical Pade method already published and the results for the 
plasma dispersion function are coincident. However, here 
we do not have to know a priori the power series and asymp
totical expansions. In this method one of the parameters of 
the approximation must be determined by the initial condi
tions. The expansion point must be chosen to be a regular 
point. 

We have applied the method to obtain the simplest frac
tional approximations for the exponential integrals, first in a 
general way without specifying the expansion point, and lat
er in a particular case when a = 1. In this case, the accuracy 
for most of the values is about three digits. In any case much 
better results can be obtained by specifying the value of the 
expansion point in relation to the problem to be solved. We 
have also obtained a second approximation one degree high
er around the point a = 3, which is much better than the 
approximations of the same degree published in the litera
ture. 

ACKNOWLEDGMENTS 

Part of this paper was done when one of the authors (P. 
Martin) was on his sabbatical, first at the University of Cali
fornia, Los Angeles, and later at Imperial College, London, 
and he is greatly indebted to Professor Burton D. Fried 
(UCLA) and Professor Malcolm G. Haines (I.C.) for their 
support during this period. The authors also wish to thank 
Mrs. Diana Beydoun (I.e.) for typing and improving the 

2280 J. Math. Phys., Vol. 23, No. 12, December 1982 

English of the first manuscript. Research funded in part by 
Venezuelan Agencia CONICIT, Proj. No. 31-26-51-0606. 

'P. M. Morse and H. Feshback, Methods o/Theoretical Physics (McGraw· 
Hill, New York, 1953). 

2c. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1955). 
3y' L. Luke, The Special Functions and Their Approximations (Academic, 
New York, 1969), Vol. II. 

4K. Wright, BIT 10, 217 (1970). 
sp. Martin, G. Donoso, and J. Zamudi<r-Cristi, J. Math. Phys. 21, 280 
(1980). 

"P. Martin, J. Zamudi<r-Cristi, and G. Donoso, J. Math. Phys. 21, 1332 
(1980). 

7E. L. Ince, Ordinary Differential Equations (Dover, London, 1956). 
MB. D. Fried and S. Conte, The Plasma Dispersion Function (Academic, 
New York, 1961). 

OM. Abramovith and I. A. Stegun, Handbook 0/ Mathematical Functions 
(Dover, New York, 1972). 

IOC. Hastings, Jr., Approximations/or Digital Computers (Princeton U. P., 
Princeton, NJ, 1955). 

"R. E. Bellman, J. Math. Phys. 30, 226 (1952). 
I2D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978), pp. 40-

41. 
"Corrections to Ref. 11. 

Equation 1(7) (a) should read 
n 

Qn(y) = 1 + I a,y~', 
;= I 

Equation 1(7) (b) should read 

2 - n - k (n + 1 _ k) n - k ((n + W _ 12) 
ak =n! [In + l_k)!]2 IUD 2/+ I ,k<n. 

Equation 1(7) (c) should read 

Rn(y)=Pn(y) + ± a;Y-;Pn_;(y)-an+,y-n~'. 
;= 1 

Equation 2(7). The denominator in the rhs should read 

ynIQn(y)I· 

Equation 2(6). The term - aJln ~ 'I(X) should read + a,tn -Ii(x). 

Equation 3(4). In the Ihs the denominator should read 22n + ;. 

Equation 3(7), 3(11), and 3(12) should read: 

( _I)n-k+'a (k-I)! n! Tiki (-I) (7) n - k + , = __ n + , , 

2k 2n+' k! 

k~' (( + 1)2 k 2
) 

(\1) T~~ d - I) = (-1)'+nJJD n 2k + ~ ,k = 1,2..., 

= ( - I)" + " k = O. 

n!2- n- k (n + 1- k) n-k ((n + 1)2 - [2) 
(12)ak = II ' k#n+l, 

[(n+l_k)!]2 I~D 2/+1 

k=n+ 1. 
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It is shown that any first integral oftypePlJc)-a polynomial of degree 2 in x-ofthe differential 
equation x = Vx can be obtained from a pointlike gauge symmetry of the action A L associated to 
L =!X2 + V(t,x). The same result holds for any first integral of kind Pn(x) when dynamical 
symmetries of A L polynomials in x are allowed. The neccessary and sufficient conditions that 
V (t,x) must satisfy in order that x = Vx possesses a first integral of type Pn (x) have been obtained. 
These conditions reduce (when n = 2) to a condition obtained by Leach. The computational 
advantages and difficulties which appear in order to obtain first integrals for type Pn (x) are also 
briefly discussed. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

This work has been motivated by a recent paper I in 
which Leach studied, among other things, the pointlike 
gauge symmetries of a Lagrangian function L of the form 

L = !X2 + V(t,x). (1) 

The author was led to a first-order partial differential equa
tion for V(t,x) which is nothing more than the necessary and 
sufilcient condition in order that the Lagrangian function of 
(1) admits a one-parameter family ofpointlike gauge symme
tries. 

It is shown here (Sec. II) that the partial differential 
equation obtained in Ref. 1 is precisely the condition under 
which the second-order differential equation associated with 
(1), via the Euler-Lagrange equations, admits a first-integral 
quadratic in X. This is important because it shows that the 
origin of this partial differential equation is purely algebraic, 
that is, the equation arises in any method leading to first 
integrals of the equation 

(2) 

the first integrals being polynomials of degree 2 in x, Now, 
since the method followed in Ref. 1 leads, via, the Noether 
theorem, to first integrals in X, then V(t,x) must necessarily 
satisfy the above mentioned condition. 

It is also shown in Sec. IV that for the Lagrangians of 
the kind (1) any first integral of the form Pn(x) (Pn being a 
polynomial in x of degree n) can be obtained in an infinite 
number of ways by considering dynamical gauge symmetries 
of AL Is of degree n in X. In order to achieve this no more 
restrictions on V(t,x) [in addition to those required in order 
that Eq. (2) admits a first integral of the kind Pn (x)) are re
quired. When n = 1 and n = 2 one can always achieve that 
the dynamical symmetries required be purely geometrical 
(i.e., pointlike), as those considered in Ref. 1. 

The conclusion is that only when one is exclusively in-

al Postal address: F. Gonzalez·Gascon. c/o Serrano 119. Madrid 6. Spain. 

terested in obtaining the first integrals of degree 1 or 2 in x, 
the exclusion of the dynamical symmetries [in our case the 
dynamical symmetires of the action integral A L associated 
with (1)] is justified. 

Finally, the advantages of the direct method of Sec. II 
over the method based on the computation of the dynamical 
symmetries of A Lis' in order to obtain first integrals of type 
P n (X), are discussed in Sec. V. 

II. CONDITIONS IN ORDER THAT it = Vx(t,x) ADMITS A 
FIRST INTEGRAL Pn(X) 

Considering the vector field X given by 

X=I~+x~+V~ 
at ax ,x ax' 

associated with Eq. (2), the condition under which Pn(x) be 
an integral of Eq. (2) can be written as 

X(Pn (x)) = 0, 

and since Pn (x) can be written in the form 
n 

Pn(x) = I Ai(t,x).Xi, 
;=0 

condition (3) leads to the (n + 2) equations 

AOt +A1·Vx = 0, 

Ait+Ai_lx+(i+l)Ai+IVx=O i=I, ... ,n-l, 

Ant + An _ I x = 0, 

Anx = O. 

(3) 

(4) 

Now, from the last (n + 1) equations of (4) one obtains, by 
successive integrations with respect to the variable x, the 
values of An (t,x), ... ,Ao(t,x). Since each of these integrations 
introduces an arbitrary function of t, our solutions An , ... ,Ao 
depend on (n + 1) arbitrary functions of t. Finally, by substi
tutingAo(t,x) and A I (t,x) in the first of equations (4) we obtain 
the single equation that V (t,x) must satisfy in order that Pn (x) 
be a nonbanal first integral of (2). For future reference we 
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shall write this equation in the form 

Aol+AI·V"I, =0, (5) 

where the symbol Is indicates that Ao(t,x) and A l(t,X) have 
been replaced by their values obtained via the procedure in
dicated above. For instance, if n = 1 the above procedure 
leads to 

A I = a(t) Ao = - a(t)x +.8 (t), 

a and.8 being arbitrary functions of t. Therefore the condi
tion that V(t,x) must satisfy is 

- ax + P + v" = 0, (6) 

that is, V(t,x) must have the form 

V (t,x) = aft )x2 + b (t )x + cIt ). 

By the way, the generalization of this result to systems of 
differential equations of the form 

x = VV(t,x), x = (xl, ... ,xm ) 

offers no difficulty, and one obtains the condition 

- a(t )·x + P (t) + aft )·v V = 0, 

while the first integral PI(i) = Ao(t,x) + AI(t,x)·i, is given by 

Ao = - a·x + .8(t), 

AI =a(t), 

a(t) and (3(t ) being arbitrary functions of t. 
When n = 2 one obtains from Eqs. (4), 

A2 = - !a(t) AI = ~ax +.8(t), 

Ao = - !ax2 - p.x + a·V - y(t), 

with a,.8, and y arbitrary functions of t. Therefore the condi
tion to be satisfied by V(t,x) is 

a· V, + (~ax + .8)Vx + a V = !ax2 + fix + y. (7) 

Finally, when n = 3 one obtains 

A3 = -A3(t), 

A2 = A3X - a!2, 

AI = - 03X2 + !ax + 3A3V +.8(t), 

Ao = !A3X3 - !ax2 - px + V·a 

- f(3A 3V+U 3XVX +3A3V,)dx-y(t), (8) 

where A3, a,.8 and yare arbitrary functions of t. Therefore, 
the condition on V(t,x) is given by 

!A;'X3 - Aa.x2 -fix + V,·a + Va 

- f(3~(A3 V) + i.(2.A3·X' V )) dx 
at 2 at x 

-y+ Vx(-03·X2+~ax+3A3V+.8)=0, 
that is, 

a [ .... x 3 ax2 .. . 
- A3-----RX+ V·a+ V·a ax 6 4 p. I 

- Y + Vx( - A3x 2 + a x + 3A3V +.8)] 
2 2 

a2 a 
= 3-

a 
2(A3'V) + 2-(X'A3'Vx ), 

t at 
(9) 
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which is now a nonlinear partial differential equation of sec
ond order (in V), while (7) was affine in Vand its first-order 
derivatives. If V(t,x) satisfied this equation (for convenient 
values of A3, a,.8, and y) then, A O, ... ,A3 are immediately ob
tained [via (8)] by quadratures. 

It is also clear that calling Vi the set formed by the 
functions V (t,x) such that (2) admits a first integral of the type 
Pi (x), one can obviously write Vj C Vj + I' even if the practi
cal computation of all the functions V(t,x) belonging to the 
sets Vj is quite difficult due to the complicated structure of 
Eq. (5) defining Vi (particularly when i>3). 

It would be theoretically nice to prove (or to construct a 
concrete counterexample disproving the proposition that 
follows) that any equation (2) has a first integral of type Pn (x) 
(for certain n sufficiently high), for if this were the case the 
above procedure could be employed in order to obtain this 
first integral Pn(x), possibly by quadratures. But unfortuna
tely even if this proposition were true the practical computa
tion of Pn (x) presents difficulties due to the fact that the com
putation of the (n + 1) arbitrary functions on which Ao,''',A n 

depends, depend in turn on the computation of solutions of 
differential equations which are often much more complicat
ed than the original equation (2) we started with. This fact 
limits quite strongly the practical usefulness of the proce
dure. 

Let us give an example illustrating this point. Consider 
the differential equation 

x=t·x (10) 

corresponding to the Lagrangian L = ~X2 + ~t'X2. 
Since V(t,x) has a quadratic structure inx, this differen

tial equation certainly possesses a first integral of type PI (x). 
In fact V(t,x) = It.x2 certainly satisfies Eq. (6) since in this 
case this equation reduces to 

- a.x + P + a·t·x = 0, 

which can certainly be satisfied by taking.8 (t) = c (a con
stant) and aft ) any nontrivial solution of equation 

-a +at=O. (11) 
But this last equation is of the same kind of difficulty as 

the original equation x = t·x we started with. Nevertheless, 
out of a particular solution of Eq. (11) one obtains (by the 
above procedure) a first integral of the same equation, and 
this is certainly an advantage. 

A similar circumstance appears for Eq. (10) when we try 
to check out whether or not a first integral of the kind P2(X) 
can be found. In this case condition (7), for V(t,x) given by 

V(t,x) = ~t'X2, 

leads to the equation 
. . 2 

a·x2/2 + (!a.x + .8 )t·x + a·t·x /2 

= !ax2 + fix + y, 

which can only be satisfied if a, .8, and y satisfy the system 

!a + t.a ~ !a,} 
.8·t =.8, 
y=O. 

This system has (theoretically) infinite local solutions. The 
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practical computation of them is a much more serious issue. 
For instance if we desire a first integral of degree in x not 
smaller than 2, then a nontrivial solution of the equation 

la-clt-~a=O 
is necessary. Note that this equation is considerably more 
complicated than the original equation x = tx under study. 

These kinds of difficulties have to be taken into account 
and show that one cannot be too optimistic about the practi
cal usefulness of the method. 2 

III. SYMMETRIES OF THE ACTION AND ASSOCIATED 
FIRST INTEGRALS 

In this section we summarize the essential points lead
ing to the Noether theorem3 and its generalization. 

Let L (t,x,x) be a nondegenerate Lagrangian (Le., the 
matrix a 2L laxjaxj is regular). The action integral 
AL = J:~L dt is said to be gauge variant with respect to a 
transformation T(transforming a path (t,x(t)) into another 
path Ttt,x(t)) = (t,x(t)) if a function AT(t,x,x) can be found 
such that the following relation holds: 

j't L dtl(,i •. » - 1"L dtl("x,,» = AT(Pt) - AT(po)' 
J,~ ~ 

Po = (to,x(to),x(to)), t ~ = T(to), 

Pt = (tt,x(tt),x(tJ!), tT = T(tt), (12) 

for any path (t,x(t)). 
Consider now the one-parameter family of "dynamical 

transformations,,4 : 

i = t + €¢ (t,x,x), 

i = x + €tJI(t,x,x), (13) 

where the term "dynamical" is employed because they do 
depend on X. 

For this particular kind of transformation a condition 
to be satisfied in order that A L be gauge variant under the 
family (13) is that a certain function AE(t,x,x) = €A + 0 (e) 
can be found such that the following relation holds5 

aL aL aL " 
~ + ax 1/1 + ax a + £.¢ = A, (14) 

where a is defined by 

a = * -¢.x, 
and the dots over ¢, 1/1, and A indicate the total derivative 
with respect to t. 

When condition (12) only holds for the solutionsS of the 
Euler-Lagrange equations associated with L, condition (14) 
reduces to 

where the symbol Is indicates that x has to be replaced by its 
value obtained out of the Euler-Lagrange equations. 

When (15) is satisfied we shall say that (13) is a "symme
try of AL Is ," and under these circumstances it can be assert
ed that the function / (t,x,x) defined by 
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def aL 
/ = ax 1/1 -H.¢ -A, 

def aL 
H =-·x-L ax ' 

is a first integral of the Euler-Lagrange equations associated 
with L (t,x,x). 

Moreover, assume that a certain first integral/ (t,x,x) of 
the Euler-Lagrange equations is known. In this case the tri
plet 

( 

def aL ) 
¢,1/I,A = ax 1/1 - H¢ - / 

does satisfy Eq. (15) for any value of ¢ (t,x,x) and 1/I(t,x,x). 
Indeed, for the solutions of the Euler-Lagrange equa

tions one has 

d(aL) _ aL 
dt ax - ax' 
. aL 
H=--, at 

and on the other hand / Is = 0, since / is a first integral of 
them; accordingly one can write 

A Is =!!... (a~) .1/1 + a~ *Is 
dt ax Is ax 
-H.¢ Is -if Is'¢ -j Is 

= aL.1/I + aL ¢Is -H¢ Is + aL '¢' 
ax ax at 

and substituting the value of H we get 

A Is = aL1/I + aLals +£.¢ Is + aL '¢' 
ax ax at 

that is, Eq. (15) is automatically satisfied. Obviously the first 
integral associated with the triplet 

(¢,1/I,A = ~1/1 -H¢ -/) is/(t,x,x). 

IV. APPLICATION TO THE CASE OF L = (1/2))(2 + V(/,x) 

Assume now that Pn (t,x,x) is a first integral of the 
Euler-Lagrange equations associated with L (t,x,x), its de
gree (with respect to x) being equal to n. For instance if 
L = ~2 + V(t,x) then this is certainly possible when V(t,x) 
satisfies condition (5). In this case, and by the conclusions of 
Sec. III, it can be said that this first integral can be obtained 
as a Noether first integral provided that A is permitted to 
have degree (with respect to x) sufficiently high. Further, if 
L (t,x,i) is quadratic in x, H (t,x,i) will also be quadratic in i 
and if ¢ and 1/1 are chosen independently of x then A 
= (aL lax)1/I - H¢ - Pn has a degree equal to max(2,n). 

Therefore, for the case L = ~2 + V(t,x) any first integral 
Pn (x) can be obtained by "gauging" L with a A of degree 
max(2,n). It is important to remark that this result can be 
achieved without any additional restrictions on V (t,x). These 
restrictions appear only because of the requirement that Eq. 
(2) must possess a first integral of type Pn (X). 

Let us show now that for the first integral of the kind 
P2(X), not only ¢ and 1/1 but also A can be chosen to be inde
pendent of x, that is, the triplet (¢,t/I,A ) is purely pointlike, or 
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geometrical. We shall also see that this reduction is no longer 
possible for first integrals of the type Pn (x) when n;;;>3. 

Indeed, since A and P n are defined by 

A = aL .1, - H¢ - P
n

, ax 'I' 

n 

Pn = IAi(t,x).Xi, 
o 

where Land H are given by: 

L = !X2 + V(t,x), 

H = !X2 - V(t,x), 

one immediately obtains (since ¢ and 1/J are free from x) 

Ao = V¢ - Ao, 

A[=¢-A[ 

A2 = -!¢ -A2, 

Ak = - A k ; k;;;>3, 
def 

A = IAi(t,X)Xi. 
i 

(16) 

Now, since the couple (¢ (t,x), 1/J(t,x)) is arbitrary, it is clear 
that A[ and A2 can be made equal to 0, in which case the 
pointIike triplet is given by 

ifJ = - 2A 2(t,x), 

1/J=A[(t,x), 

A = Ao = - 2A2·V - Ao· 

Therefore, any first integral of (2) quadratic in x (or affine in 
x) can be obtained using geometrical triplets (as those consi
dered by Leach in Ref. 1). On the contrary, as Eqs. (16) show, 
for the first integrals of type Pn (x), n;;;>3, the dependence of A 
onx is unavoidable. Therefore, this type of first integral of(2) 
cannot be obtained [via the Lagrangian !X2 + V(t,x)] unless 
the use of triplets depending on x is allowed. 

The degree in x of the triplet (ifJ,1/J,)., ) can be made (when 
n;;;> 3) less than n if ifJ and 1/J are chosen of degree (with respect 
to x) greater than O. For example the reader can check that 
any first integral of type P3(X) of (2) can be obtained, via the 
procedure of Sec. III, [L given by (1)] out of a triplet of the 
kind 

(ifJ (t,x,x),1/J(t,x,x),)., (t,x,x)), 

where ifJ, 1/J, and A are polynomials of degree 1 with respect to 
X. In fact one can even impose that A be identically equal to 0 
(when V#O). 

The above result concerning the first integrals ofEq. (2) 
of type Pn(x), n < 3, is (in general) false for the quadratic and 
affine integrals of the differential equations associated with 
L = !:e + V(t,x), where x = (x[, ... ,xm ), m> 1, since in this 
case A is given by 

A = aL .• f, - H·ifJ - P2(i), ax'!' 
and in order to achieve that A be independent ofi (ifJ and '" 
being functions of t and x only) m + ~m(m + 1) conditions 
are to be satisfied. Since we only dispose of the (m + 1) unde
termined functions ifJ and "', and (m 2 + 3m)/2 > m + 1, 
when m > 1, we conclude that in this case dynamical triplets 
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are a must. 
This negative result does not preclude that for aparticu

lar first integral of the differential equations associated with 
the function L, 

L = !X2 + V(t,x), 

a pointIike triplet leading to it (via "Noether's theorem") can 
be found 

V. FURTHER REMARKS CONCERNING THE 
PRACTICAL DIFFICULTIES IN THE OBTAINMENT OF A 
FIRST INTEGRAL OF TYPE Pn(x) 

According to Sec. II if V(t,x) satisfies condition (5), then 
Eq. (2) will certainly possess a first integral Pn (x) of degree n 
with respect toX. The conditions (6), (7), and (9) which V has 
to satisfy, when n = 1,2,3 have been obtained. Assuming 
that V satisfies condition (5), then, and according to Sec. IV, 
Pn (x) can be obtained via dynamical symmetries of (when 
n;;;>3) and via pointIike symmetries of AL (when n < 3). The 
question arises as to whether or not the method based on the 
dynamical symmetries of A L I, has practical advantages over 
the direct method discussed in Sec. II in order to compute 
Pn (x). Unfortunately the reply to this question is in the nega
tive. In fact the direct method of Sec. II can only be applied 
once we have previously checked that V(t,x) satisfies condi
tion (5), and in order to do this a certain election of the (n + 1) 
functions appearing in Eq. (5) must be produced. Once this 
difficulty of selecting appropriately these functions (assum
ing this to be possible) has been overcome (see the examples 
at the end of Sec. II) then the coefficients Ao, ... ,An defining 
Pn (x) are immediately obtained by quadratures. Now since 
condition (5) has to be always satisfied [independently of the 
method used in order to get the first integral Pn (x) of (2)] it is 
clear that any indirect method (for instance the method 
based on the dynamical symmetries of AL Is) has disadvan
tages over the direct one, for in any case the first calculation 
to be made is to check whether or not a concrete V(t,x) does 
or does not satisfy condition (5). But in the direct method of 
Sec. II it is precisely this computation (and additional qua
dratures) which is the only one necessary in order to compute 
Pn (x), while in other indirect procedures this first step (as 
well as other steps, depending on the particular procedure 
followed) is unavoidable. For instance if the indirect proce
dure consists of the computation of the dynamical symme
tries of ALI, then it is clear from Eqs. (16) [i.e., the neces~ary 
and sufficient conditions in order that Pn (x) can be obtamed 
out of the triplet (ifJ,1/J,)., )] that this indirect procedure serves 
only to define the gauge function A once the functions ifJ and 
1/J have been arbitrarily chosen. Therefore unless we are able 
to use the information contained in the function A (t,x,x) for 
other purposes this indirect procedure does not seem to offer 
computational advantages. 

VI. SOME COMPUTATIONS CONCERNING THE 
DYNAMICAL SYMMETRIES OF ALls 

As has been shown in Sec. IV any first integral of type 
Pn (x) can be obtained out of a triplet ifJ (t,x), 1/J(t,x), A (t,x,x), 
where A is of degree no greater than n. Assume, therefore, 

Gasc6n, Ramos, and Aguirre-Daban 2284 



                                                                                                                                    

that we want to compute ¢J, t/J, and A starting from relation 
(15), that is, the necessary and sufficient condition in order 
that 

x = x + €t/J(t,x), 

t = t + €¢J (t,x) 

be a dynamical symmetry of AL Is L = ~2 + V(t,x). In this 
case and for n = 2, ¢J, t/J, A have to satisfy the equation 

Vt·¢J + Vx.t/J + x(¢ - x~) + (~2 + V)~ 
= Ao + AI·x + AI,V.2 + A2·x

2 + U 2,x,Vx, (17) 

and since ¢J and t/J are free from X, (17) is equivalent to 

Vt·¢J + Vx t/J = AOt + A I' VX , 

t/Jt + VI¢Jx =Aox +A lt +2Vx'A 2, 

t/Jx - ¢Jt + ~¢Jt =,,1,1 x +,,1,21' 

-¢Jx+~¢Jx=A2x' (18) 

Solving the last three equations of this system we obtain 

¢J = - U 2 + a(t ), 

t/J = Al + ~a.x + ,B(t), 
.. 2 . 

,,1,0 = !ax +,Bx - 2.V.A2 + y(t), (19) 

where a(t ),/3 (t ), y(t ), A I (t,x), and A2(t,x) are arbitrary func
tions. 

Substituting (19) into (18) we get the equation 

Vt·a + Vx (~ax +,B) + V·a = la.x2 + p.x + y, (20) 

identical to Eq. (7) [that is to Eq. (17) in Ref. 1] [via the 
substitutions a,,B, y, V(x)_p2,b,c, - V(q)]. 

Now, Eq. (17) of Ref. 1 was obtained using only a point
like function of gauge and Eq. (20) using a function A of 
gauge quadratic in X. It is this coincidence of the restrictions 
imposed on V(t,x) in both cases what led us to suspect: 

(i) that may first integral of type Pix) could be obtained 
using exlusively pointlike triplets; 

(ii) that the origin of condition (7), and in general of 
condition (5), was related directly to Eq. (2), and not to tech
niques arising by introducing pointlike or dynamical sym
metries of a Lagrangian function. 

The reader can check that condition (9) for V, when 
n = 3, can also be obtained by the same indirect procedure 
used in this section either starting from a triplet of the kind 

(¢J (t,x),t/J(t,x).A (t,x,x)), 

where the degree in x of A is equal to 3, or starting with a 
triplet of type 

(¢J (t,x,x),t/J(t,x,x).A (t,x,x)), 

where ¢J, t/J, A are polynomials in x of degree 1. 
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VII. FINAL REMARK 

Starting from the Lagrangian (1) and considering point
like triplets ¢J (t,x), ¢(t,x), A (t,x), Noether's theorem leads to a 
first integral of (2) quadratic in X. Therefore, V(t,x) must sa
tisfy the corresponding relation (7) of Sec. II in order that (2) 
can possess a first integral of this type. Conversely, as was 
shown in Sec. IV, if V(t,x) satisfies this relation then a point
like triplet leading to it (via Noether's theorem) can be found. 
Therefore, condition (7) not only guarantees than L admits a 
nontrival gauge-variant triplet ofpointlike character but, 
what is more important, it guarantees that any first integral 
of the kind P2(X) (and not only a subset of them) can be ob
tained (theoretically at least, in view of the practical difficul
ties signaled at the end of Sec. II) in this way. The same thing 
can be asserted of the first integrals of the kind Pn(x) when 
the pointlike symmetries of A L are substituted by the dyna
mical symmetries of A L IS' Therefore, pointlike symmetries 
of AL are too restrictive in order to obtain first integrals of(2) 
of type Pn(x), n>3. The same thing happens with the first 
integrals of type P ii) of the differential equations associated 
with L = !i2 + V(t,x),x = (xl, ... ,xm),m > 1. 

An interesting problem (of theoretical character) has 
appeared and remains unaddressed: the problem of con
structing a concrete V(t,x) such that Eq. (2) has no integrals 
of type Pn (x), for every natural number n, such that V(t,x) 
does not satisfy Eq. (5) for every value of n. 

Final comment: The contents of Sec. II, and in particu
lar the contribution by H. R. Lewis and P.G. L. Leach of Sec. 
III, seem to be, according to the referee not new. See Nonlin
ear Problems: Present and Future, Los Alamos National La
boratory, Conference, March 2-6, 1981 (North-Holland, 
Amsterdam, 1982). We have not been able to track down this 
reference. 

Ip. Leach, Phys. Lett. A 84,161 (1981). 
2F. G. Gascon, Phys. Lett. A 77, 13 (1980). 
'I. Gel'fand and S. Fomin, Calculus of Variations (Prentice-Hall, Engle
wood Cliffs, N. J., 1968); C. Palmieri and B. Vital, Nuovo Cimento A 66, 
299 (1970) and the numerous references to Noether's theorem contained 
there. See also D. Djukic, Int. J. Non-Linear Mechanics 8, 479 (1973); B. 
Vujanovic, Int. J. Non-Linear Mech. 5, 269 (1970); 13, 185 (1978); D. Dju
kic and A. Strauss, J. Phys. A 13, 431 (1980), on the generalization of 
Noether's theorem when only the invariance of AL IS is assumed. 

'See the book of Gel'fand and Fomin of Ref. 2. See also F. G. GascOn, J. 
Math. Phys. 18, 1763 (1977), where some definitions and examples are 
given concerning transformations of symmetry not necessarily of pointlike 
character. 

'See the papers by Djukiv and Vujanovic quoted in Ref. 3. 
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The inverse scattering problem for one-dimensional nonuniform transmission lines with 
inductanceL (z),capacitanceC(z),seriesresistanceR (z)andshuntconductanceG(z)perunitlength 
(zER) is considered. It is reduced to the inverse scattering problem for the Zakharov-Shabat 
system. It is found that one can construct from the data the following functions of the travel time 
x: 

PACS numbers: 02.30.Jr, 02.30.Bi, 84.40.Mk 

I. INTRODUCTION 

In this paper we consider the inverse scattering problem 
(ISP) for transmission lines extending in a z direction from 
z = - 00 to z = 00, with inductance L (z), capacitance C (z), 
series resistance R (z), and shunt conductance G (z) per unit 
length. We suppose that 

-L (z), C (z), R (z), and G (z) (zER) are sufficiently regular 
real functions; 

-L (z) > 0, C (z) > 0, R (z);>O, G (z);>O; 

-L (z) and C (z) have strictly positive finite limits L ( 00 ) 

and C (00), [resp. L ( - (0) and C ( - 00 I], as Z--oo (resp. 
z __ - (0). 

I (z,t) and U (z,t) being, respectively, the intensity of the 
current and the voltage at position z and time t, we use the 
transmission lines equation (zER): 

aI au 
- +C(z)- +G(z)U=O, 
az at 

au + L (z) aI + R (z)I = O. 
az at 

For a wave offrequency k, i.e., for 

I (z,t ) = I (k,z)e - ikt, 

U (z,t ) = U (k,z)e - ikt, 

Eq. (1.1) may be written in the form 

dI _ ikC(z)U + G(z)U = 0, 
dz 

dU _ ikL (z)I + R (z)I = O. 
dz 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

In the following instead of z, we obtain the variable x defined 
by 

x(z) = E(L (U)C(U))I/2 duo (1.5) 

We also usetheconventionI(k,z(x)) = I(k,x),L(z(x)) = L (x), 
etc., justified by the one-to-one correspondence between z 

aJ This work has been done as part of the program "Recherche Cooperative 
sur Programme No. 264: Etude interdisciplinaire des problemes in
verses." 

b) Physique Mathematique et Theorique, Equipe de recherche associee au 
C.N.R.S., No. 154. 

and x, x(z) varying from x( - (0) = - 00 to x( 00 ) = 00. We 
shall see below that x(z) is the travel time of waves from the 
origin to the position Z. 

The data of the ISP are the reflection coefficients to the 
right and to the left, r(k ) and Y(k ), and the transmission coeffi
cient t (k ), for k > 0, and also the quantities L ( - (0), L ( 00 ), 

e ( - (0), and e ( (0). The ISP can be stated thus: what infor
mation can be obtained onL, R, e, and G from the data?, i.e., 
what quantities connecting L, e, R, and G can be construct
ed from the data? 

In the lossless case, i.e., R = G = 0, it is well known
see the survey by Kay!-that this ISP can be solved by re
duction to the ISP for the one-dimensional Schrodinger 
equation 

d 2y 
(S): -2 + [k 2 

- V(x)]y = 0, XER. (1.6) 
dx 

For the solution of the ISP for (S) see Ka/, Kay and Moses\ 
and Faddeev4

• In the lossless case, it is then found that the 
quantity which can be constructed from the data, is the quo
tien t L / e as a function of the travel time X. 

The lossy case with only one kind of absorption, i.e., 
R = a or G = 0, has been studied by Jaulent5

•
6 and indepen

dently by Schmidt.7 This ISP can be solved by reduction to 
the ISP for the one-dimensional Schrodinger equation with 
an energy-dependent potential 

(S'): d2~ + [k 2 _ V(k,x)]y = 0, 
dx 

V(k,x) = V(x) + kQ(x). 

(1.7) 

(1.8) 

There also exists a radial version of the ISP for the lines (i.e., 
z;>O instead of zER) which can be solved using the radial 
version of the ISP for (S') (i.e., x;>O instead of xER) (see Ref. 
6). For the solution of the ISP for (S') see Jaulent and Jean,8 
Jaulent,9.10 for the radial case (x;>O), and Jaulent and Jean!! 
for the one-dimensional case (xER). In the lossy case with 
R = a (resp. G = 0) it is then found that the quantities which 
can be constructed from the data are the quotients L Ie and 
G Ie (resp. L Ie and R IL) as functions of the travel time 
X. In Sec. II of this paper we give some additional indications 
on the lossless case and the lossy case with R = a or G = O. 

In this paper we consider the general lossy case. In Sec. 
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III we prove that the lines equation (1.4) can be put into the 
form of a generalized Zakharov-Shabat system (Z )[q+, q-, 
q3]: 

dY 'k Y (iq3 - +1 a 3 = 
dx - q-

(1.9) 

with 

(1.10) 

Then through (Z )[q+, q-, q3] we introduce the scattering 
data associated to the lines equation (1.4). In Sec. IV we re
duce the ISP for (Z )[q+, q-, q3] to the well-known ISP for 
the Zakharov-Shabat system (Z )[q+, q-, q3 = 0]. The moti
vation to study this ISP was first to solve nonlinear evolution 
equations. SeeZakharov-Shabat 12

, Ablowitz, Kaup, Newell, 
Segur, 13 and Calogero and Degasperis. 14 In Sec. V we briefly 
reproduce the solution of this ISP. 

As a result we find that the following quantities, q+ and 
q-, can be constructed from the ISP data for the lines in the 
general lossy case, as functions of the travel time x: 

q±(x) = [.2.. ~ (ln~) + .2.. (R _ G)] 
4dx C-2L C 

X exp ( + I (~ + ~) dY) (1.11) 

where the indices + and - correspond to each other. In
deed q+ and q- data are equivalent to the ISP data for the 
lines, so that we can conclude that, although it is widely 
underdetermined, the ISP for the lines is theoretically 
solved. q+ and q- represent two functional relations 
between L / C, R I Land G Ie. In order to determine the quo
tientsL IC,R IL and G IC (as functions of x) we need another 
relation between L / C, R I Land G / e. Such is the case if we 
are given R /L + G IC or R IL or L Ie. We notice that if 
R = 0 (resp. G = 0) we find again the result of Ref. 6, i.e., L I 
C and G IC (resp. L IC and R IL) are determined from the 
data. Indeed these two approaches are equivalent since it has 
been proved by Jaulent and Miodek 15 that the ISP for the 
Schrodinger equation (S')[ V,Q] and the Zakharov-Shabat 
system (Z)[q+, q-, q3 = 0] are equivalent. The keystone of 
the proof consists in introducing the generalized Zakharov
Shabat equation (Z)[q+, q-, q3] and noticing that (S')[V,Q] 
and (Z)[q+, q-, q3 = 0] are in someway "particular cases" of 
this equation. Furthermore, it is possible to go easily from 
one inversion procedure to the other. 

II. THE LOSSLESS CASE AND THE CASE R = 0 OR G = 0 

If R = G = 0 it is easy from the lines equation (1.4) to 
obtain 

d ( 1 dU) Z - - - +k C(z)U=O. 
dz L(z) dz 

(2.1) 

Using the Liouville transformation, i.e., using the variable x 
defined by (1. 5) and setting 

y(k,x) = - U (k,x), [ 
C(x) ]114 
L(x) 

(2.2) 

we find thaty(k,x) satisfies the Schrodinger equation (S) with 
the potential 
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V(x)- - - - . 
_ [ C (x) ] - 1/4 d 2 [ C (x) ] 1/4 

L (x) dx2 L (x) 
(2.3) 

It is assumed that V (x) is a sufficiently regular function going 
to 0 fast enough as Ixl-oo. The solution of the ISP for (S) 
allows to construct V(x) and therefore C (x)/L (x). 

If R = 0 we obtain from (1.4) the equation 

- - - +kzC(z)U+lkG(z)U=O. d ( 1 dU) . 
dz L (z) dz 

(2.4) 

Using the Liouville transformation defined by (1.5) and (2.2) 
we find thaty(k,x) satisfies the Schrodinger equation (S') with 
the potentials 

V x = [ C (x) ] - 114 ~ [ C (x) ] 114 

() L(x) dx2 L(x) , 
(2.5) 

Q (x) = _ i G (x) . 
C(x) 

(2.6) 

It is assumed that V (x) and Q (x) are sufficiently regular func
tions going to 0 fast enough as Ixl-oo. The solution of the 
ISP for (S') allows one to construct V(x) and Q (x) and there
fore C(x)/L (x) and G(x)/C(x). ThecaseG = Ois treated ex
actly in the same way by replacing U (k,z) by I (k,z), L (z) by 
C (z), C (z) by L (z), and G (z) by R (z). 

III. REDUCTION OF THE LINES EQUATION (1.4) TO (Z) 
[q+, q-, q3] AND DEFINITION OF THE SCATTERING 
DATA 

We use the variable x defined by (1. 5) and we set 

wl(k,x) = - I (k,x), [ 
L (x) ] 114 

C(x) 
(3.1) 

wz(k,x) = - - U(k,x), [ 
C(x) ]114 
L(x) 

(3.2) 

W(k,x) = (w1(k,X)), a l = (0 1) 
w2(k,x) 1 O' 

(3.3) 

Then we find that the lines equation (1.4) can be put into the 
form 

dW 'k W -- +1 a l 
dx 

(

.2.. ~ln~ 
4 dx C 

R 

L 
_ ~ ~ 1n~)W' xER. 

4 dx C 
(3.4) 

One may readily put Eq. (3.4) into the form (Z) [q+, q-, q3] 
by setting 

M. Jaulent 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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We assume that q+(x), q-(x), and q3(X) are sufficiently 
regular functions going to ° fast enough as Ix 1-00 . Since the 
trace of the matrix 

is 0, it is possible to introduce the scattering data for (Z) [q+, 
q-, q3] in the same way as in the well-known case q3 = o. 
Instead of (Z) [q+, q-, q3] it is technically convenient to 
consider both systems (Z) ± [q+, q-, q3]: 

dY± +iku3 Y± =(±i
q3 !...~ )Y±. (3.9) 

dx q~ +lq3 

If Y-(k,x) is a solution of(Z)- then uIY-( - k,x) is a solu
tion of (Z) +. This symmetry property allows one to reduce 
the study of two types ofJost solutions at + 00 (or at - (0) 
to only one. 

The right and left Jost solutions of (Z) ± , F ± (k,x) and 
F ± (k,x), are defined as 

F ± (k,x) - (O)eikx, F ± (k,x) _ (l)e - ikx. (3.10) 
x~oo 1 X~-oo ° 

ulF ~( - k,x) and ulF ~( - k,x) are also Jost solutions of 
(Z)± with 

ulF ~( - k,x)x:- 00 (~)e- ikx, ul Of( - k,x)x~ ___ 00 C)eikx. 

(3.11) 

Using standard arguments (see Ref. 13 for example) one can 
prove that F ± (k,x) and F ± (k,x) are analytic in k for 
1m k> ° and continuous for 1m k>O. F ± (k,x) and 
ulF Of( - k,x) [resp. F ± (k,x) and U 1 F Of (k,x)] form a funda
mental system of solutions of (Z) ± for kER. The reflection 
coefficients to the right and to the left, r ± (k ) and r ± (k ), and 
the transmission coefficient t ± (k ) associated with (Z) ± are 
defined for kER by 

F±(k,x)= r±(k) F±(k,x) + 1 uIF~(-k,x), 
t ±(k) t ±(k) 

(3.12) 

r±(k) .. 1" 
F ± (k,x) = --F ± (k,x) + --ulF ~ ( - k,x). 

t ±(k) t ±(k) 
(3.13) 

It follows from (3.10)-(3.13) that there exist two solutions of 
(Z) ±: q, ± (k,x) [ = t ± (k )F ± (k,x)] and 1It± (k,x) 
[ = t ± (k )F ± (k,x)] such that (kER) 

q, ± (k,x) - t ± (k )(I)e - ikx 
x~ - 00 ° 

_ r±(k)(O)eikX + (l)e- ikx, (3.14) 
x~oo 1 ° 

1JI±(k,x) _ r±(k)(I)e-ikx+(O)eikx 
X~-oo 0 1 

_ t ± (k )(O)eikx. (3.15) 
x~ 00 1 

The scattering matrix associated with (Z) ± is defined by 
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S ± (k ) = (t ± (k ) 
r±(k) 

r±(k)) kER. 
t ±(k) , 
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(3.16) 

The function 1/t ± (k ) is analytic for 1m k> ° and contin
uous for 1m k>O. We assume that this function has no zero 
for 1m k>O, i.e., (Z) ± has no bound state (square integrable 
solution). This point should be studied thoroughly. Indeed, 
in the case R = G = 0 one can prove a similar but weaker 
result for Eq. (1. 7) (see Ref. 6). 

We deduce from (3.5), (3.6), (3.14), and (3.15) that there 
exist two solutions of (3.4), w(k,x) and W(k,x) such that 

W(k,x) _ t+(k)(l)e- ikx 
x~ - 00 1 

_ r+(k)( 1 )eikx+(I)e-ikx, (3.17) 
x~oo -1 1 

W(k,x) _ r+(k)(I)e-ikx+(~ )eikX 
X~-oo 1 1 

_ (+(k)( 1 )eikX. (3.18) 
x~ 00 - 1 

Therefore [use (1.5), (3.1)-(3.3)] there exist two solutions of 
the lines equation (1.4), 

(
I(k,z)) d (I(k,z)) 
U (k,z) an U (k,z) , 

such that 

I (k,z) _ [C ( - (0) ] 11\ + (k )e - ikx(zl 
Z~-oo L(-oo) 

_ [C(oo) ]1I4Ir+(k)eikX(ZI + e-ikX(Zlj, (3.19) 
Z-.oo L(oo) 

U(k,z) __ [L( - (0) ]1/4( +(k)e-ikx(ZI 
Z~-oo C(-oo) 

_ _ [ L ( (0) ] 1141 _ r + (k )eikx(ZI + e - ikx(Zlj, (3.20) 
z~ 00 C(oo) 

I (k,z) _ [C ( - (0) ] 1141r + (k)e - ikx(zi + eikx(Zlj 
Z~-oo L(-oo) 

_ [C(oo) ]1/4( + (k)eikx(ZI, (3.21) 
Z~oo L(oo) 

U(k,z) __ [L( - (0) ]1/4Ir+(k)e-ikX(ZI_eikX(ZIJ 
Z~--oo C(-oo) 

_ [L (00) ] 1/4( + (k )eikx(ZI. (3.22) 
z~oo C(oo) 

We see on Eqs. (3.19)-(3.22) that r + (k ), r + (k ), and t + (k ) 
represent also for the lines equation (1.4) the reflection coeffi
cients to the right and to the left and the transmission coeffi
cient for the frequency k (k> 0). Furthermore, recalling (1.2), 
(1.3), and (1.5), it is clear that 

vIz) = (L (z)C(z))-II2 (3.23) 

is the local wave velocity at point z and that x(z) is the travel 
time of waves from the origin to the position z. 

The ISP for the line is the construction of quantities 
connecting L, C, R, and G from the data of S + (k ) (k> 0), 
L (00), L ( - (0), C ( - (0), and C (00). q+, q-, and iq3 being 
real [see Eqs. (3.7) and (3.8)], one can prove that 

S + (k) = S + ( - k ), kER, (3.24) 

where S +(k) is the complex conjugate matrix of S +(k). 
ThereforeS +(k )(kER) is determined byS +(k)(k > O).S -(k) 
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(kER) is also determined because of the general identity 

S ±(k)'S '+'( - k) = I, (3.25) 

where "t " means "transposed" and I is the 2 X 2 identity 
matrix. So the data S +(k) (k> 0) imply the data r+(k) and 
r-(k) (kER). For this reason we consider in what follows the 
ISP associated with (Z) [q+, q-, q3] from the data of r+(k) 
and r-(k) (kER). 

IV. REDUCTION OF THE ISP FOR (Z) [q+, q-, q3] TO THE 
ISP FOR (Z) [q+ , q-, q3 = 0] 

Let us write the generalized Zakharov-Shabat equation 
(Z) ± [q+, q-, q3] rid. Eq. (3.9)] in the form 

and let us notice that 

~ + iqP3 = M '+'(X)( ~ )oM ± (x), 
dx dx 

0"3 = M '+' (X)0"3M ± (x), 

where 

M ± (x) = exp ( + i f q3(y)0"3 dy) 

q±)y ± 

o ' 
(4.1) 

(4.2) 

(4.3) 

~ txp ( + i ~~ q,IY) dy) 

"P ( ± i ;~ q,IY) dY ) 

(4.4) 

It is then easy to see that Y ± defined by 

Y± =M±(x)Y±, (4.5) 

is a solution of the Zakharov-Shabat system (Z) ± [q+, q-, 
q3 = 0] with 

q ± = q ± exp( + 2i f q3(Y) dy). (4.6) 

The Jost solutions of (Z) ± [q+, q-, q3] and (Z) ± [q+, q-, 
q3 = 0] are connected by 

F ± (k,x) = M ± (x)F ± (k,x), (4.7) 

F ± (k,x) = exp( + J: "" q3(Y) dy)M ± (x)F ± (k,x). (4.8) 

From (3.12), (3.13), (4.7), and (4.8) it is easy to obtain the 
connection between the scattering data (kER) 

r± (k) = r± (k), (4.9) 

r ± (k) = exp( ± 2i f: "" q3(Y) dy)r ± (k), (4.10) 

t ± (k ) = exp( ± if: "" q3(Y) dy)t ± (k ). (4.11) 

Note that this result is a particular case of a lemma used in 
Ref. 15. So we are led to solve the ISP for the Zakharov
Shabat system (Z) ± [q+, q- , q3 = 0] from the data of 
r+ (k) = r+(k) and r-(k) = r-(k) for kER. Because ofEqs. 
(4.6), (3.7), and (3.8), the potentials q+ and q-, solutions of 
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this ISP, are connected to L, C, R, and G through Eq. (1.11). 
We remark that it would be quite possible to introduce 

the ISP data for the lines [see formulas (3.19)-(3.22)] by using 
the Zakharov-Shabat system (Z)[q+, q-, q3 = 0] instead of 
the generalized Zakharov-Shabat system (Z) [q+, q-, q3] as 
done in Sec. III. The choice ofthe intermediate step (Z)[q+, 
q-, q3] may be justified by the following remarks: 

-The equation [q+, q- , q3] is more directly connected 
with the lines equation (1.4) than the equation (Z) [q+, q-, 
q3 = 0] and is no more difficult to investigate; 

-The potentials q+, q-, and iq3 have the nice property 
of being real and thus lead to the nice relation (3.24). 

V. SOLUTION OF THE ISP FOR (Z) [q+, q-, q3 = 0] 

The starting point is the following representation for
mula for the Jost solutionF ± (k,x) of(Z) ± [q+, q-, q3 = 0]: 

F ± (k,x) = (~)eikX + 1"" K ± (x,y)eikYdy, 

where the kernel 

K ± (x,y) = (K l± (X,y)) 
Kl(x,y) 

is such that 

K l±(X,x) = - ~q±(x), 
2 

K 2± (x,x) = ~ ("" q + (y)q-( y) dy. 2L 

(5.1) 

(5.2) 

(5.3) 

The insertion of (5.1) into (3.12) and the use of contour inte
gration in the complex k plane yield the inversion equations 

O"lK ±(x,y) = (~p'+'(X + y) 

+ 1"" p '+' (y + t)K '+' (X,t ) dt, y;;;.x, xER, 

(5.4) 

where p + (x) and p - (x) are the scalar functions connected to 
the data r+(k) and r-(k) (kER) by 

p±(x) = - - r±(k)e'kxdk 1 f"" . 
21T - 00 

(5.5) 

(we recall that we have assumed that there is no bound state). 
Therefore the steps ofthe solution of this ISP are: 

(a) constructp+ andp- from r+(k) and r-(k) (kER) us
ing Eq. (5.5); 

(b) find the solution (K +, K -) of the system of integral 
equations (5.4); 

(c) obtain [q+, q-] from (K +, K -) using Eq. (5.2). 
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A general description of n-dimensional Fourier transforms is given in terms of their complex zero 
surfaces. The properties of these surfaces are analyzed and then applied to two-dimensional 
scattered electromagnetic fields in the Fraunhofer region. It is shown that the properties of two
dimensional fields differ inherently from those of one-dimensional fields and that they lead to a 
reduced ambiguity for object reconstruction from intensity data. A way of estimating this 
ambiguity is given. 

PACS numbers: 02.30.Nw, 02.30.Fn, 42.30.Kq 

I. INTRODUCTION 

The theory of Fourier transforms, and in particular its 
extension in the complex domain, has been applied to a vari
ety of problems in physics. One of these applications has 
been the description of one-dimensional scattered fields, 
where among other useful results, it gave a measure of the 
ambiguity of object reconstruction from intensity data. 

In this paper we aim to formulate a description of n
dimensional Fourier transforms using the theory of func
tions of several complex variables. We will then discuss its 
application to the description of two-dimensional scattered 
fields by complex functions of two complex variables. We 
aim to show that the one-dimensional theory is a special case 
which does not generalize to the n-dimensional theory. 

Consequently the one-dimensional description of scat
tered fields is inadequate for an analysis of the two-dimen
sional case and can lead to false results. 

We proceed by analyzing the consequences of the above 
difference on the modeling of scattered fields in two dimen
sions. This will lead to an understanding of the different type 
of inherent ambiguity involved in the reconstruction of two
dimensional objects from their energy spectra. 

The above questions have not, to my knowledge, been 
considered in their most general form. The two attempts 
made in this area have been limited in scope. The treatment 
by Bruck and Sodin I is based on the assumption that the 
object is a set of discrete points, and although most of their 
results hold in this special case, it is not clear that they can be 
generalized to continuous objects. 

Such problems have also been illustrated in a paper by 
Huiser and van Toorn, 2 where no such assumption about the 
object is made. These authors, though, assume that the func
tion describing the field has at least one polynomial factor; 
this assumption is not necessary. They then proceed to show 
that this would lead to ambiguities in the object reconstruc
tion. In this paper we will consider the problem in its most 
general form, making no assumptions about either space
the object space or the Fourier space. 

In the first part of this paper a short exposition of the 
main properties of the one-dimensional model for scattered 
fields will be given. Since we propose to put forward a two
dimensional description, this is useful as an introduction to 
this type of model and for comparison purposes in the rest of 

the paper. 
The second part of the paper will be devoted to the 

properties offunctions of several complex variables applica
ble to Fourier transforms and two-dimensional scattered 
fields. In this part we will discuss the uniqueness of object 
reconstruction in two dimensions. 

In a following paper we will show explicitly how the 
zeros of the two-dimensional Fourier transform encode the 
information about the conjugate space in two particular 
cases: when the object is confined to a circular or a square 
aperture. 

11_ THE ONE-DIMENSIONAL MODEL 

It is well known that a relationship exists between the 
scattered field in the Fraunhofer region and the object wave 
which is given by the Fourier transform 

(2.1) 

where F (x) is the scattered field and/(t ) the object wave. This 
Fourier transform relationship can be used to continue the 
scattered field into the complex plane C, by use of the fact 
that3 

F(x + IY) = f~ !(t )eixte - yt dt 

or' 

F(z) = f !(t )eizt dt, (2.2) 

wherez =X + iy. 
A theorem by Paley and Wiener4 states that (2.1) is a 

sufficient and necessary condition for F(z) to be an entire 
function of exponential type a, i.e., so that we can always 
write 

IF (z) I <Aealzl. (2.3) 

This fact together with Hadamard's theorem5 gives a unique 
description of F (z) in terms of its zero locations, i.e., 

F(z)=Cz" IT (l-z/zn ), (2.4) 
n = - co 

where the Zn are the zero locations for a specific F(z). It fol
lows from (2.1), (2.2), and (2.4) that all the information about 
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the object wave is uniquely encoded by the positions of the 
zeros of F(z). It can be shown6 that the zero positions encode 
uniquely the frequency, phase, and amplitude of harmonics 
in the conjugate space. 

It is interesting to note that in optics, i.e., at high fre
quencies, the only experimentally measurable quantity is the 
scattered-intensity distribution. To reconstruct the object 
wave from this distribution one has to take into account an 
ambiguity, which viewed from the point of view of analytic 
functions can be described as follows: The zeros of the scat
tered intensity are those of the scattered field and its complex 
conjugate 

J(x) = IF(xW = F(x)F*(x) 

.".I(x) = Cx2p IT (l-x/zn)(l-x/z~), 
n = - 00 

where we have written * for the complex conjugate. Given an 
intensity distribution with 2N complex zeros, there are 2N 
possibilities for the zero locations ofF (z). The phase problem 
then can be reduced to the problem of locating the zeros of 
F (z), and the ambiguity of the object reconstruction from 
intensity data can be described in terms of the ambiguity of 
zero location. 

To recapitulate, in the one-dimensional model, the field 
is described by an infinite product of factors each of which is 
of the form (1 - x/zn)' where Zn is the nth zero of F(z). Each 
of these zero positions encodes uniquely information about 
the object. 

III. THE N-DIMENSIONAL MODEL 

In this section we will give the relevant properties of 
functions of several complex variables, used to describe 
Fourier transforms. Most of the time we will consider the 
case of n complex variables, and only in the examples we will 
let n = 2 for simplicity (but without loss of generality). 

In what follows all references to n dimensions will mean 
n complex dimensions unless specified otherwise. We will 
denote by en the complex n-dimensional space, by IRn the 
real n-dimensional space. The variable in e will be denoted 
by z = (ZI"",zn), wherez, = XI + iy,; xI'YIEIR. The variable 
in the conjugate space will be denoted by t = (t l , ••• ,tn); tiER. 

The first part, Sec. IlIA, will be devoted mostly to the 
global theory of functions of several complex variables, i.e., 
the properties of these functions which can be defined in all 
of e. These properties will be used to formulate a general 
description of two-dimensional scattered fields. We will also 
give an estimate of the inherent ambiguity of object recon
struction from two-dimensional intensity data. 

In the second part, Sec. IIIB, the local properties of 
functions of several complex variables will be analyzed. The 
local properties allow a detailed description of what is hap
pening in the neighborhood of each point of the complex 
space. These properties cannot be carried directly to global 
ones-which we need-but are indispensable in the analysis 
of the zeros of functions of several complex variables. In fact 
it is impossible to describe their behavior in any complete 
way using only the global properties, as will become appar
ent later. We will then refine our description of two-dim en-
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sional scattered fields using these properties; we will also 
give a more refined estimate of the factors governing the 
ambiguity of object reconstruction from power spectra. 

A. Global theory 

In accordance with the one-dimensional model we will 
assume a Fourier transform relationship between the object 
wave and the scattered field in the Fraunhofer region. Then a 
well-known theorem by Plancherel and P61ya7 states that: 

Theorem 1: For a functionF(z) ofn complex variables to 
be entire of exponential type, and square integrable when 
considered for real values of its n arguments, it is necessary 
and sufficient that it can be represented in the form 

F(Z"""Zn) = f: 00 •• J f(t"''',!n) exp [i(Zlt I + ... + Zn tn )] 

Xdt, ... dtn , (3.1) 

wheref(t) is a square-integrable function for all its n varia
bles, and vanishes at every point outside a bounded domain. 

This implies that F(z) satisfies the inequality? 

IF (ZI,···,Zn )I.;;A exp[a(lzll + ... + IZn 1)], (3.2) 

where a and A are positive constants. Inequality (3.2) is valid 
for all complex values of the variables zl"",zn' 

It is easy to prove,s that functions of n;;;.2 complex var
iables do not have isolated zeros. Their zeros are always con
tinuous "lines" (in this context, a "line" means an (n - 1)
dimensional surface). It will become obvious that this is one 
of the most significant difference between the one- and two
dimensional descriptions. To go further in the analysis of the 
zero lines it is necessary to introduce some concepts from the 
theory of analytic sets, which describes the zeros of analytic 
functions. The following definition will make more precise 
our concept of a zero line. 

Definition 1: Analytic set9
: Let Bee be a region, M a 

subset of B, and (a)EB a PC!int. M is called analytic at (a) if 
there exists an open neighborhood U = U (a)EB and func
tionsf"",,!; holomorphic in U such that 

UnM= (zEU:fl(z)=···=!;(z)=Oj. 

M is called analytic in B if M is analytic at every point in B. 
In particular the set M (f) e B defined by 

M(f) = (zEB:f(z) = OJ, 
wherefis holomorphic in B, is also an analytic set. M (f) will 
be called the zero set of the function! 

Definition 2: Reducible analytic set9
: An analytic set 

MeB is called reducible if there exist analytic subsets 
i = 1,2, such that 

l.M=MluM2, 

2.MI=I=M,i= 1,2. 
If M is not reducible it is called irreducible. 

We will call an entire function F (z) globally reducible if 
it can be written as the product of two entire functions for all 
ZEe. Otherwise it will be called globally irreducible. Notice 
that global irreducibility does not imply that F is irreducible 
everywhere. It is enough that one of the functions compris
ing its product is nonanalytic at one point for Fto be globally 
irreducible. 

I. Manolitsakis 2292 



                                                                                                                                    

Next we will introduce the fundamental theorem of this 
section, due to Osgood. 10 In Appendix A we show how a 
proof for this theorem can be constructed. 

Theorem 2: An entire function F (z) which has zeros and 
does not vanish identically can be uniquely decomposed in a 
finite or infinite product of globally irreducible factors. This 
product has the form 

N [ I F(z)= II Fm(z)eYm]m (N,;;;oo), (3.3) 
m=l 

where the F m (z) are globally irreducible entire functions and 
the eYm are convergence factors, with the r m polynomials in 
z. The exponents 1m are integers. 

In Appendix A it is shown, that each Fm(z) in (3.3) de
scribes an irreducible analytic set and that the union of all 
these sets forms the zero set of F(z). Here we will just use this 
fact to discuss the properties of the zero lines of F (z). 

From the above we can see two crucial differences be
tween (3.3) and the Hadamard product (2.4). The first is that 
the form of each factor in (3.3) is not known, and depends 
entirely on the zero set of F. The second difference is that 
each factor describes not necessarily one, but several zero 
lines, which cannot be separated. 

In the case of scattered fields, the usual practice in one 
dimension is to try to determine the zero locations of the field 
from those of the scattered intensity. It is easily seen from the 
above, that zero location from a two-dimensional intensity 
recording is not enough to determine the field. To form the 
irreducible analytic set described by each Fm(z) in (3.3) it is 
essential to determine the way each of the zero lines is related 
to the others. For example, if an attempt were made to fit 
polynomials to these lines, without knowing the specific re
lations between them, the resulting product offactors would 
be either unphysical, or Fourier-transform to an object wave 
which bears no relation whatsoever to the real one. 

We can also look at this from the point of view of in for
mation encoding. In one dimension, all information about 
the function describing the field is encoded uniquely by the 
positions of the zeros, which thus constitute "units of infor
mation." In two dimensions information is encoded unique
ly by irreducible combinations of zero lines, i.e., combina
tions which can be expressed in one and only one way. 
Consequently, in two dimensions, each irreducible zero set is 
a unit of information, and there exists an infinite variety of 
these. The way each of these "units" encodes information is 
by both the position and the specific combinations of the 
zero lines it describes. The uniqueness of irreducible zero 
sets ensures that each unit encodes a unique feature of the 
object. The uniqueness of the product (3.3) ensures that each 
object wave is uniquely encoded by the zero lines of the scat
tered field. 

To determine the probability of occurrence ofirreduci
ble factors in the field we cannot use the argument that there 
are more irreducible than reducible functions, as is done by 
Bruck and Sodin. ' The opposite is actually true, as can be 
easily seen from a simple statistical argument. Consider a 
finite subset of the set of all irreducible functions, with N 
elements. Then, combining these we can create 
l:Z ~ 1 N /(N - k )!k ! reducible ones. Although the set of all 
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entire functions contains an infinite number of both types of 
functions, using the above argument it can be deduced that it 
contains more reducible than irreducible ones. It may be 
possible to give a different estimate of the number of irredu
cible factors in the field, but this can only be done by impos
ing additional physical constraints on the mathematical 
model. 

If the scattered intensity data contains 2N complex zero 
lines (N lines from the field and N from its complex conju
gate) then we have three possibilities. 

(a) The field is completely separable in terms of its two 
variables, i.e., we can write 

(3.4) 

Since each of the F,(i = 1,2) is now a one-dimensional func
tion we can decompose it in a Hadamard product (2.4) and 
therefore the ambiguity is that ofthe one-dimensional case: if 
F, has M zeros and F2 has K zeros, where M + K = N, then 
the ambiguity is 2M + K = 2N. 

(b) The field is not separable in terms of its two varia
bles. Then we have the case described by (3.3), where each 
Fm describes a set of nonseparable zero lines, i.e., if the field 
has N zero lines the ambiguity is going to be 2L

, where Lis 
the number of irreducible factors describing these lines, and 
L,;;;N. 

(c) Cases (a) and (b) together. For this case, Hadamard's 
theorem can be used to factor the separable part [case (a)] 
and then Theorem 2 can be applied to the rest of the func
tion. The ambiguity can be worked out as a combination of 
the ambiguities of (a) and (b). 

It will be seen later than any effect to separate parts of 
the irreducible zero set described by each F m into its compo
nents (elements) has the effect of destroying the analytic 
character of the function, and consequently the finite sup
port of the object wave is lost. 

Since F(ZI,Z2) is an entire function of exponential type 
and is also square-integrable on the real plane H2, it must 
have an infinite number of zero lines. Otherwise F (x I'X2) 

would tend to infinity as Ix II, IxJ-~ 00, and consequently it 
would not be square-integrable. In Appendix B we will show 
that the asymptotic behavior of F (z) is defined by the edge of 
the scattering aperture in the object space. Since the factors 
in (3.3) are entire functions this fact imposes a strong condi
tion on their behavior even in the finite part olen. Conse
quently this behavior is displayed by their zero sets every
where. This important property of zero sets has no 
counterpart in the one-dimensional case, where the behavior 
of the zeros in the finite part of C is independent of the as
ymptotic behavior of the function. 

To show how these properties can be used in practice we 
will consider an aperture of regular fixed shape and size with 
its edge preset to a specific constant value, containing some 
object. We assume also that the Fourier transform of the 
empty aperture is known. The fact that the edge has been 
preset to a specific constant value, implies that the asymptot
ic behavior of the field has been fixed to be that of the Fourier 
transform of the empty aperture. Thus, the product (3.3) of 
the field, scattered by this configuration in the object space, 
will contain at least the asymptotic part of the aperture func-
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tion, which will, of course, still be a function of exponential 
type, i.e., we have 

F(ZI,z2)=G(ZI,z2) IT [Fm (zl,z2)e
Ym f m 

(N<oo), 
m= 1 

where G (z 1,z2) is the part of the Fourier transform of the 
aperture, and is a function of exponential type. Rewriting 
this as 

F(ZI,z2)/G(ZI,Z2)= IT [Fm (zl,z2)eYm f m 
(N<oo), 

m=1 

we can use a well-known theorem 11-13 which states that the 
quotient of two functions of exponential type is either a func
tion of exponential type or a polynomial. If it is a function of 
exponential type then the object can be considered to be a 
convolution, which implies that the new function is similar 
to G, since the apertures of both have to be constant on their 
edge. This argument can be repeated until there are only 
polynomial factors in the field. 

More specifically, choosing a square or circular aper
ture as the original one, it is easy to see from the above argu
ment that the product in the Fourier space cannot contain 
any nonpolynomial factors. To show this we need only con
sider the fact that both aperture functions can be expressed 
as infinite products. Furthermore, the only way of getting a 
square or circular aperture by convolution is by convolving 
with another square or circular aperture, respectively. The 
result is now obvious. 

The fact that we have preset the aperture allows us to 
infer even more. Since the asymptotic behavior is known a 
priori, we know that all functions in the product, polynomi
als or not, must have the same asymptotic behavior. Thus, 
for example, the asymptotic behavior of the zero surfaces of 
JI[(zi + ~ )1/2 ]/(zi + z~ )1/2 which is the Fourier transform 
of a circular aperture of edge equal to one, is that of 
Z 12 + Z22 - a2 = 0. This can be easily deduced from the infi
nite product for this function. 14 Thus asymptotically we 
have that all the zero surfaces of an object contained in such 
an aperture (keeping the value on the edge equal to one) must 
be like Z I = ± iZ2' which is the asymptotic behavior of the 
circle given above. 

In the next section we will analyze the zero lines in more 
detail showing how each of the lines defined by the F m is 
related to the others, forming with them a single entity, the 
irreducible zero set of the function F m' We will then show 
that in two dimensions, this leads to a reduced ambiguity for 
object reconstruction from intensity data. 

B. Local theory 

As we pointed out in the introduction, the local proper
ties of analytic functions are needed for a detailed analysis of 
the behavior of analytic sets. In Sec. IlIA we stated that each 
factor F m' in the product (3.3), is a globally irreducible entire 
function, but nothing was said about its zero set, except that 
it is irreducible. We will now proceed to analyze further 
these zero sets. 

It is well known9
•
10 that any neighborhood in en inter

sects only a finite number of the components of an analytic 
set. This fact allows us to use the Weierstrass preparation 
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theorem, to simplify the zero set of the original function to 
that of a pseudopolynomial (see Definition 4)-locally, of 
course. When the original function is a polynomial, one can 
dispense with this theorem, and use Theorem 4 directly to 
analyze the behavior of its zero set. 

To proceed further we need the local definition of redu
cibility. 

Definition 3: Locally reducible functions: Let Been be 
a domain, (a) EE a point. Let g be a function analytic in some 
neighborhood U (a)EE of (a) such thatg(a) = 0. Thengwill be 
called reducible at the point (a) if there exist two functions, 
analytic in Ural, such that: 

g(z) =gl(Z)g2(Z) zeU(a) 

and 

(3.5) 

If g is not reducible it will be called irreducible. 
As was stated in Sec. III A, global irreducibility does 

not necessarily imply local irreducibility. 
The basic theorem of this section is the Weierstrass 

preparation theorem. This theorem serves as a preparation 
for the examination of the zeros of analytic functions. For 
this theorem we will limit ourselves to the case n = 2, which 
differs slightly from the general case. The concept of a distin
guished pseudo- polynomial of order k, which will be used in 
this theorem, will also be introduced for n = 2; the general 
case is identical. 

Definition 4: Distinguished pseudopolynomial8
: Let 

(a) = (a p a2)beapointinC2, U = U(a) an open neighborhood 
ofthis point. A function G (z) which can be represented in this 
neighborhood in the form 

G (ZI,Z2) = AO(ZI)(Z2 - a2)k + A I(ZI)(Z2 - a2)k -- I 

(3.6) 

where theA;(i = O, ... ,k) are functions of the variable Zl ana
lytic in this neighborhood, is called a pseudopolynomial of 
order k, with center at the point a I' A pseudo polynomial for 
which the coefficient Ao is nonzero in U (a) is called 
distinguished. 

In what follows we will take Ao = 1, since we can al
ways divide the coefficients A; by Ao [#0 in Ural]. We are 
now ready to state the Weierstrass preparation theorem. As 
mentioned above we will state it in a restricted form, for 
functions of two complex variables. 

Theorem 3: The Weierstrass preparation theorem8
: If 

the function F (z I ,Z2) is holomorphic at the point (a I ,a2), while 
F(a l ,a2) = ° and F(ZI,z2)~0, then in some bicylinder 
! IZII <r, IZ21 <h I 

(3.7) 

where G (z 1,z2) is a distinguished pseudopolynomial of order 
k 

G (Zt>Z2) = (Z2 - a2)k + A I(ZI)(Z2 - a2)k - I + ... + Adzd, 

and A;(a) = 0, i = O, ... ,k. The integers k,/l are positive or 
zero. The functions fl (zlh) is holomorphic at (a l ,a2 ) and 
fl (a l ,a2) #0. The functions A; andfl are uniquely defined by 
the conditions of the theorem. 

The factor (z I - a IY" can be used only in the case n = 2. 
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It is included in order to cover the possibility of F (a \,z2)=O, 
i.e., that the factorization of F has the form 

F(zl'zz) = nzdnz\,zz), (3.8) 

whereil(ad = 0 for all zz. In Sec. IlIA we have referred to 
this case as the third possibility for the product form of the 
scattered field. On the other hand, if n > 2, one has to make a 
coordinate transformation to exclude the case 
F(al,···,an _ \,zn )=0 (Ref. 8). 

The Weierstrass preparation theorem does not imply 
reducibility for F(Z\,Z2)' since n (a\,a2)¥=O (cf. Definition 3). 
Conversely, if Fis reducible at (a \,a2 ) G will also be reducible 
there. If Fis irreducible so is G. (Ref. 15). This is to be expect
ed if the theorem is to be used to examine the properties of 
the zero lines of F. 

A function F, holomorphic in the neighborhood of 
some point (a) will have a unique decomposition (3.7) in some 
open bicylinder VIa) about this point. The uniqueness of this 
decomposition, plus the fact that G has the same zero lines as 
F in V (a) allows an examination of the zeros of G rather than 
F, and this is much simpler. In case the F m are polynomials 
the following discussion applies directly, without the use of 
Theorem 3. In particular, it can be used by letting the Ai be 
polynomials in Z I' instead of analytic functions. 

It is well known from conventional algebra 16 that when
ever the discriminant LlG(zl) of a pseudopolynomial G (Z\,Z2) 
is zero at a point (a d, then G has a multiple root there, i.e .. 
k>2 zero lines meet at (a d, and at that point G has a root of 
order k in Zz. If Ll G =0, then G has multiple factors. Without 
loss of generality we can assume that G has no multiple fac
tors, since in such a case the respective componens of their 
zero sets are equal. 

In order to analyze the structure of the zero sets of ana
lytic functions, the structure of the zero sets ofpseudopolyn
omials must be determined. This may be done by means of 
the following theorem.9 

Theorem 4: Let Be C be a domain, 
G (ZI,Z2) = z; - A I(zdz; - I + ... + ( - l)kAk(zl) a pseudopo
lynomial without multiplefactors. TheAi(zd (i = 1, ... ,k) are 
functions analytic in B. Let 

MG = {(ZI,Z2)EB XC:G(ZI>Zz) = O} 

and 

DG = {zIEB:LlG(zd = a}. 
Thus MG and DG are analytic sets and 

1. For z~EB - DG there exist an open neighborhood 
U(z~)CB - DG and holomorphic functionsi\, ... ,jk on U, 
withi"(zl)¥=i,, (Zl) for v¥=/-l and ZIEU, such that 

G (ZI,Z2) = (Z2 - nZI))"'(zz - idzd) (3.9) 

for all ziEu. 
2. The points of DG are "branch points," that is, above a 

point zlEDG there always lie fewer than k points of the set 
MG' 

In general there are only two kinds of branch points 
( for any n > 1), as shown in the following example. 

Let G (z I ,Z2) = z~ - zi (z I - 1), a globally irreducible 
function. The discriminant of Gis 

LlG(zl) = 4zi(zl - 1). 
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Clearly 

DG = {Z\EC:L1 G(Z\) = O} = ! O}uP}· 

Let us choose two domains B \ = ! Z \EC: Iz \1 < I} and 
B2 = IZIEC:lz\l> lJ· In BI we have: 

MG = {(Z\,Z2)EB\XC:G(z\,zz) = O}. 

Forz~EBI - DG there is a neighborhood U(z~)CB\ - DG 
and above Uwe have a decomposition of the form (3.9) 

and 

MG = {(ZI,Z2)EB\ XC:z2 = ZI(ZI - 1)1/2} 

u{(ZI,Z2)EB\ XC:z2 = - zdzi - 1)\/2}, 

since both functions in (3.10) are analytic in B I • Above 
D G = ! O} in B I' the two analytic sets coincide but both re
main analytic at this point. In this case one speaks of 
pseudobranching. 

For Z~EB2 - DG and U(Z~)CB2 - DG we have the 
same decomposition (3.10) but now DG = II} and above it 
we have the branch point of the Reimann surface of 
Z\(ZI - 1)\ /2. Clearly neither of the factors in (3.10) is analytic 
and consequently G is locally irreducible. Here 
MG = {(ZI,z2)EB2XC:G(ZI,z2) = O} and it is irreducible 
since it consists of the Riemann surface ofz\(zi - 1)\/2. MG 
yields a two-sheeted covering above Bz - DG and a branch 
point above DG = ! 1 J. 

Therefore in (B \uB2) X C = C2 the zero set of G is irre
ducible and it consists of the two branches ofz\(z\ _ 1)1/2, 
with the branch point above z\ = 1 and a pseudobranch 
point above Z \ = O. 

If in the neighborhood of a branch point there are m 
branches of the zero set of a functions, we will call it a branch 
point of multiplicity m (e.g., in the above example m = 2). It 
is obvious from the above example that if the zero set of a 
function has a branch point of multiplicity m, then it is m
times irreducible-locally and globally. If the function is a 
polynomial of order m then it is completely irreducible. This 
is true also if it has m branch points of multiplicity two. 

Returning to the original problem we are now able to 
analyze the zero set of each F m in (3.3) as follows. Each F m 

defines an irreducible analytic set. In the neighborhood of 
every point of this set we can use the Weierstrass preparation 
theorem to write a unique decomposition (3.7). For each 
pseudo polynomial defined this way we write a product (3.9) 
which locally describes the zero lines of F m • 

Then ifF is irreducible at a point, and k>2 zero lines 
from its z~ro s~ coincide there, we have a branch point of 
multiplicity k. IfF m is reducible there then we have a pseu
dobranch point of order k; of course both cases can exist 
simultaneously. Since Fm must be an entire function, it is 
true that each branch surface must have its counterpart in 
F so that the function does not have branch points. But it is 
n~; true that "the zero lines are described by analytic func
tions." 17 It is the total collection oflines for each factor F m 

which forms an irreducible zero set, and not each line 
individually. 

Here, the reason behind the fact that the removal of a 
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zero line may destroy the band limitation of the object wave, 
becomes obvious: If a branch surface is removed, the func
tion is no longer entire and thus cannot represent a physical 
field. Obviously it cannot Fourier-transform back to a phys
ical object wave with finite support. (The usual practice of 
"flipping" a zero line, i.e., mUltiplying the Fourier transform 
F(z) by G *(z*)lG (z), where G (z) describes one or more zero 
lines of an irreducible zero set, has the effect of removing 
these lines from this set. However unless G (z) describes the 
whole set, i.e., unless G (z)=F m (z) the analyticity of the field 
is destroyed by this operation.) 

We can easily show this by an example. It is well known 
that the scattered field from a circular aperture is given by 
aJt(ar)/r, where a is the radius of the aperture. This function 
can be written as a Hadamard product since it is essentially a 
one-dimensional function due to its circular symmetry. We 
have (with r = x~ + x~) 

(3.11) 
n = - 00 

where Jt(aa n ) = 0 for all n. It will be shown in a following 
paper that the removal of one or more factors from (3.11) 
leaves its band limitation intact. Let us write one of these 
factors in the form 

This decomposition is possible everywhere except at the 
points x t = ± an' Ifnow one of these factors is removed, the 
object wave is no longer band-limited. This is because the 
remaining factor contains one branch of the double surface 
with the branch point. Thus the product no longer forms an 
analytic function. In Fig. 1 two different such zeros have 
been removed from the field; the objects shown are no longer 
confined in a finite domain. 

We have shown why one must invert each F m as a whole 
[here each factor (1 - r / a~) essentially forms a double zero 
line] and not individual zero lines: each Fm describes a 
unique and interrelated set ofiines, which are inseparable
in essence we have shown what global irreducibility means, 
and its relation with the analyticity of the field. The ambigu
ity of object reconstruction can be directly related to the 
number of branch points in the field; if there are m branch 
points, of multiplicity kt, ... ,km the ambiguity is reduced 

N- (l:'" k) . from 2N to 2 ,- , '. Ifl:;"~ t k j 1S comparable to N, then 
the determination of the correct object wave from the inten
sity data is facilitated to a large extent. Of course, if 
l:;"~ t k j = N, there are only two reconstructions possible: 
the object wave and its 180· "twin image," which is not too 
serious an ambiguity. 

Unfortunately, the existence of pseudobranching com
plicates the situation, since it is not apparent how one could 
distinguish between the two cases, i.e., given a power spec
trum it is not possible to determine the number of branch 
points in a straightforward way, since any zero crossing 
could be either a branch or a pseudobranch. A further com-
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ORIGINAL REAL OBJECT 

1 ST ZERO: OBJECT-REAL PART 

1 ST ZERO: OBJECT
IMAGINARY PART 

4TH ZERO: OBJECT-
4TH ZERO: OBJECT-REAL PART IMAGINARY PART 

FIG. \. Loss of finite object support resulting from the removal of one 
branch of the first and fourth zero circles of aJ,(ar)/r, the Fourier transform 
of the original real object. 

plication is introduced by the fact that branching and pseu
dobranching can coexist at a point, which does not allow an 
easy determination of the multiplicity of a branch. 

As we have shown in Sec. IlIA, the probability of oc
currence of reducible functions in the field is higher than that 
of irreducible functions. This implies that the probability of 
occurrence of pseudobranches is higher than that of 
branches. It should be emphasized once again though, that 
the above argument was made on purely mathematical 
grounds. Work is being done to determine the physical sig
nificance of branching and pseudobranching, which would 
then allow an examination of this probability on physical 
grounds. 

IV. CONCLUSIONS 

The aim of this paper was two-fold: to formulate a gen
eral description of n-dimensional Fourier transforms in 
terms of the zero surfaces of functions of several complex 
variables and to apply this description to certain aspects of 
two-dimensional scattered fields. 
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In Sec. IlIA it was shown that n-dimensional Fourier 
transforms can be described by entire functions of exponen
tial type factorable in terms of irreducible entire functions. 
Each of these functions was shown to define a finite or infi
nite number of zero lines which form irreducible analytic 
sets- the units of information in n dimensions. 

This description was then applied to two-dimensional 
scattered fields, to show that for a nonseparable field the 
ambiguity of object reconstruction from intensity data de
pends on the number of irreducible factors present and not 
on the number of zero lines, in contrast with the one-dimen
sional case. Then the asymptotic behavior of functions of 
two complex variables was discussed. It was shown that the 
zero lines in the field have to comply with the asymptotic 
behavior determined by the aperture. Consequently, since 
they are of infinite extent, this must also involve a specific 
behavior in the finite part of C, a property which has no 
counterpart in one-dimensional functions. These properties 
were used to show how it can be ensured that the product 
expressing the field in the Fourier space contains only poly
nomial factors of known asymptotic behavior. The only a 
priori conditions imposed in the object space are that the 
aperture must be square or circular and that the value on its 
edge be kept equal to a constant. 

The existence of irreducible analytic sets was explained 
in Sec. I1IB, through the branching behavior of their defin
ing functions. Two cases were distinguished: branching and 
pseudobranching. This was used to refine the measure of 
ambiguity for object reconstruction from two-dimensional 
intensity data. It was shown that this ambiguity is equal to 
the difference between the number of zero lines present and 
the number of branch points (counting their multiplicities). 
In other words, each irreducible zero set must be flipped as a 
whole; otherwise the function loses it analytic character. 

On the other hand, the existence of pseudobranching 
does not allow a straightforward determination, either of the 
number of branch points or of their multiplicity, i.e., it is not 
possible to count the number of zero crossings and equate 
them with the number of branches. The same goes for the 
multiplicity of each branch point, since branch and pseudo
branch may coincide. From purely mathematical consider
ations, the probability of occurrence of irreducible factors 
was shown to be lower than that of reducible ones. 

We have also shown that the one-dimensional theory 
does not generalize to n dimensions, since none of the above 
properties could have been derived from a one-dimensional 
description. The difference between the two descriptions 
hinges on the fact that the zeros of n-dimensional functions 
(n>2) are lines and not points. From this all the other differ
ences follow in a natural way. 

In a following paper this description will be applied to 
two particular cases, fields scattered from objects confined 
to square and circular apertures. These exhibit the charac
teristic behavior of two-dimensional scattered fields and can 
be used to show how information is encoded by their respec
tive zero lines. In this paper exact forms will be derived for 
the encoding of information in each case, and through this it 
will be shown that information encoding is aperture
dependent. 
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APPENDIX A: OSGOOD'S PRODUCT THEOREM 

Although the proof of the theorem for the factorization 
of functions of several complex variables is given by Os
good,1O his formulation ofthe proof is rather difficult to fol
low from a contemporary viewpoint. Thus it seemed useful 
to include a sketch of a proof of his theorem. In addition, the 
fact that analytic sets are defined locally seems to contradict 
the fact that they can be described by global functions. It was 
felt that this point needed clarification. What f01110ws is by 
no means a proof of this theorem, but shows how a proof can 
be constructed. 

Let M (F) be the zero set of some entire function F. Now, 
any analytic set M can be uniquely decomposed into a locally 
finite, countable system of analytic subsets (M;) such that 
U;e,M; = M(Ref. 9). LetM = M (f); Mthen is defined in the 
whole ofC. Using Cousin's second theorem,s the functions 
defining each M; (now defined for all of C) can be connected 
to form global functions F;. 

Let us now take the product oftheF;, including conver-

gence factors eY
' which contain no finite zeros, and let G 

represent this product. 

N 

G (z) = IT [F; (z)ey,jZ) Y (N « 00 ). (AI) 
i= 1 

(The I; are introduced because several of the components M; 
may be equal.) 

Since UiENMi = M it is easy to see thatF /Gis an entire 
function without zeros, i.e., F /G = eH

, where H is an entire 
function. By distributing eH over the F m we get (A 1). 

APPENDIX B: THE ASYMPTOTIC BEHAVIOR OF 
FOURIER TRANSFORMS IN TWO VARIABLES 

Here we aim to show that the edge of the scattering 
aperture defines the asymptotic behavior of the field. Let us 
take the object to be a function of r, (J. Then, using the com
plex form of the Fourier transform we can write 

(BI) 

where F(Z.,z2) is the scattered field in the Fraunhofer region 
and ro((J) is some continuous function of (J. Taking the left
hand side of (B 1) and integrating by parts twice with respect 
to r, we have 
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('r dO (',,(Olr dr f(r,O ) d [ exp Ur(z] cos 0 + Z2 sin 0)] ] 
Jo Jo i(z] cos 0 + Z2 sin 0 ) 

= (,r
dO 

exp[iro(O )(z] cos 0 + Z2 sin 0 )] 

Jo (Zl cosO+z2sinO) 

X { - iro(O )f(ro(O ),0) 

where the prime denotes the derivative with respect to r. 
The dominant term in the above expression, as Iz II, 

IZ21--+oo is the first. This implies that the behavior of the zero 
lines of F (z ],z2) for large values of its arguments is deter
mined by the values ro(O )f(ro(O ),0), i.e., the edge of the a per
ture. In general the behavior of the zero lines of the field are 
determined by the first nonzero term of the integration by 
parts. It is evident from (B2) that this term is going to be some 
derivative off(r,O) (with respect to r) evaluated at r = ro(O). 
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Existence and uniqueness of the solution to a nonlinear integral evolution equation, arising in 
particle transport theory, is discussed and proved for any time interval [0, T]. This is pursued by a 
suitable application of the contracting mapping principle to the study of the nth power A n of the 
relevant nonlinear inhomogeneous integral operator A. 

PACS numbers: 02.30.Rz 

INTRODUCTION 

In a previous paper we have discussed a class of non lin
ear integral evolution equations arising in particle transport 
theory.! This class of equations originated from integrating 
along the trajectory the nonlinear integro-differential Boltz
mann equation that governs the space-independent, veloc
ity- and time-dependent distribution function/(v,t ) of the 
particles considered in the following physical situation. In 
the interior of an unbounded host medium, consisting of cer
tain field particles (f.p.), a spatially uniform source injects at 
the time t = ° a burst of certain other particles--of mass m, 
and to be referred to as test particles (t.p.)-with an intensity 
of Qo t.p. per unit volume and with a velocity distribution 
S (v) such that S R, d v S (v) = 1. The t. p. so emitted diffuse 
then in the host medium by binary collisions either between 
themselves and against the f. p. of the host medium itself. It is 
supposed that the cross sections, relevant to all the collisions 
considered, are of the 1IIvl-type, and no external forces act 
on the system. The objective is thus to determine the distri
bution function/(v,t) of the t.p. that have been injected at 
t = 0, and to study how it evolves for t> 0. If the host medi
um is taken to be free oft.p. up to t = 0, then the sought 
distribution function must be subject to the initial condition 
/(V,O) = Qo S (v). 

In the present paper we aim at extending the results 
obtained in Ref. 1 along a two-fold direction. First, we shall 
assume that the same system as considered in Ref. 1 is now 
also subject to the action of an external conservative force. 
Secondly, we shall show here-for a general time-dependent 
force-that existence and uniqueness of the solution to the 
new class of nonlinear integral evolution equations, that now 
originates, can be proved for any time interval [0, T], whereas 
in Ref. 1 the ultimate goal has been the construction of a 
rigorous iterative scheme in a finite interval [0, To], To being a 
value of T fixed once for all. 

Studies of global solutions for the space-independent 
nonlinear integro-differential Boltzmann equation have 
been reported in the literature (see, for instance, Refs. 2-6. 
Recent reviews, that include also studies of global and local 
solutions for the space-dependent case, are those of Refs. 7 
and 8). We underline that the present approach differs from 
those proposed in Refs. 2-6 at least in the following four 
main respects. (i) We refer to the integral version of the non
linear integra-differential Boltzmann equation as it is, in 
turn, derived in the frame ofthe so-called scattering kernel 

formulation. (ii) The relevant scattering probability distribu
tion is taken to be quite general, and is not restricted to any 
special class of encounters. (iii) The effects of an external 
force are fully incorporated in the theory. (iv) In force of both 
the 1I1ul- approximation for the cross sections and the spa
tial uniformity of the problem we succeed in producing and 
solving the exact autonomous continuity equation for the 
zeroth moment of the unknown distribution function, name
ly the total density n(t). The knowledge of n(t) is, indeed, 
crucial for the explicit calculation of the relevant kernel as
sociated with the nonlinear inhomogeneous integral opera
tor, say A, to be dealt with. 

The paper is organized as follows. After the outline of 
the problem is given, we prove, by neglecting removal ef
fects, that A n is, for sufficiently large n, and with respect to 
any interval [O,T], a contraction operator mapping a certain 
ball B of an appropriate Banach space E into itself. A rel
evant fixed point theorem then applies, and consequently 
existence and uniqueness of the solution are proved. As an 
example, an exact analytical solution of the prablem is at last 
reported according to a suitable specialization of both the 
scattering probability distribution and the law of depen
dence of the external force on time. 

1. OUTLINE OF THE PROBLEM 

In the frame of the scattering kernel formulation the 
space-independent nonlinear integro-differential Boltz
mann equation, governing the distribution function/(v,t ) of 
the t.p. to be considered, reads as! 

D/(u,t) + [;'R (u) + v(u,t) !f(u,t) = G (u,t), 
Dt 

(vER 3;tE(0, + 00)). 

In Eq. (1) 

~=~+ F(t).V_ 
Dt at m v' 

(I) 

(2a) 

is the substantial derivative off, V being the symbol of the 
gradient, 

(2b) 

where N is the assigned total density of the f.p., is the colli
sion frequency for the removal of 1. p. by the f. p., 
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v{ii,t) = vs{ii,t) + VR (V,t) 

= {, dV" oi Iv - v" I) Iii-v" If(v'' ,t ) 

(0" = O"S + O"R)' (2c) 

is the collision frequency, scattering plus removal, of the t.p. 
between themselves, and 

G (v,t) = Q (v,t) + Is (v,t ) 

= Q (v,t) + {,{. dv'dv"f(ii',t )f(v" ,t) 

XO"s(lv' - v"I)lv' - v"I11(v',v"--+v), (2d) 

includes all the gain terms, namely the external source Q (v,t ), 
and the scattering-in integral Is(v,t), respectively. 

We recall also that the zeroth moment 

n(t) = r dv I(v,t ), JR, (3) 

is the (unknown) total density of the t.p. considered, whereas 
the scattering probability distribution 11 (v' ,v" --+v)-which is 
a nonnegative function on R3 ® R3 ® R 3-summable with re
spect to V-obeys the normalization condition 

(4a) 

and the symmetry condition 

11 (v' ,v" --+v) = n (v" ,v'--+v), (4b) 

with respect to the velocities v' and v" before collision. 
For the scattering-in integral we have at last 

r dvls(v,t) = r dvvs(v,t )f(v,t). 
JR j JRJ 

(5) 

We specialize now Eq. (1) according to the following 
hypothesis: (i) The external source is taken to be of pulsed 
type, namely 

Q (v,t ) = Q~ (v)D(t ), (6) 

where Qo is the intensity, S (v) is a nonnegative function on R3 
such that 

r dvS (v) = 1, 
JR] 

(6a) 

and D(t ) is the symbol for the delta Dirac function. (ii) All the 
cross sections obey the 1IIvl-Iaw, that is 

;;'R(lvl) = eRllvl, (7a) 

O"a(lv' - v"l) = Callv' - v"l, (7b) 

CR and Ca (a = S,R ) being appropriate positive constants. 
There follows thus that 

~R(V) = eRN, 

v(v,t) = Cn(t) = (Cs + CR )n(t), 

and 

Equation (1) reduces then to 
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(8a) 

(8b) 

(8c) 

Df(v t) A ---'- + [CR N + Cn(t) !f(v,t) 
Dt 

to be integrated upon the initial condition 

l(v,O) = Q~ (v). 

(9) 

(9a) 

When it is allowed to integrate along the trajectory of 
the general t.p., we obtain for the integral version ofEq. (9) 
the result 

I(v,t) = Q~ [v(O)] To(t) 

+ Cs ('du r r dv'dv"K(v,v',v";t,u)/(v',u)/(v",u), Jo JRJJR3 
(10) 

which represents a nonlinear integral equation for I(v,t ), of 
Volterra's type with respect to time. The kernel ofEq. (10) is 
given by 

K {v,ll',v" ;t,u) = T(t,u)11 [v',v" --+v(u)], (11) 

where 

T(t,u) = e - CRNlt- u) exp [ - C i'n(U')du']' (12a) 

with 

To(t) = T(t,O), (12b) 

and - -- - it F(u') v(u)==ov(F;t;u) = v - du'--, 
u m 

(12c) 

the latter following from integrating the Newton law ofmo
tion upon the final condition v(t ) = v. 

With v(u) expressed by Eq. (12c), the kernelK is not any 
longer "globally" separable as it is in the case without any 
force acting on the system. Indeed, in the limit ofF-o, we 
realize that K becomes the product of a function of time 
T (t,u i-which is the kernel relevant to the Volterra nature of 
the equation-by a function 11 (v' ,v" --+v) of the velocities 
alone. Thus both Eq. (9) and Eq. (10) reduce to the corre
sponding equations dealt with in Ref. 1. We also notice that 
in Eq. (1O),S (v), 11 (v' ,v" --+v), andF(t) are so far generalfunc
tions of their respective arguments. 

2. THE TOTAL DENSITY n(t} AND THE FACTOR T(t,u} 

Equations (9) and (10) become fully explicit once n(t ) is 
known. It can be indeed determined autonomously from the 
continuity equation, the latter being derived by integrating 
either Eq. (9) or Eq. (10) over the velocity domain and assum
ing that the exchange of the order of the relevant functional 
operations be permissible. The same result is obtained, 
namely the nonlinear Bernouilli equation 

n'(t) + CRNn(t) + CRn2(t) = 0, (13) 

provided we take into account that in the case of Eq. (10) 

{,dVS(V- LdU,F~'))=I' (14a) 

and 
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1 - (-- - II F(U')) duY u',u"----+u - du'-- = 1. 
R, u m 

(14b) 

We remark that Eq. (13) holds for any S, Y and F. 
The general solution to Eq. (13), satisfying the initial 

condition 

n(O) = Qo, (15) 

is therefore the same as in the case F = 0, namely 

nIt) = Qi:RN [(CRN + QOCR)/\NI - QOCR] -I, (16) 

which for large t behaves exponentially like e - CRNI, as phy
sically expected. 

The factor T (t,u), appearing in the kernel ofEq. (10), can 
be then determined as 

T(t,u) = H(t)H -I(U), (17) 

with 

H(t) = e- CRNI [(CRN + QOCR) _ QOCRe-CRNI] -CIC •. 
(17a) 

3. THE CASE WITHOUT REMOVAL 

When both C Rand C R tend to zero, then 

n(t) = const = Qo, (18a) 

for all t, and consequently 

T(t,u) = H(t - u) = e - CsQ,,(I- u), (18b) 

is not only separable, but also of displacement type. We re
write then Eq. (10) in an operational form as 

Af=j, (19) 

where A is the nonlinear inhomogeneous operator defined by 

Af = QoS [v(O)]e - CsQ,,1 

+ C
s 

(' du e-csQ,,(I-U) ( (.dV'dV" 
Jo JR)JR l 

X f(v' ,u}f(v" ,u)Y [v' ,v" ----+v(u)]. (20) 

4. THE OPERATOR A AS A CONTRACTION OPERATOR. 
EXISTENCE AND UNIQUENESS OF THE SOLUTION TO 
EQUATION (19) 

If To is a positive constant, let us consider the four
dimensional domain R3 ® [0, To], and denote by E the Ban
ach space of the functions lP(v,t), defined on R3 ® [O,To], 
which are continuous in t for almost every vER. 3 , and summa
ble in v for any tE[O,To]. If 

IllP II, = ( dvllP (v,t)1 
JRJ 

(21a) 

denotes the L I-norm of lP( v,t ) with respect to v, the norm in E 
is defined as 

IlllP III = max IllP II" (21b) 
tE[O.T,,] 

Let then B denote the closed ball of E centered at the origin 
and having radius Qo (in other words, IlllPlll <QoiflPEB). We 
now verify that A maps B into itself, namely ABCB. As we 
may change the relevant integration order, we get in fact for 
lPEB 
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IAlP I <QoS [v(O)]e - CsQ,,1 

+ Cs fdU e - CsQ,,(1 - u] ( ( dv'dv" 
o JR)R, 

X IlP (v',u)lP (v" ,u)IY [v',v" ----+v(u)] , (22) 

and successively, accounting for Eqs. (14), 

IIAlP II, <Qoe - CsQ,,1 + Cs fdue - CsQ,,(t - U)lllP II! 

<Qoe - CsQ"t + IlllP I W (1 _ e - CsQ"I)<Qo, 

Qo (23a) 
from which 

(23b) 

that is, A maps B into itself. Q. E. D. 
We prove now that A is a contraction. Recalling also 

Eq. (4b), we have successively 

AlP -A'" 

= Cs ('du e - CsQ,,(I- u) ( ( dv'dv" [lP (v',u) + "'(v',u)] 
Jo JR 3JR.l 

X [lP(v",u) - "'(v",u)]Y [v',v"----+v(u)] , (24a) 

IAlP-A"'I<Cs ('due-csQ,,(t-u) ( ( dv'dv"llP(v',u) 
Jo JRJJRJ 

+ "'(v',u)lllP (v" ,u) - t/J(v" ,u)IY [v'v" ----+v(u)] , (24b) 

IIAlP -A"'llt <Cs fdU e-csQ,,(t-U)lllP + "'Ilu IllP - "'Ilu 

<Cs IlllP + "'lllllllP - "'III 

<2( 1 - e - csQ"t) IlllP - "'III, (24c) 

IllAlP - A"'III <2(1 - e - CsQ"T,,) I I IlP - "'III. (24d) 

If 2( 1 - e - csQ"T,,) < 1, then A is a contraction. This re
quires thus that 

(25) 

which is the same result already obtained for the case F = O. 
We realize that this occurs because v(u) differs from v only by 
a displacement so that nothing changes when integrating S 
or Y over VeR 3• 

On the basis ofEqs. (23b) and (25) we can thus con
clude-as a straightforward application of the contracting 
mapping principle9-that, also for the present case ofF #0, 
there is only one fixed point of the operator A in the ball B of 
radius Qo centered at the origin of the Banach space E consi
dered. However, the proof of existence and uniqueness we 
have come up with so far is only local, since [0, To] is a fixed 
finite interval. 

We show next that, even accounting for a force F #0, 
we can extend our proof of existence and uniqueness to any 
time interval [O,T]. Let indeed Tbe a general positive con
stant and check if there exists a sufficiently large integer n so 
that An be still a contraction operator. We first prove by 
induction that, for lP,t/JEB, 
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IIA nq:; - A n¢llt < 2
n 

y(n,CsQot )111q:; - ¢III, (26) 
(n - I)! 

where y{n,x) denotes the incomplete gamma function de
fined as lO 

rx (n 1 k) y(n,x) = Jo dz zn - Ie - Z = (n - I)! 1 - e- x i ~ . 
o k ~ ok. 

(27) 

Indeed, if Eq. (26) is true for n - I, then we have 

IIA nq:; _ A n¢11 t 
<2Cs Qoe - C,Q"t i'dU eCsQ"uIIA n - lq:; _ An - 1¢llu 

<2n CsQoe - C,Q"t 111q:; - ¢111i'du 

X [ec.,Q"u _ ni
2 

(CsQoU)k] 
k =0 k! 

= 2n [1 _ e-CsQ'/i
l (CsQ~t)k ]111q:; - ¢III. Q.E.D. 

k=O k. 
(28) 

As y{n,x), for a fixed n;" I, is a positive, monotonically 
increasing function of x> 0, then, by taking the norm with 
respect to t of both sides of Eq. (28), we get 

2n 

IliA nq:; - A n¢lll< y{n,CsQoT)IIIq:; - ¢III. (29) 
(n - I)! 

For A n to be a contraction, it is then sufficient to verify 
that for a fixed T 

(30) 

As n- + 00, (2Cs QoTr I{n - I)! tends to zero so that for 
any fixed T there exists a value n, say, no = no(T), such that 
the condition, Eq. (30), is satisfied for any n > no. 

We have thus extended existence and uniqueness of the 
solution to Eq. (19) to any time interval [0, T). In this sense we 
can then speak of a global solution to Eq. (19) itself. 

5. AN ANALYTICAL SOLUTION TO EQ. (19) 

Let us assume that the scattering probability distribu
tion II (v' ,v" -v) be given by the following model 

II (v',v"-v) = ¢(v), (31) 

that is, it is independent of both the velocities v' and v" before 
collision, and depends only on the velocity v after collision. 
This means that the scattered t. p. forget at once their pre
vious history and are pushed towards an equilibrium distri
bution ¢(v). Then the solution to Eq. (19) is directly supplied 
by the equation itself and reads as 

f(v,t ) = QryS [v(O)] e - CsO"t 

+ CsQ~ i'dU e-c..,Q,,(t-U)¢[v(u)]. (32) 

A physical application ofEq. (32) is the one according 
to which ¢(v) is taken to coincide with the Maxwellian distri
bution 

M (v) = ( fJ 11T)3/2e - PI"I' (fJ = ml2k B T), (33a) 
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and for theforceF (t ) we refer, without loss of generality, to a 
force parallel to the x3-axis of the form 

F(t) = k3[F + FoB(t )U(t - toll. (33b) 

that is, at a certain time to> 0 a time-dependent force F oH (t ) 
is suddenly superimposed to a constant force already acting 
on the system. 

Accounting for Eqs. (33), Eq. (32) can be rewritten as 

f(v,t) = QryS (v - k3 ~ t )e -C,Q"t 

+ CsQ ~ i'dU e - C..,Q,,(t - u) 

XM[V-k3 ~(t-U)] (34a) 

for t < to' and 

f(v,t) = QryS (v - k3 F t - k3 Fo ('du' H (U')]e - C..,Q"t 
m mJto 

[- - F - Fit ] xM v - k3 -;;;(t - u) - k3 -.J! du' H(u') 
m to 

+ CsQ~ r'du e - C..,Q,,(t- u) 
JIo 

XM(V - k3 ~(t - u)- k3~LdU' H(U')], 

(34b) 

for t> to' respectively. 
In the simple casewhenH (t) = 1, we have then explicit

ly 

f{v,t) = QryS l VI,V2,V3 - ~ t - ~(t - to)U{t - to)]e - C..,Q"t 

+ 1T~2 CSQOtF eXP[;CsQo(t - to)U{t - to)] 

Xexp[~CsQotF -fJI/2V3)2] 

X {erfc[ ~CsQOtF + : - to U{t - to) - fJ1 /2V3 ] 
F+Fo 

+ t; to U (t - to) - fJ 1/2V3] }QoM (v) 
F" 

1Tt/2 
+ -2-CsQotF+Fo U(t - to) exp[(~CsQotF +F" 

_fJ1/2v )2] {'erfc{!c Q t _fJ 1/2v) 
3 2 S OF+Fo 3 

where, for a given force F, tF is the characteristic time 

m 
tF = FfJ1/2' (35a) 
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representing the time that takes F to accelerate at t. p. at rest 
up to a speedP -1/2. 

In the case when S (u) = M (u). then the solution/(u.t). 
Eq. (35). can be recast as the product ofQoM (u) times a distor
tion factor depending on u3 and t as well as on the parameters 
to. F. Fo. m.p. Cs and Qo. 

When t---+ + 00. we get 

_ tr l/2 '" ' lim /(u t) = --C Q t e(!CsQ.tF + F " -{3 v,) 
t~ + 00' 2 s 0 F + F 0 

X erfc(~CsQotF+Fo _p I/2u3)QoM(u). 
(36) 

namely. the asymptotic limit of/is. in any case. the product 
of QoM (u) times the stationary distortion factor that would 
be in order for the constant force F + Fo in absence of exter
nal source. as physically expected. (In all the preceding equa-
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tions erfc denotes the complementary error function as de
fined in Ref. 10). 
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Fields with singularities on a moving surface S with boundary as can be represented as 
distributions which have their support concentrated on S and as. This paper considers such fields 
ofthe form F = 1/ 1 + ADs, where! / 1 is the distribution determined by a field/and ADs is a 
Dirac delta distribution with density A concentrated on the tube S swept out by the moving 
surface. A straightforward calculation of the distributional gradient, curl, divergence, and time 
derivative of such fields yields fields of the following general form: G = [ g J + aDs + {JDas 
+ yV n(·)DS ' The density a is shown to contain all the information which is customarily presented 
in the jump conditions for fields with singularities at a moving interface. Examples from 
electromagnetic field theory are presented to show the significance of the other terms [ g l, {JD as, 
and yVn(')DS ' 

PACS numbers: 02.30.Sa, 03.50.De, 02.30.Jr 

I. INTRODUCTION 

In a recent paperl Costen derived the jump conditions 
for fields with step-function and D-function singularities on a 
moving interface, and thereby extended the treatment given 
to this subject in many standard textbooks, notably in Jack
son's well-known book.2 Costen's methods are essentially 
the same as those employed by Jackson. In this paper I will 
show how these results of Costen follow from a direct calcu
lation of the distributional gradient, curl, divergence, and 
time derivatives of nonclassical fields (distributions). These 
calculations also exhibit other features which are not ac
counted for in Costen's paper, but which are shown to be of 
physical significance in several examples taken from elec
tricity and magnetism. 

The theoretical advantages of the use of distribution 
theory, as opposed to the traditional methods of Costen and 
Jackson, should be widely recognized, iffor no other reason 
than the remarkable ease with which the distributional cal
culus handles the field singularities which arise in many 
physical phenomena. A well-known example from electro
statics is the solution of the field equations div(~) = 41Tp and 
curl(~) = 0 when the charge distributionp = uDs is concen
trated on a stationary surface (interface) between two media. 
A solution of the form ~ = ! e J is sought, where e is a 
smooth (differentiable) field off the surface and [e J denotes 
the nonclassical distributional field determined bye. The 
distributional calculus gives 

div(~)= [div(e)! +n·[e]Ds, 

curl(~) = [curl(e)) + nx[e]Ds, 

where [e] = e+ - e_ is the jump in e across the surface. 
Thus, to determine ~, a classical field e must be found which 
satisfies 

div(e) = 0 } 
curl(e) = 0 

off of S, 

n.[e) = 41TU} 
nX[ej =0 

onS. 

Numerous other examples from Jackson2 or other standard 
textbooks can be treated in a similar manner. Schwartz'S 

remarkably nice textbook,3 ostensibly written to promote 
this unifying aspect of distribution theory4 among the phys
ical scientists, treats several such examples in this manner. I 
have written this paper to show that the method of Schwartz 
may be extended to the physical situation discussed in Cos
ten's paper. 

Some preliminary definitions and discussion are pre
sented in the next section. The customary treatment of non
classical tensor fields (distributional tensor fields) on space
time is modified to time-dependent fields on space. The rea
son for this is to allow the results to be presented in terms of 
classical vector analysis. Sections III and IV give the formu
las for the distributional gradient, curl, divergence, and time 
derivatives of distributional fields of the forms F = [/ J and 
F = ADs. The derivations of the formulas are briefly indicat
ed. In Sec. V Costen's jump conditions are shown to follow 
from the formulas in the previous sections. In Sec. VI two 
examples from electromagnetic field theory are given to il
lustrate the physical significance of singularities in nonclas
sical fields and to advocate the distributional approach. 

II. PRELIMINARY DEFINITIONS AND DISCUSSION 

Consider a two-dimensional surface S embedded in 
three-dimensional Euclidean space R 3. The surface is as
sumed to be smooth and to have smooth boundary as (which 
may be empty). More general cases can be reduced to this 
situation. Suppose that the surface is set in motion by a 
smooth flow [CPt! generated by a smooth vector field U on 
R 3. ThuseachCP,:R 3_R 3 is asmooth map, indexed smooth
ly by the time t, and 

!!--. CP,(r) = U(CPt(r)), at 
4>o(r) = r 

for each rand t. The positions ofthe surface and its boundary 
attime t are then given by S, = CPt (S) and as, = 4>, (as). It is 
convenient to have each S, also described by 
S, = ! rER 3)h (r,t) = OJ, wherehisascalarfield with nonzero 
gradient at each point. Then the unit vector field on R 3 de
fined by fi(r,t) = Vh (r,t )/)Vh (r,t)) is a unit normal to S, at 
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each point r on St. Additionally assume that by a similar 
device i (r,t) is a unit vector field which is tangent to aSt at 
points ron ast • The speed of propagation of the surface in 
the direction of the normal is given by N(r,t) = n(r,t ).U(r). 
The tube generated by the moving surface is defined as 

S = !(r,t)ER 41h (r,t) = 01. 
The various aspects of differential geometry and distri

bution theory needed here can be found in Refs. 4, 5, and 6. 
Because I wish to present the results of this paper in the form 
of classical vector analysis, it is necessary to include some 
remarks and definitions here on how tensor analysis on ten
sor fields in R 4 can be modified to fit the time-dependent R 3 

point of view. 
A scalar field (on R 4) is a smooth function 1/J:R 4_R I 

and can be considered, in the obvious way, to be a time
dependent scalar field on R 3. A vector field (on R 4) is a 
smooth cross section of the tangent bundle. A time-depen
dent vector field on R 3 is then by definition a vector field v on 
R 4 for which v(r4) = 0 (here v is considered as a derivation 
and r4:R 4_R I is the projection on the time coordinate). For 
a coordinate system x I ,x2 ,x3 on R 3 there is a natural exten
sion Xl ,x2,x\r4 to a coordinate system on R 4, and in this 
coordinate system each time-dependent vector field v on R 3 

has local representation 

v = vle l + v2e2 + v3e3 = vle l + v2e
2 + V3e3 

in terms of the local basis and reciprocal basis for which 
j " 4 e ·ej = Uij and e = e4. Let ej ·ej = g'l' g = det{{ gij))' and as-

sume the orientation is chosen so thatg is positive. The use of 
such coordinate systems will be adhered to from now on. 
The various differential forms needed will be written with
out the exterior product symbol, e.g., dx l dx2 instead of 
dx l /\dx2. The differential one-forms onR 4are dx l

, dx2, dx3
, 

and dr4 = dt. The volume element is the differential three
form on R 4 defined by dV = gl/2 dx l dx2 dx3

, while the 
four-volume element isdV dt. The area element isdA = gl/2 
(n l dx2 dx3 + n2 dx3 dx l + n3 dx l dx2), where 
fz = n lei + n2e2 + n3e3 is the unit normal field previously 
defined. The line element is dl = gliZ 
(II dx l + I Z dx2 + /3 dx3

). It should be noticed that by use of 
a suitable parameterization of S one can show that 

Is1/JdV = Is 1/JNdA dt 

= Is 1/J(U I dxz dx3 

+ U Z dx3 dx l + U 3 dx l dx2) dt. (1 ) 

These generalities with coordinate systems are necessary to 
obtain a simpler proof of the results in Sec. IV by use of a 
special coordinate system. This special coordinate system is 
constructed by choosing x I , x2, and x 3 so that on a neighbor
hood of the tube swept out by St in R 3, e l and ez are tangent 
to S, and e3 = fz (this can be done first for S and then can be 
extended to S, by means of the flow). In this coordinate sys
tem, n l = n2 = 0, n3 = 1, and consequently 

dA dt = gIl2 dx l dx2 dt (2) 

holds on the tube S. The Levi-Civita connection (absolute 
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differential) on R 4 is denoted by V, and the covariant deriva
tive of the tensor field T along a vector field v is V y (T) = V T'V. 

The divergence and curl are defined in the usual way. This 
completes the differential geometry needed here. 

Distributional scalar and vector fields (on R 4) are, by 
definition, continuous linear functionals on the respective 
spaces of scalar and vector fields with compact support (the 
continuity is with respect to a standard topology). A time
dependent distributional scalar field on R 3 is defined to be a 
distributional scalar field! on R 4. The value of! at 1/J is denot
ed by (! 11/J). If a distributional vector field F on R 4 is res
tricted to acting only on time-dependent vector fields v on 
R 3, then the resulting linear functional is called a time-de
pendent distributional vector field on R 3, and the value ofF 
at v is denoted again by (Flv). Henceforth I will refer to 
time-dependent (distributional) scalar and vector fields on 
R 3 simply as (distributional) fields. The principal examples 
of distributional fields used in this paper are as follows: sup
pose that 1/J and v are fields which are not necessarily smooth. 
The corresponding distributional fields 11/J 1 and I v 1 are de
fined by 

(l1/Jlla)= i.1/JadVdt, 

(lvllw) = r v·wdVdt, 
JR' 

where a and ware fields with compact support. In addition 
define the distributional fields 1/Jos and vOs by 

(1/Jos la) = Is 1/Ja dA dt, 

(vos Iw) = Is V·W dA dt. 

The differential operators V, curl, divergence, and a fat are 
extended to operators on distributional fields in the follow
ing way: for a distributional scalar and vector field! and F, 
the distributional fields VJ, curl(F), div(F), aF/at, and a! fat 
are defined by 

(V!lw) = - (!Idiv(w), 

(curl(F)lw) = + (Flcurl(w), 

(div(F)la) = - (FIVa), 

(aFlat Iw) = - (Flawlat), 

(a! lat la) = - (!Iaalat), 

where a and ware fields with compact support. If 1/J and v are 
fields which are smooth everywhere except possibly on S, 
then V1/J, curl(v), div(v), iJvlat, and a1/J/at denote the fields 
obtained by taking the derivatives in the classical sense off of 
S and assigning arbitrary values on S. One can verify that if 1/J 
and v are smooth everywhere in R 4, then V(I1/JI) = IV1/JI, 
cUrl(!vJ)= Icurl(v)l,div(!vJ)= !div(v)J,a!vl/at= !iJv/ 
at I, and a !1/J 1 I at = ! a1/J/ at I. The next two sections extend 
these calculations to fields with singularities. 

III. GRAD, CURL, DIV, AND alat FOR FIELDS WITH 
STEP-FUNCTION DISCONTINUITIES 

Consider a scalar field 1/J and a vector field v which are 
smooth on R 4\S. Then 
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VU¢'1l = [V¢'I + [¢,]nos, 

curlUvll = [curl(v) + nx[v]os, 

div([v]) = Idiv(v)) + n·[v]os, 

a [v)lat= lavlatl-N[v]os, 

a 1¢,)/at = la¢'latj - N[¢']os· 

(3) 

(4) 

(5) 

(6) 

(7) 

These results are easily derived by using integration by parts 
together with a limiting process. The limiting process is re
lated to the Gaussian pillbox argument and is necessitated by 
the fact that ¢' and v are not assumed to be differentiable on 
the moving surface. To get around this, let S ~ denote the 
surface which lies at distance E from the surface S, and let B ~ 
be the solid which has S~ for boundary. The corresponding 
tube SE and four-volume BE swept out in space-time by S ~ 
and B ~ are defined in the natural way. Let n" (x,t ) be a unit 
vector field which is normal to S ~ at points x on the surface. 
Notice that the quantity ¢,nE - - [¢']n, as E-D. Similar sta
tements hold for the other quantities involved. In the follow
ing proofs the Cartesian coordinate system will be used and d 
will denote the exterior derivative operator. 

Proof of (3): From the definition 

<VI¢'llw) = - <[ ¢'lldiv(w) = - ( ¢' div(w) dV dt. 
JR' 

However, off of S 

Thus integration by parts over BE gives 

- ( ¢' div(w) dV dt = ( V¢'·w dV dt - i ¢,nE·w dA dt. 
JB

E 
JBE SE 

Taking the limit as E-D gives the result. 
Proof of (4): From the definition 

<curllvllw) = <Ivllcurl(w) = ( v·curl(w)dVdt. 
JR' 

However, off of S 

v·curl(w) dV dt 

2306 

= (v, ( aW
3 _ aW2 ) + V2 (aw, _ aW3 

) 

aX2 aX3 aX3 ax, 

+ V3 (aw2 _ aWl )) dx' dx2 dx3 dt 
ax, aX2 

= {(WI ( aV
3 _ av2 ) + W2 (~ _ av3

) 

aX2 ax, aX3 ax, 
1 

( 
aV2 av, )) d 'd 2 d 3 dt +W3 - - - x x x , 
ax, aX2 

+ d ((W2V3 - W,v2) dx2 dx3 + (W3V, - W,v3) dx3 dx' 

+ (w,v2 - w2v,) dx' dx2)dt. 
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Integrating by parts over BE gives 

1 v·curl(w) dV dt = ( curl(v)·w dV dt 
B~ JB~ 

+ i (vXnE)·w dA dt. 
s. 

Taking the limit as E-D gives the result. 

Proof of (5): From the definition 

<divlvlla) = - <lvIIVa) = - ( v·VadVdt. 
JR' 

However, off of S 

- v·VadVdt 

= - v'- + v - +v3 _ dx'dx2dx 3 dt ( 
aa laa aa) 
ax' axl ax3 

{( 
av: + av: + av:) a dx' dx2 dx3 dt, 

= ax ax ax 

- d(a(v' dx2 dx3 + v2 dx3 dx' + v3 dx' dx 2 )dt}. 

Thus integrating by parts over BE gives 

- ( v·Va dV dt = ( div(v)a dV dt - ( v·nEadA dt. 
J~ J~ J~ 

Taking the limit as E-D gives the result. 
Proof of (6): This follows from formula (7). 
Proof of (7): From the definition 

<a[¢'l/atla) = - <[¢'llaalat) 0;= - ( ¢' aa dVdt. JR' at 

However, off of S 

_If aa dx' dx2 dx3 dt = a¢' a dx' dx2 dx 3 dt 
at at 

+ d (¢'a dx' dx2 dx3
). 

Integrating by parts over BE gives 

- ( ¢' aa dV dt = ( a¢' a dV dt + ( ¢'a dV. 
JB

E 
at JB

E 
at JSE 

Taking the limit as E-D results in 

<a f ¢'l/at la) = qa¢'lat lla) - Is [¢']a dV. 

The use of identity (1) now gives the result. 
This completes the proofs in this section, dealing with 

fields having step-function singularities on a moving surface. 
The next section provides the corresponding results for fields 
with o-function singularities on a moving surface. 

IV. GRAD, CURL, DIVERGENCE, AND alat FOR FIELDS 
WITH DELTA FUNCTION SINGULARITIES 

Consider the distributional scalar field aos and vector 
field Kos with smooth density fields a and K. Then 

{
(Va - nV"a + 2flan)os' 

V(aos ) = h 

+a(nxl)oas -aV,,(n·)os, 
(8) 

{
(V(K.n)Xn + (n·curl K)n + VKX,,(n))os, (9) 

curl(Kos ) = h h 

+ ((K.n)/- (K·l)n)oas + (Kxn)·Vn(·)os. 
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{
(1f.cUrl(n x K))os, 

div(Kos) = A A A 

+ (Kxn),/oas - K·nVn(·)os, 

-taos) = at 

(10) 

(11) 

(KX n). V n Hos' etc. are defined in the natural way: 

(aVn(n.)oslw) = (aosIVn(n.w), 

«(Kxn).Vn(·)oslw) = (KXnosIVnw). a {( aa + NVna - 2flNa)os, 

at +1.(nXU)aoas + NaVn(·)os, 

a {( aK + NVnK - 2fJNK)Os, 
-(Kos) = at 
at A 

/·(nXU)Koas +NK·Vn(·)os· 

(12) 

In these formulas fJ (x,t ) is the mean curvature of the surface 
S, at the point x, and the distributions aV n (n.)os, 

Just as in the last section these results follow from integra
tion by parts. Here, however, there is no limiting process 
(E-o). In all the proofs below the special coordinate system 
described in the introduction is used. This is not absolutely 
necessary, but the special property given in Eq. (2) greatly 
shortens the proofs. 

Proof of (8): 

Proof of (9): 

(curl(Kos Iw) = f (KI ( aW3 _ aW2 ) + K2 (aWl _ aW3 ) + K3 (aW2 _ aWl )) dx l dx2 dt 
Js aX2 aX3 aX3 aX I aX I aX2 

f (WI aK3 _ W2 aK3 + (aK2 _ aKI )W3) dx l dx2 dt 
Js aX2 aX I aX I aX2 

f _ K3(w l dx l + W2 dx2) dt - w3(KI dx l + K2 dx2)dt Jas 

f (K2 aWl _ KI aW2 ) dx l dx2 dt 
Js aX3 aX3 

Is (V(K.n) x n + (curl K.n)n).w dA dt, 

f _ ((K.n)l- (K.l )n)·w d/ dt, Jas 
Is (VKxn(n)·w + (KXn)·Vnw) dA dt. 

In the last equality the following identity was used: 

VKxn(n).w+(KXn),Vi\w= ~(K2 aWl -KI aW2) 
g aX3 aX3 

which holds in the special coordinate system being used. 
Proofof (10): 

(div(Kos)IP) = - Is K·Vp dA dt 

= _ f(KI ap +K2 ap +K3 ap)gl/2dxldx2dt Js axl ax2 ax3 
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{ 

([_I_(~(gI/2KI)+ ~(gI/2K2))(3_K3 a(3 ]gl/2dxldx2dt Js gl12 axl ax2 ax3 

{_ (3 g1/2(K 2 dx l - K I dx2) dt 
Jas 

Proof of (11): 

( :t (aos )1(3 ) 

{
Is (,).curl(n XK)(J - (K·n)V,,(3) dA dt, 

{_ [.(KX n)(3 dl dt. 
Jas 

_ { a a(3 gl/2 dx l dx2 dt 
Js at 

{ (aa + a!..- (log gI/2)) (3 gl/2 dx l dx2 dt Js at at 

{ ( aa (3 g1l2 + a a(3 gl/2 + a(3 ~ (gI/2)) dx l dx2 dx3 Js ax3 ax3 ax3 

- {. a(3 gl/2 dx l dx2 
Jas 

{
Is (, -;;; + a :t (log 0"'1 + NV. a - mila p <fA dt, 

{. l.(n x U)a(3 dl dt + (aNV ii (3 dA dt. 
Jas Js 

This last equality makes use of the property in Eq. (1) and a 
similar property for the line integral. The last equation above 
shows that in an arbitrary coordinate system 

!..- (aos ) = (aa + a!..- (loggI/2) + NViia 
at at at 

-2Nfla + NaVii(.))Os + [.(nx U)aOas. 

Thus formula (11) follows since in Cartesian coordinates 
g= 1. 

Proofof (12): This follows from formula (11). 

V. THE JUMP CONDITIONS 

In this section it will be shown that the jump conditions 
given in Costen's paper follow easily from Eqs. (3)-(12) given 
here in Sees. III and IV. By combining the results in these 
equations, it is seen that if the distributional gradient, curl, 
divergence, or time derivative is taken of a field with the 
form 

F= tfl + ,1Os, 
then the resulting field has the form 

G = [gj + aos + (3oas + yVii(·)os· 

This field is the sum of distributions: Go = [ g j, Gs = aos, 
Gas = (3oas, and G ~ = yV ii (·)Ds with different orders of sin
gularities. It should be noted that if 

G = [ gj + aos + PDas + yV ii (.)Ds , 

then G = G not only implies that Go = Go, Gs = Gs , 

Gas = Gas, G ~ = G~, but also that for the respective densi
tiesg =gonR 4'\S,a = a on S, (3 = ponaS,andy = YonS. 
These last equations between the densities g,aj3,y and 
g,a,p,y are called the jump conditions. 
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r'-------------------------------------
Thejump conditions of Costen only involve the Gs part 

of the above decompositions (actually just the densities). For 
example if 

G= div(F), 

then by my Eqs. (5) and (10) 

Gs = (n.[ f] + n.curl(nXA))os. 

Also if 

then 

G= aF 
at ' 

Gs = ( - N [f] + ~~ + NV"A - 2flNA)Os. 

The density in this last equation is the negative of Costen's 
density since I have chosen to use dA dt and d V dt as the tube 
and four-volume elements instead of dt dA and dt dV. The 
rest of Costen's formulas follow in a similar manner. The 
examples in the next section will indicate why the densities in 
the other terms Go, Gas, and G ~ should not be neglected in 
the treatment of the jump conditions. 

VI. PHYSICAL INTERPRETATIONS AND EXAMPLES 

Before giving the first example it will be convenient to 
introduce some notation. The convolution of the distribu
tional scalar field p with a scalar field a (with compact sup
port) is the field given by (p*a)(x) = (pla x ), where 
ax ( y,t) = a(x - y,t). The convolution involving a distribu
tional vector field J is done componentwise. In Cartesian 
coordinates (e j ) the components of J are the distributional 
scalar fields J j defined by (J j la) = (Jlae j ). The various 
convolution operations are then defined by 
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J*a = (J1*a)e l + (J2*a)e2 + (J3*a)e3, 

J*V = J1*V I + J 2*V2 + J3*V3, 

J /\ v = (J2*V3 - J3*V2 )e l + (J3*VI - J 1*V3)e2 

+ (J1*V2 - J2*v!le3· 

The position vector field on R 3 is denoted by x = x1el 
+ x 2e2 + x 3e3 and its magnitude is the scalar field denoted 

by Ixl. 
In the first example let me show how fields of the form 

9 = IPJ +pDs 

and 

~#= IMJ +mos 
can be interpreted as a polarization field 9 arising from an 
electric dipole distribution and as a magnetization field ~ 
arising from a magnetic dipole distribution. As is well 
known these fields contribute to the electric and magnetic 
fields indirectly through effective (virtual) charge and cur
rent distributions P e and J m • Distribution theory explains 
all of this directly as follows. The usual intuitive arguments 
suggest that the contributions of 9 and ~ to the potential 
functions of the electric and magnetic fields are given by 

tP =9*~, 
e Ixl J 

X 
Am =~/\ --3' 

Ixl 
However, the distributional calculus gives 

9*~ = 9*V(_1_) = -div(9)*_1_, 
Ixl 3 Ixl Ixl 

~ /\ _x_ = ~ /\ V ( _1_) = curl(~)* _1_ . 
Ixl3 Ixl Ixl 

These identities suggest defining the effective charge and 
current distributions by 

Pe = - div(9), 

J m = curl(~), 

which is the customary procedure. The formulas from Secs. 
III and IV may be used to expressPe and J m in terms ofP,p 
and M,m. The potentials tP e and Am are then expressible as 
follows (for clarity the variable y has been suppressed in se
veral places as, for instance, curl(M) = curl(M)( y), n = n( y), 
etc.): 

{ 
_ i div(P) dV( y) + r n·curl(pxn) - n·[P] dA (y) 

R' Ix - yl Js Ix - yl 
tPe(x) = i (i A) i ( A)A ( ) + X n .p dl ( y) + p·n n· x ~ y dA ( y) 

as Ix - yl s Ix - yl 

i curl(M) dV( y) + r nx [M] + V(m.n)Xn + (n.curl(m))n dA (y), 
R' Ix - yl Js Ix - yl 

Am (x) = + r VmXi\(n) dA (y) + r (m.n)l - (m.l)n dl( y), 
Js Ix - yl Jas Ix - yl 

+ r (mXn)n.(x;- y) dA (y). 
Js Ix - yl 

For simplicity in the above formulas, it has been assumed 
that the surface is stationary. One can readily see that these 
formulas reduce to the formulas in Jackson's book when 
p = 0 = m. It should be noted that the last two terms in the 
equations tP e and A m are not accounted for in the work of 
Costen. All of the terms involving p and m arise naturally 
from the mathematics and their physical significance is ex
plained by the following intuitive argument, which also sug
gests various ways of experimentally realizing these dipole 
distributions. It is apparent that some of the terms are zero 
when p and m are either tangent or normal to the surface at 
each point, and so the argument will proceed under one of 
these assumptions (the general case follows by resolving into 
tangential and normal components). 

One imagines the electric dipole p to be represented by 
an infinitesimal arrow with a positive charge at the head, an 
equal negative charge at the tail, and the amount of charge 
times the length of the arrow equal to Ipl. These arrows are 
embedded in the surface S with their various orientations 
coinciding with the various directions ofp. Firstly, when p is 
everywhere normal to S, the two ends ()f each arrow pro
trude on opposite sides of S and all the arrow heads together 
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I 
form a surface with charge density p·n, while all the tails 
form a surface with charge density - p.n. These two sur
faces, considered infinitesimally close to one another, consti
tute an electric dipole layer whose contribution to tPe (x) is 
easily seen to be (cf. Ref. 2, p. 37) fs(p·n)o·(x - y)lx 
- yl-3dA (y). Secondly, if the dipole arrows are everywhere 

tangent to the surface then two adjacent arrows, lined up 
head to tail, tend to have their respective head and tail 
charges combine (cancel if equal in amount), and the net 
charge is measured by the surface divergence ofp, which [cf. 
the proof of Eq. (10)] is given by n.curl(pxn). The reason for 
this divergence term is explained by taking a small curvilin
ear square with p everywhere tangent to two of its sides and 
normal to the others. The integral of the surface divergence 
over this square is equal to the line integral of p around the 
sides, and this latter integral is, by construction, equal to the 
difference in strength of p on the two normal sides. Thus, a 
net surface charge density arises. An additional contribution 
to the potential arises at the boundary as from the dipoles 
which protrude through and create a net line charge density 
of(lxn).p. 

One imagines the magnetic dipole m to be represented 
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by an infinitesimally small current loop (in the shape of a 
curvilinear square) lying in a plane perpendicular to m with 
the direction of current flow determined by the direction of 
m and with the current strength times the area of the loop 
determined by Iml. Firstly, when m is everywhere tangent to 
the surface S, one can conceive of each current loop as strad
dling the surface S, with two sides of the loop running along 
two adjacent normals and the other two sides of the loop 
connecting the normal sides and running along at equal dis
tances on each side of S. The totality of these latter two sides 
forms two surfaces infinitesimally close together, one with 
current density m X 0 and the other with current density 
- m X n. Such a configuration is a magnetic dipole layer and 

its contribution to Am (x) is easily reasoned to be 
Is (mxn)n.(x - y)lx - yl-3dA (y). There is an additional 
contribution from the currents m X 0 and - m X 0 flowing 
on opposite sides of each current loop. These sides, connect
ing the normal sides, have different lengths (except where S 
is flat) due to the variation in the normal 0 along the direction 
ofmxn. This variation is measured by V mXiI(o)llml and the 
resulting surface current density is V mXiI (0). Next, the sides 
of the current loops which are normal to S have currents 
running in the normal direction which combine (perhaps 
cancel) along adjacent sides. The net effect is a current den
sity o·tcurl(m))n distributed over S and a current density 
- (m·l)n distributed along as. Secondly, in the case where m 

is everywhere normal to the surface S, a vector identity gives 
o·curl(m) = 0, and so one is left only with the surface current 
density V(m.o) X 0 and the line current density (m.o)i. These 
densities are present since now all the current loops form a 
grid on the surface with the currents in the sides of adjacent 
loops combining (perhaps cancelling) all the way out to the 
boundary as where one is left with a net current flowing 
around the boundary circuit. 

The second example involves Maxwell's equations: 

div(fP) =P, 

afP 
curl(JIt') - - = J, 

at 
a!!IJ 

curl(if) + - = 0, 
at 

div(!!IJ) = o. 

Letp = [Pol +PIOS +P20as +P3V(.)OS and 
J= {JoJ +J10S +J2oas +J3V(·)os bedecomp'?sitio!lsof 
P and J into distributions with supports on R 4\S, on S, and 
on as, respectively. To find nonclassical solutions of Max
well's equations, assume that the fields have the form 

fP = (d) + Dos, 
K= [hI + Hos' 
if = leI + EOs, 
!!IJ = (b) + BOs. 

Substituting these fields in the field equations and calculat
ing the derivatives in the distributional sense gives the fol
lowing sets of equations: 
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div(d) = Po, 

curl(b) - adl at = J o, 

curl(e) + ablat = 0, 

div(b) = o. (13) 

These equations are to hold on R 4\S. 

o·([d] + curl(oXD)) =PI> (14) 

n.([b] + curl(nxB)) = 0, (15) 

{

o X ([b] - V(H·nl) + V "xii (i1) } 

+ (n.curlH)n+N[d] _ aD -NV.D+WND 
at n 

= J 1, (16) 

{

nx([e] - V(E·nl) + VExa(n) } 

+ (n·curl E)o - N [b] + ~~ + NVaB - WNB 

= O. (17) 

Equations (14)-(17) are to hold on S. 
(DXo).i =P2' (18) 

(H.o)l - (H.l)n + i,(UXn)D = J 2• (19) 

(E.n)l - (E.l)n - i,(UXn)B = o. (20) 

(Bxn).i = o. (21) 

Equations (18 )-(21) are to hold on as. Of course the interpre
tation of these sets of equations is that (13) constitutes the 
usual Maxwell equations governing the classical parts d, b, e. 
and b of the fields on each side of the moving surface. Equa
tions (14)-(17) are the jump conditions that hold on the mov
ing surface, while Eqs. (18)-(21) are the jump conditions that 
hold on the boundary of the moving surface. The additional 
set of equations connected withp3 and J 3 has not been listed. 
Equations (14)-(17) are the ones given by Costen in dealing 
with this example, and are seen to reduce to the jump condi
tions given in Jackson's book (where D = H = E = B = 0). 
lt should be noted that the last two equations of Costen [Eqs. 
(16) and (17) here] have particularly simple resolutions along 
the normal direction: by taking the dot product with 0 on 
both sides of these equations and using Eqs. (14)-(15) and 
some vector identities, one arrives at 

n-( curl H - ~~ - J I) = N(div(D) - pd. 

n-( curl E + ~~ ) = o. 

VII. CONCLUSION 

The techniques employed in this paper concerning 
fields with singularities to the second order can, in principle. 
be extended to fields with singularities of higher order. Re
gularity theorems from distribution theory quarantee that 
every distributional field (with compact support) is essential
ly a finite sum of derivatives of continuous functions. Taking 
derivatives then just increases the order. Thus. calculations 
like those in Sees. III and IV may be carried out, but they 
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yield complicated results. Simplifications and unification 
(even of the results given here) can be obtained by extending 
the treatment to distributional rank-k tensor fields on space
time. These topics will be discussed in another paper. 
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Necessary and sufficient conditions for a differential system of equations to admit a variational 
formulation are established by having recourse to Vainberg's theorem which provides also a 
systematic method for producing the sought functional. An application of the method to the 
Lagrangian description of fluid dynamics leads to a new variational principle which, while being 
fully general, reveals a hierarchy between variational approaches to fluid dynamics. Next, the 
method is applied in an attempt to obtain new variational formulations in various areas of 
research pertaining to continuum physics: water wave models, elasticity, heat conduction in 
solids, dynamics of anharmonic crystals, and electromagnetism. Owing to the power of the 
method, relevant variational formulations are found whenever the given system allows them. The 
paper places particular emphasis on equations which have, or are supposed to have, soliton 
solutions. 

PACS numbers: 02.30.Wd, 03.40.Gc, 03.50.De, 03.40.Dz 

1. INTRODUCTION 

At first sight it could seem that the importance ofvari
ational principles is due to their being alternate approaches 
to direct applications of local physical laws. This look, 
though, is fairly unrealistic: variational formulations of the 
laws of continuum physics may be the only rigorous way to 
express such laws. This is so because the fundamental princi
ples of continuum physics are global in character while local 
forms of the laws are generated from them only if the in
volved fields are endowed with suitable smoothness proper
ties. However, this smoothness is very often unnatural in 
that it rules out point sources and discontinuities. In conclu
sion, there are physical phenomena which can be adequately 
modeled mathematically only in a variational setting. 

Yet, further aspects weigh in favor of variational formu
lations. First, a single functional accounts for all of the in
trinsic features of the problem at hand: differential equa
tions, boundary and jump conditions. Second, variational 
formulations may serve to unify diverse fields and constitute 
natural means for approximating I or finding2 the solution. 
Third, the variational approach allows a systematic connec
tion between symmetries and conservation laws.3 Fourth, 
sometimes a Lagrangian turns out to be more fundamental 
than the resulting equations of motion as it happens, for ex
ample, in Feynman's path integral formulation of quantum 
mechanical systems. Finally, it is an astonishing feature that 
the overwhelming majority of equations having soliton solu
tions are the local counterparts of some variational prob
lem. 4 

These considerations are enough for justifying the im
portance of getting new variational formulations and, more 
specifically, of solving the inverse problem of the calculus of 
variations which consists of finding the functional whose 
stationary points are described by a given set of equations. 
Until recently, however, the search for functionals was prac
ticed as an art merely based on trick transformations of the 
given equation. Physically, when a functional can be speci
fied through a Lagrangian L, the difficulty relies on the fact 

that the standard presciption L = T - Vonly works for con
servative particlelike systems. 

A first systematic attempt to solve the problem dates 
back to Darboux5 who succeeded in the case of one unknown 
function only. The case of two unknown functions was 
solved by Douglas6 in 1941; since then a number of papers 
appeared on the subject-see, e.g., Refs. 7-11. The inverse 
problem was definitely solved by Vainberg l2 within the 
framework of functional analysis; he showed that the ques
tion of existence of a variational principle (potentialness) is 
equivalent to determining whether or not an operator is self
adjoint. The importance of Vain berg's work was rightly em
phasized by Tonti l3 who derived operational formulas to 
check the self-adjointness of differential operators. Subse
quently, more general operational formulas were obtained 
and applied by Atherton and Homsy. 14 Recently, a series of 
papers was written by Santilli9 in connection with a thor
ough investigation of Lagrangian formulations of second
order systems; as a result Santilli rediscovered the self-ad
jointness condition characterizing potential operators. 
Finally, we mention that Gurtin 15 set up a variational formu
lation, involving a convolution bilinear form, for linear ini
tial value problems. Gurtin's approach was re-examined by 
Tonti l6 who, on appealing to Vainberg's theorem, arrived at 
a more direct procedure. A convolution bilinear form is in
volved also in the work by Kanal and Moses 17 where a vari
ational principle for Fredholm equation, and then for the 
Gel'fand-Levitan equation and the Korteweg-de Vries 
equation, is exhibited. 

In spite of the literature referred to above, we believe 
that further attention should be paid to Vainberg's theorem 
especially with the twofold purpose of bearing evidence of 
the power of the theorem and of finding new variational for
mulations in continuum physics. With this in mind, here we 
attempt to obtain new variational formulations in various 
areas of research (e.g., vectorial solitons) and to remedy defi
ciences of previous formulations (e.g., fluid dynamics). To 
this end, in Sec. 2, we restate Vainberg's theorem and then, in 
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Sec. 3, we apply it to the Lagrangian description of fluid 
dynamics. So we are able to set up a variational principle 
delivering the continuity equation too as an Euler-Lagrange 
equation; a detailed comparison with known variational for
mulations is also presented (Sec. 4). Next, Sec. 5 provides a 
number of variational principles pertaining to various 
branches of continuum mechanics: water wave models, elas
ticity, heat conduction in solids, dynamics of anharmonic 
crystals. Finally, Sec. 6 yields three variational formulations 
for electromagnetism. The general operational formulas to 
check the potentialness of operators, defined by an arbitrary 
number of nonlinear differential equations in an arbitrary 
number of independent variables and of arbitrary order (de
veloped in the Appendix), are used throughout. Besides in
volving an extensive application of Vain berg's theorem, this 
paper delivers many new Lagrangians; the systematic way of 
producing them witnesses the power of the theorem. 

2. POTENTIALNESS OF A DIFFERENTIABLE 
OPERATOR 

LetX, Ybe Banach spaces over the field of real numbers 
R (obvious generalizations hold when the Banach spaces are 
over the field of complex numbers C). For each subset U of Y 
we let ff( U;X) denote the vector space over R of all opera
tors from U into X. If the range of an operator belongs to R 
then the operator is called a functional. The symbol 11·11 den
otes the norm of both X and Y while ill stands for a suitable 
convex subset of YandX * for the conjugate (dual) space ofX. 
Letting vEX and zEX *, (v,z) represents a bilinear functional 
(pairing) satisfying the condition that whenever (v,z) = ° for 
every vEX (zEX *) thenz(v) is the null element of X *(X). In the 
instance when X = X * is a real Hilbert space of functions 
from a domain !iJ C R" into an m-dimensional vector space 
V, then (.,.) may be taken as the inner product on X 

(v,z) = L,V(X),z(X)dr, (2.1) 

where"·" denotes the inner product on V, or, if!iJ = [x 1,x2] 

in R, as the convolution product 

(v,z) = rX

'v(x2 - x)·z(x)dx. lx, (2.2) 

Suppose that UC Yis an open set and UEU. An operator 
NE..;V(U;X) is said to have a Gateaux variation at u if 

VN(ulh) = lim N(u +Ah) -N(u), 
,,--0 A (2.3) 

namely, 

lim/l(l/A )[N(u +Ah) - N(u)] - VN(ulh)/I = 0, ,,--0 

exists for each direction hE Y. The operator VN (u I·)E ff( Y;X) 
is called the Gateaux variation of Nat u. Letting aE R, it is 
immediate from the definition (2.3) that VN(ulah) 
= aVN(ulh), which makes VN(ulh ) a homogeneous opera

tor in h. If, further, VN (u Ih ) is a bounded linear operator in h 
from Y into X, then the operator N is said to have a Gateaux 
differential at u which will be denoted by DN (u Ih ). Also, in 
view of the linearity on h, we may write 
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DN(ulh) = N'(u)h, hEY, 

which defines the Gateaux derivative N'(u); in the case of 
functionals 

Df(ulh) =f'(u)h: = (f'(u),h). 

If the Gateaux variation Vf(ulh) ofa functionalfexists 
at each point of ill C Y, then for any two points u, u + hEm the 
Lagrange formula 

flu + h) - flu) = Vf(U + 'Th Ih), 'TE(O, 1), (2.4) 

holds. The counterpart of (2.4) for operators is 

(N(u + h) - N(u),z) = (VN(u + 'Th Ih), z), (2.5) 

where 'TE(O, 1) depends on z. 
A bilinear operator G on pairs (u HU 2) of elements 

u I,U2EYis called symmetric if G (u l'U2) = G (u 2,u I)' Now let 
Y = Xbe a real Hilbert space. For any linear operator N onX 
we define the adjoint operator N * of N through the relation 

(v,N(u) = (N*(v),u), u,vEX. 

If N = N * then N is said to be self-adjoint. Hence, because 
the symmetry of (.,.) implies that (v,N(u) = (N(u),v), the 
bilinear functional G (u,v): = (N(u),v) is symmetric if and 
only if N is self-adjoint. 

An operator NEff(X;X) is potential on U C X if there 
exists a functionalfsuch thatf'(u) = N(u) for every UEU. 
Moreover,f'(u) = N(u) allows us to write 

.!!.... f(uo + A (u - uo)) = Df(uo + A (u - uo)lu - uo) 
dA 

= (N(uo + A (u - uo)),u - uo). 

The obvious integration yields 

flu) = f(uo) + f (N(uo + A (u - uo)),u - Uo)dA. (2.6) 

Whenever the pairing (.,.) coincides with (2.1) the functional 
f determines the Lagrangian (density) 

L (u) = (u - uo)·fN(uo + A (u - Uo))dA, (2.7) 

whereby 

flu) = f(Uo) + L L (u)dr, !iJ C R". 

These preliminaries enable us to exhibit a detailed proof 
of Vainberg's theorem. 12 

Theorem. Suppose that 
(1) N is an operator from X into X *, 
(2) N has a linear Gateaux differential DN (u Ih ) at every 

point of the ball B:/lu - uo/l<r, 
(3)the bilinear functional (DN(ulh ),k ) on h,kEXis con

tinous in u at every point of the ball B. 
Then a necessary and sufficient condition for N to be poten
tial in the ball B is that 

(DN(ulh ),k) = (DN(ulk ),h) (2.8) 
for every h,kEX and every uEB. 

Proof Look first at the necessity. We known that there 
exists a functionalfsuch that (N(u),7]) = Df(ul7]), UEU, 7]EX. 
Consider now uEB and h,kEX, /lh 1/ = I/k /I = 1, and choose 
a,/3ER such that u + ah + (3kEB. The expression 
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A = flu + ah + 13k) - flu + ah ) - flu + 13k ) + flu) 

may be given the form, 

A = ifJ (u + 13k) - ifJ (u) 

by lettingifJ (u) = flu + ah) - flu). SoifJ is Gateaux differen
tiable and then, in view of the Lagrange formula (2.4), we can 
write 

A = DifJ(u + r l {3k I 13k) 

= {3 (N (u + ah + r I 13k ),k ) 
- {3 (N(u + r l 13k ),k), rIE(O,l). 

Accordingly, on appealing to the Lagrange formula (2.5) we 
obtain 

A = a{3 (DN(u + r 2ah + rl{3k Ih ),k), r 2E(O,1). (2.9) 

On the other hand, put 

tf;(u) = flu + 13k) - flu); 

following along an analogous procedure we arrive at 

A = a{3 (DN(u + rph + rJ3k Ik ),h), r 3,r4E(0,1). 

Comparison between (2.9) and (2.10) delivers 

(DN(u + r 2ah + r l{3k Ih ),k) 

= (DN(u + rph + rJ3k Ik ),h). 

(2.10) 

Taking the limit as a-D, {3-D yields the desired result (2.8). 
As to the sufficiency, we have to prove that, in view of 

(2.8), N (u) = f'(u) for some functional!; it seems then natural 
to look at the functional (2.6). Letting u,u + hEll, it follows 
from (2.6) that 

flu + h ) - flu) 

= f (N(uo + A (u - uo) + Ah),h )dA 

+ f (N(uo + A (u - uo) + Ah) 

- N(uo + A (u - uo)),u - Uo)dA. (2.11) 

It is convenient to express the second integral, say I, in the 
form 

1= f[Ll. !. (N(uo +A (u - uo) + ah ),u - uo)da]dA 

= f [1''' (DN (uo + A (u - uo) + ah Ih ),u - uo)da ]dA. 

On using the hypothesis (2.8) and on interchanging the order 
of integration, we arrive at 

1= f (N(uo + (u - uo) + ah) 

- N(uo + a(u - uo) + ah),h )da. 

Then, substitution into (2.11) yields 

flu + h) - flu) = f (N(u + ah ),h )da. 

Application of the mean value theorem to the right-hand 
side gives 

flu + h) - flu) = (N(u + rh ),h), rE(O, 1). 

Letting h-Ah we have 
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limf(u+Ah)-f(u) = (N(u),h), hEX, 
A~O A 

that is 

N(u) =f'(u). D 

In this paper we are concerned with the inner product 
(2.1) and, in order to emphasize the essence of our analysis, 
we disregard possible boundary terms. In other words, we 
are dealing with operators devoid of initial and boundary 
conditions (formal operators 13,14) and then the potential ness 
condition (2.8) is considered up to boundary terms. Of 
course, whenever we have variational formulations with 
fixed end point conditions the boundary terms vanish identi
cally and this makes formal potential operators be in fact 
potential operators. 

When N is a continuous, possibly not differentiable, op
erator the potentialness condition is expressed through the 
independence of J ,(N(u),du) of the path t'ofintegration. In 
this connection we observe that, in the case of formal opera
tors, on changing the path of integration we obtain, in addi
tion, boundary terms which are being disregarded. 

As a last observation, we remark that sometimes the 
potential condition (2.8) is referred to as symmetry condi
tion 13 or self-adjointness condition. 9 

3. VARIATIONAL FORMULATION OF FLUID DYNAMICS 
VIA THE LAGRANGIAN DESCRIPTION 

Look at an inviscid fluid whose motion is described in 
terms of the time t and the Lagrangian (Cartesian) coordi
nates X = (XI,XZ"'" Xn)E~,~ being a suitable reference 
configuration; although physical reasons suggest that n<3, 
we allow n to be arbitrary. Letting x = (x I' X z,"" x n ), 

x = x(X,t) is the position vector of the particle X at time t. In 
terms of the function x = x(X,t ) we may define the matrix 
XaA = aXa/aXA (a, A = 1,2, ... ,n), its determinant 
J = det(xaA ), and its inverse X Aa = aXA /axa • Lettingp(po) 
be the mass density in the present (reference) configuration 
and p be the pressure, the equation of motion and the contin
uity equation in the Lagrangian description are, respective
ly, 

PXa,tt + XMaP'M = 0, 

Jp -Po=O, 

(3.1) 

(3.2) 

the summation convention being in force and a comma de
noting partial derivatives, namely It = af(X,t )lat, 
1M = af(x,t )laxM. To Eqs. (3.1) and (3.2) we must add the 
energy equation. Here we confine ourselves to adiabatic 
flows; accordingly the energy equation may be expressed 
through the conservation of the specific entropy S, namely 
S (X,t ) = So(X). 

Concerning the system (3.1), (3.2) we observe that the 
functions x,p, dependent on X and t, are the unknowns for 
the problem under consideration whereas the functions 
p(p,s), Po(X), So(X) are assigned. Letting u be the pair (x,p), 
the system (3.1), (3.2) may be given theformN(u) = ° thereby 
defining the differential operator N. It is a routine matter to 
check that N is not potential, namely it does not meet (2.8) 
with respect to the pairing (2.1), as it is readily recognized by 
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using the explicit formulas (A2). However, putting 
p' = apip,So)1 ap, the analysis of (A2) in connection with the 
system (3.1), (3.2) suggests that we adopt the equivalent form 

PoXa.tt + JP.MXMa = 0, (3.3) 

p'(polp) - p'J = 0, (3.4) 

which defines a potential operator. Then, on choosing 
Uo = (O,p), the relation (2.6) yields the Lagrangian 

L = !PoXaxa.tt + Xa f J(AxbQ ) 

X P.M(p,So)XMa(AxbQ)dA 

+ (p - p) t P.3 p'( p,So)dA 
Jo P 

- (p - p) f p'(p,So) J(AxbQ)dA, 

wherep =p +.,1. (p - pl. Now, on account of the obvious 
relations 

J(AxbQ ) = A nJ(xbQ ), XMa(AxbQ ) = A -IXMa(XbQ ), 

and ofthe identity l8.19 

(JXMa).M = 0, (3.5) 

up to boundary terms the Lagrangian L becomes 

L = -! PoXa.t xa.t + Po I: (p'(r,So)/r) dr 

- JxaM XMa fA n-I p(p,So) dA 

- (p - p) J fAn p'( p,So) dA, (3.6) 

the dependence on u = (x, p) being understood. Observe 
now that, on the basis of the relationship between the pres
surep and the internal energy E, namely p = p2aE lap, inte
gration by parts gives 

fP p'(r,So) dr = p( P, So) + E (p,So) 
J" r p 

_ (P(~So) + E(P'So))' 

Also, an integration by parts yields 

(p - p) fAn p'(p,So) dA 

= p(p,So) - fn A n -I p(p,So) dA. 

(3.7) 

(3.8) 

Then, becausexaM XMa = n, substitution of(3.7) and (3.8) 
into (3.6) allows the Lagrangian to be written in the equiva
lent form 

L (x, p) = ! Po xa.t xa.t - Po E (p,So) 

+ [J - (polp)] p(p,So)· (3.9) 

Often the literature bears evidence of different ap
proaches to the variational description of fluid dynamics. It 
is then of interest to establish precise connections between 
these approaches and ours. In essence one approach consists 
in embodying the continuity equation into the equation of 
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motion thus making the latter equation the unique one for 
the problem at hand. Specifically, substitution of p = pol J 
(and S = So) into (3.1) gives 

Po xa.tt + J X Ma P.M = 0, (3.10) 

wherep must be regarded as a function on X.M (and X), name
ly p = p( pol J,So)' Letting u = x, the equation (3.10) may be 
written as the operator equation N(u) = 0; it turns out that 
the operator N so defined is potential. Then, on setting 
Uo = i # 0, we find the Lagrangian 

L = PO(xa - xa) f Xa,tt dA + (xa - xa) 

X f J(XbQ)XMa(XbQ)P,M(POJ-I(XbQ),So)dA, 

where i = i + A (x - i). On evaluating the first integral and 
using the identity (3.5) in connection with the second inte
gral, up to boundary terms (and up to the sign) L takes the 
form 

L = !POxa.t xa.t + (xa - Xa),M 

X f J (xbQ ) X Ma (xbQ ) p( Po J -1(XbQ ), So) dA. 

Observe now that 

J X M = ~ (3.11) 
a aXaM 

and then that 

(xa -Xa),MJ(XbQ)XMa(XbQ) = ;~ ; 
accordingly 

f (xa - Xa).M J(XbQ)XMa(XbQ)p(poJ-I(XbQ)' So) dA 

= Po t p(r(A ),So) ..i.. (r-I(A )) dA = : I, Jo aA 

where r = polJ. Because 

I = Po I: P(r.;0) dr, 

wherep = polJ(xbQ ) andp = polJ(xbQ ), and integration by 
parts and the relationship p = p2 aE lap give 

1= porE (p,So) - E (p,So)]· 

Hence L may be written in the form 

L (x) = ~PoXa,tXa,t -POE(pr:/-I(XbQ),so) (3.12) 

which is the one usually dealt with in the literature. 
The second approach originates from the following 

question: What happens if the continuity equation is regard
ed as a constraint from the variational viewpoint? The fact 
that (3.2) is a variational constraint leads us to modify the 
Lagrangian (3.12) in 

L (x,P,J.L) = !POxa.t xa.t -PoE(p,so) +J.L(J -po/pI, (3.13) 

J.L = J.L(X) being the Lagrange multiplier. The unknown func
tions arexa ,P,J.L; in view of the identities (3.5), (3.6) it follows 
at once that the corresponding Euler-Lagrange equations 
are 
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POXa,tI +JXMaJl,M =0, 

2 aE 
Jl-p ap =0, 

J-polp=O. 

(3.14) 

(3.15) 

(3.16) 

As we should expect, the system (3.14H3.16) is equivalent to 
the system (3.1), (3.2), which proves that (3.13) accounts 
properly for the constraint (3.2) within a variational ap
proach. Moreover (3.15) shows that the Lagrange multiplier 
Jl is just the pressure p. That the Lagrange multiplier Jl asso
ciated with the continuity equation constraint is the pres
sure, was proved by Lanczos,20 and later by Eckart,21 in the 
case of incompressible fluids and also by Bedford and Drum
heller22 in connection with mixtures of incompressible 
fluids. 

In a sense it could seem that the change from (3.12) to 
(3.13) consists in the addition of a natural condition in accor
dance with the Courant-Hilbert general principle23: If a 
variational problem for a given functional is changed by the 
explicit addition of one or more natural conditions to the set 
of constraints, the stationary character of the functional is 
not affected. However such is not the case because J - pol 
P = 0 is not a consequence of the variational problem asso
ciated with (3.12). Yet, direct connections exist between the 
variational problems related to (3.9), (3.12), and (3.13). Pre
cisely, (3.15) gives Jl = p( p,so); substitution into (3.13) yields 
the Lagrangian (3.9). If, instead, we substitute (3.16), namely 
p = pol J, into (3.13 )-or into (3.9) as well-we obtain the 
Lagrangian (3.12). In conclusion we have found a hierarchy 
between variational formulations through the following pro
cedure: The substitution of a natural condition into the cor
responding stationary functional, in such a way that the 
number of unknowns is reduced, leads to a functional having 
as Euler-Lagrange equations a proper subset of the previous 
Euler-Lagrange equations. 

4. ALTERNATIVE VARIATIONAL FORMULATIONS OF 
FLUID DYNAMICS 

Since the appearance of Lichtenstein's book24 in 1929, a 
number of works concerning variational principles in fluid 
dynamics have been performed. First Taub25 and Herivel26 

improved Lichtenstein's formulation by accounting also for 
the conservation of energy. Later Serrin27 revisited the sub
ject and emphasized a method of Lin involving Lagrange 
multipliers; the method was subsequently applied by Lin 
himself in connection with liquid helium. 28 

Briefly, the main idea introduced by Herivel is that vari
ational formulations, based on the Eulerian description of 
fluid dynamics, may be set up provided the mass conserva
tion and the (isentropic) energy equation are accounted for 
through Lagrange multipliers. Herivel's scheme however is 
restricted to special flows only; for example, if S,M = 0 then 
v = x.1 is required to be irrotational. Lin's improvement 
consists in the addition of three constraints, expressing the 
conservation of the identity of particles, thus avoiding any 
restriction on the type of flow under consideration. 

In 1968, a paper of Seliger and Whitham29 appeared, 
which is important both for the thoroughness of the ap
proach and for the influence on the subsequent development 
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of variational approaches in continuum mechanics. Among 
other topics, such a paper shows how to reduce Lin's addi
tional constraints to one only without any loss of generality. 
Specifically, Seliger and Whitham's approach is based on the 
Lagrangian 

L = ~pV2 - pE(p,S) + <P (: + V'(PV)) 

+7](cJ(;t
S

) +v·(PVS)) +p(a(:r
a

) +V'(pva)} 

(4.1) 

where the unknownsp, S, v, a, <p, 7],P are viewed as functions 
on the present position x and the time t-here VI = a/(x,!)/ 
ax,a/ fat: = a/(x,t )lat. The variations with respectto v,p,S, 
a yield, respectively, 

v = V<p + SV7] + aVp, (4.2) 

~ v2 _ a(pE) = (a<p + v'V<P) 
2 ap at 

+ S (~; + v'V7]) + a(: + v'VP) , 

(4.3) 

aE a7] 
as - at - v,V7], (4.4) 

ap + v.vp= 0, 
at 

(4.5) 

while the variations with respect to <p, 7], P give the side (con
straint) conditions. Taking the material time derivative of 
(4.2) and accounting for (4.3H4.5) lead to the usual Euler 
equation of fluid dynamics. 29- 31 

As remarked by Bretherton,32 although it describes 
completely the dynamics ofthe fluid, Seliger and Whitham's 
approach is not always very convenient because the poten
tials involved suffer from indeterminacies and redundancies 
in their definition and are not endowed with a clear physical 
meaning. To overcome this drawback, Bretherton himself 
set up a hybrid approach which is based on the Eulerian 
description of motion but regards the variations of the fields 
at a fixed particle as the independent variations of the prob
lem. With the same purpose, Wilhelm33 has considered the 
equations of fluid dynamics in the form 

a(nmv) -- + V.(nmvv) + Vp + nV4J = 0, 
at 

an - + V·(nv) = 0, 
at 

ap + v.(pv) + (y - l)pV.v = 0, 
at 

(4.6) 

(4.7) 

(4.8) 

where n is the particle density, nm = p, and 4J is the poten
tial of the external field while Eq. (4.8) is a formal extension 
of the adiabatic law. As it stands, the system (4.6H4.8) does 
not admit a variational formulation. This gives reason for 
two Wilhelm's results. First, a variational derivation of Eq. 
(4.6) only, Eqs. (4.7), (4.8) occurring as side conditions. Sec
ond, a variational derivation of the system (4.6H4.8) when 
written in terms of the new canonical fields p = mv and q, 
defined by aq/at = nv; in such a case a Lagrangian L (q) is 
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found. 
Usually the Lagrangian description of motion allows a 

more direct approach to variational formulations. This as
sertion is substantiated by the papers ofEckart21 and Leech. 2 

Unlike ours, their procedures do not lead to the continuity 
equation as an Euler-Lagrange equation; indeed their 
schemes are closely related to the one characterized by the 
Lagrangian (3.12). 

A noticeable bridge between variational formulations, 
based on Lagrangian and Eulerian descriptions, has been 
accomplished by Van Saarloos.31 Specifically, on looking at 
the position vector x as the only unknown function of the 
problem, by means of a canonical transformation the vari
ational principle of Seliger and Whitham for the Eulerian 
description is derived from the variational principle, for the 
Lagrangian description, corresponding to the Lagrangian 
(3.12). Since the derivation is based on the use of Hamilton
ian variables, Van Saarloos-like procedures fail when also 
the continuity equation is regarded as an Euler-Lagrange 
equation merely because the Lagrangian is independent of 
P,I [as it happens for (3.9) and (3.13)] which makes the asso
ciated conjugate momentum vanish. 

Based on the analysis of the literature outlined so far, 
the main result of our variational approach turns out to be 
the feature that the continuity equation is obtained as an 
Euler-Lagrange equation without having recourse to La
grange multipliers. In fact, this result has been arrived at by 
looking at the equations of fluid dynamics as a system of 
equations and applying systematically Vainberg's theorem. 

In ending this section, we point out that according to 
some claims a misunderstanding might arise about the exis
tence of variational principles for viscous fluids. For exam
ple in Refs. 2 and 34, the authors assert to yield variational 
principles for the time-dependent viscous Navier-Stokes 
equation in terms of the Eulerian description. In fact, they 
merely write as a variational principle a differential expres
sion which is not the variation of any functional. On the one 
hand, the lack of a functional does not permit the recourse to 
fruitful techniques such as direct methods of the variational 
calculus. On the other hand, use of a differential expression 
is consistent with the fact that, as Vainberg's theorem allows 
us to prove, a functional cannot be found which admits the 
customary viscous Navier-Stokes equation as Euler-La
grange equation provided supplementary, unphysical, varia
bles are not introduced. A detailed proof of such a nonexis
tence property will be presented in a forthcoming paper; here 
we mention that Vainberg's theorem allowed Finlayson35 to 
shorten Millikan's proof whereby the steady state Navier
Stokes equation for an incompressible fluid does not admit a 
variational principle unless either (v·V)v = 0 or 
VX(VXv)=O. 

5. VARIATIONAL FORMULATIONS IN CONTINUUM 
MECHANICS 

In order to show evidence of the utility of Vain berg's 
theorem, here we apply the theory elaborated in Sec. 2 so as 
to arrive at variational formulations for a prominent set of 
partial differential equations concerning various branches of 
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continuum mechanics. Of course, likewise in Sec. 3, the 
check on the potentialness of operators defined by such 
equations is performed via the conditions (A2) delivered in 
the Appendix. 

Look first at some equations occuring in fluid dyna
mics. The Korteweg-de Vries (KdV) equation, accounting 
for the behavior of weakly dispersive and weakly nonlinear 
water waves, may be given the form 

U,I + u,x + UU,X + u.xxx = 0, (5.1) 

U = u(x,t ) being the unknown function. It is a simple matter 
to see that the operator N for(5.l) is not a potential operator 
and that, moreover, this is due to the presence of a third 
order derivative. This feature suggests that we put U = e,x or 
u = e,l.lfu = e,x then Eq. (5.1) becomes 

e,XI + e,xx + e,x e,xx + e,xxxx = 0 

and the associated operator N turns out to be a potential 
operator. Accordingly, in view of (2,7), which for one un
known function e reads 

L (e) = e f N(Ae) dA, (5.2) 

we find the Lagrangian 

L (e) = ~ ee,XI + ! ee,xx + ! ee,x e,xx + ! ee,xxxx (5.3) 

which is equivalent to 

L (e) = ! e,x e,l + ! ((),x f + i((),x)3 

(5.4) 

It is worth mentioning that substituting e,xx = X into (5.4) 
yields a first-order Lagrangian which traces back to 
Whitham.36 

As to the choice u = e." instead, it follows that the cor
responding equation singles out an operator N which does 
not admit a variational formulation. 

In spite of the many impressive properties of solutions 
to the KdV equation, there are grave technical difficulties 
associated with the problem of the existence of the solution. 
Besides this, the physical assumptions leading to the KdV 
equation equally well justify the Benjamin, Bona, and Ma
hony (BBM) equation 

u.1 + U.X + UU,X - u.XXI = 0 ("5.5) 

as modeling long water waves.30
•
37 Based on these aspects, 

Benjamin, Bona, and Mahony advocated (5.5) as a better 
founded model than (5.1). Owing again to the presence of a 
third-order derivative, Eq. (5.5) does not admit a variational 
formulation. Upon substituting u = e,x Eq. (5.5) is changed 
into 

e,XI + e,xx + e,x e,xx - e,XXXI = 0 (5.6) 

which is associated with a potential operator N; the use of 
(5.2) leads to the Lagrangian 

L (e) = ! ee,XI + ! ee,xx + ! ()(),x e,xx - ! ee,XXXI . (5.7) 

Lately a generalization of the BBM equation in higher 
dimensions has been suggested and investigated by Gold
stein and Wichnoski38

; their GBBM equation reads 

u,/ - V2u,/ + V.[tf»(u)] = 0 (5.8) 
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V being now the gradient operator in d dimensions. As it 
stands, Eq. (5.8) does not admit a variational formulation 
again because of a third-order derivative (V2u.t ). Then, by 
analogy with the previous cases, we let U = ~f ; 8.; and write 
(5.8) in the form 

d 

2: [8.;t - V2 8,;t + V8.;.cI»'] = 0, (5.9) 
1 ; 

where cI»' is the derivative of cI» with respect to its argument 
~f k 8.k • In view of(5.2) the potential operator N defined by 
(5.9) allows (5.9) itself to be the Euler-Lagrange equation of 

d 

L(8)=2: [!8,;8,t+!8,;t V28 
1 ; 

- - 8V 8,; ·f AcI»'( At; 8'k) dA ]. (5.10) 

On the basis of argument similar to those of Benjamin, 
Bona, and Mahony, Jeffrey39 advocated the J equation 

U. t + u,x + uU,x + U,xtt = 0, (5.11) 

Again it is convenient to set U = 8,x; this makes (5.11) into 
the equation 

8,xt + 8,xx + 8,x 8,xx + 8,xxtt = 0 

which is the Euler-Lagrange equation of 

L (8) = ! 8,x 8,t + !(8,x)2 + !(8,x)3 + 8,t 8,xxt + ~(8,xt f 
(5.12) 

In a sense, the equation 

U,t + j(u) U,x + U,xxx = 0 (5.13) 

may be viewed as a particular case of(5.8). Nevertheless it 
deserves our attention for many respects. Specifically, if 
j(u) = u2 then (5,13) models the motion of anharmonic dis
crete-mass strings.40 Moreover, ifj(u) = - u2 and the new 
function v is introduced through the Miura transformation41 

v = u2 + J6 u,x 

then (5.13) becomes just the KdV equation. Again put 
u = 8,x; Eq. (5.13) becomes 

8,xt + j(8,x) 8,xx + 8,xxxx = O. 

It is a routine matter to arrive at the corresponding Lagran
gian 

L (8) = -! 8,x 8" + !(8,xx)2 + 88,xx f Aj(A8,x) dA. 

Consider now some equations modeling elastic media. 
To begin with, look at an infinite beam of mass density p and 
bending stiffness B laterally supported by a distributed 
spring of spring constant K and compressed by the axial load 
P. Its motion is governed by42 

PU,tt + Ku + PU,xx + Bu,xxxx = O. (5.14) 

The operator N defined by (5.14) turns out to be potential; on 
applying (5.2) we arrive at the corresponding Lagrangian 

L (u) =! [p(U,,)2 - Ku2 + p(U,x)2 - B (U,xx)2]. 

A second example is given by Love's equation for waves 
in rods, namely 

U,tt - u,xx - u,xxtt = 0; 
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this equation models also shallow-water waves (linear Bous
sinesq equation). On account of(5.2) we find the Lagrangian 

L (u) = ~ [(U,,)2 - (U,x)2 + (u.xt fJ. 
A third example has the remarkable feature that vis

cous damping does not prevent a variational formulation. 
Specifically, waves on an elastically supported string 
damped by air friction are described by43 

U,tt - u,xx + U + 2au" = 0, (5.15) 

u being the constant damping coefficient. As it stands, Eq. 
(5.15) does not admit a variational formulation. Now multi
ply (5.15) by the integrating factorj(t); we find that the new 
equation corresponds to a potential operator if 
j(t) = exp(2ut ). In such a case we arrive at the Lagrangian 

L (u) = ~ exp(2ut) [(uj - (u,x f - u2] . (5.16) 

It is worth observing that, owing to the identity 

[ exp(ut ) U. t )2] 

= I [exp(ut) ul,r j2 - u [exp(2ut) u2l,r + ~ [exp(ut) U]2, 

on letting t/J = exp(ut) u, the Lagrangian (5.16) may be writ
ten as 

L (t/J) =! [(t/J,tf - (t/J,xf - (1 -~) t/J2] , 

which is the well-known Lagrangian for the Klein-Gordon 
equation. 

A further example, arising from quite a different con
text, consists in an equation concerning nonstationary heat 
conduction in rigid bodies. To evade the drawback due to the 
parabolic character of the standard heat equation, Fourier's 
law has been retouched to read 

7q,t + q + KVT= O. 

Then, letting H,t = q, the heat conduction turns out to be 
described by the system44 

U + V·H=O, 
(5.17) 

7H,tt + H,t + KVT = 0, 

in the unknowns T, H, while u, K are known functions on T. 
To adhere to physical reality the relaxation time 7 as well 
should be a function on T; however, for the sake of simpli
city, 7 is assumed to be a constant. A direct inspection shows 
that the system (5.17) does not satisfy the conditions (A2) for 
the existence of a variational formulation. Meanwhile, the 
inspection indicates that equations (5.17) could satisfy the 
required conditions via suitable integrating factors, namely 
- K exp(t h) and exp(t /7), respectively. Then application of 

(2.7) and some rearrangements yield the Lagrangian 

1 1 
L (T,H) = 7K exp(t h)(uT" + ~ H·VT - 2K H,t·H.t)· 

We end this section by examining a system of third or
der differential equations describing vectorial solitons in an
harmonic lattices45; this system reads 

U,t + uU,x + /3vv,x - au,xxx = 0, 

EV" - rv.x + /3 (uv,x + u,xv) - av.xxx = 0, 

where a, /3, y, E are constants and u, v are the unknown 
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functions. Likewise for KdV equation, this system, as it 
stands, does not meet the potentialness conditions. How
ever, letting u = e,x and v = ¢>,x, we obtain the system 

e,XI + e,x e,xx + f3¢>,x ¢>,xx - ae,xxxx = 0, 

€¢>,XI - rifJ.xx + f3 Wx ifJ,xx + e,xx ¢>,x) - a¢>,xxxx = 0, 

in the unknowns e,¢>, which complies with the conditions 
(A2) and then it allows for a variational formulation. Indeed, 
use of (2.7) yields the Lagrangian 

L (e, ¢> ) = ~ e,x e,l + !Wx)3 + ~a(e,xx)2 

+ ~ f3 (¢>,x f e,x + ~ €¢>,x ¢>,t 

- ~ r(¢>,x)2 + ~ a(¢>,xx)2. 

6. VARIATIONAL FORMULATION FOR 
ELECTROMAGENTISM 

Several variational formulations for electromagnetism 
both in vacuum and in matter have been established (see, 
e.g., Refs. 46, 47 and references therein); here we look again 
at electromagnetism in vacuum with the purpose of setting 
up new formulations and of relating them with old ones. 

When dealing with electromagnetism it is a crucial 
point that Maxwell's equations are eight equations in the six 
unknowns E, Bon (x,t ); this implies that, as they stand, Max
well's equations cannot be framed in a variational formula
tion. A number of procedures overcome this difficulty. 

First observe that, owing to the continuity equation 

V·J +P,t = 0, 

the scalar equations 

V·E = 41TP, 

V·B=O 

(6.1) 

(6.2a) 

(6.2b) 

hold at any time t provided only that they hold on the initial 
data.48

,49 This allows us to confine our attention to the two 
vector equations 

VXB - (lie) E" = (41Tle) J, 

VXE + (lie) B" = 0 

(6.3a) 

(6.3b) 

in the two unknown vectors E, B. The equations (6.3) are 
easily recognized to be associated with a first order potential 
operator; hence use of (2.7) leads to the Lagrangian 

L (E,B) = (l/e)E·B,t + !E·VXE + !B,VXB - (41Tle)J·B 

(6.4) 

A second procedure renders the number of unknowns 
equal to the number of the equations through the introduc
tion of additional unknowns. Specifically, as is well-known, 
Eqs. (6.2b) and (6.3b) amount to expressing E and B in terms 
of the potentials A and ifJ. Accordingly, the complete system 
of equations reads 

- E - (lie) A" - V¢> = 0, 

B-VXA=O, 

(lie) E" - VXB + (41Tle) J = 0, 

V·E - 41Tp = O. 

(6.5a) 

(6.5b) 

(6.5c) 

(6.5d) 

An immediate check shows that the system (6.5) is associated 
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with a potential operator; then, by means of(2. 7), we arrive at 
the Lagrangian 

L (E,B,A,¢» = ~ (B2 - E2) - E{ +A,t + VifJ ) 

- B·VXA + 41T( +J.A -P¢> ). (6.6) 

We mention that Seliger and Whitham29 obtained the La
grangian (6.6) through a different procedure involving (6.2b) 
and (6.3b) as constraints on E and B. 

By analogy with Sec. 3, here we point out a hierarchy 
between variational formulations. Specifically, in view of 
(6.5a,b) we replace (6.5c,d) and (6.6) with 

J..(J.. A.t + V¢» +VX(VXA)- 41T J=O, (6.7) 
e e,l e 

V· ( + A,t + VifJ ) + 41Tp = 0, (6.8) 

and 

1 ( 1 )2 L (A,¢> ) = 2" ~ A" + V¢> 

respectively. It is a trivial matter to ascertain that (6.7) and 
(6.8) are the Euler-Lagrange equations of the well-known 
Lagrangian (6.9). 

Owing to its extensive use, the Lorentz gauge 

V·A + (lie) ifJ" = 0 (6.10) 

deserves our attention. Observe first that 

!(VXA)2 = VA:VA - VA:(VAr (6.11) 

where VA:VA = Aj •i Aj •i , and that, up to boundary terms, 

2 ( 1 ) 1 - A,t'V¢> = b.t. - A·V - ifJ., - - ¢> (V·A),I . (6.12) 
e e e 

Returning now to the Lagrangian (6.9), application of(6.10)
(6.12) and some rearrangements yield 

L (A,ifJ) = ~ (:2 A".A., - VA:VA + V¢>.V¢> - e12 (¢>,y) 

+ 41T ( + J·A - p¢> ) . (6.13) 

The Euler-Lagrange equations associated with (6.13) are the 
usual equations for the potentials A and ifJ in the Lorentz 
gauge. 

Analogous procedures may be performed in other 
gauges (such as the Coulomb gauge V·A = 0 or the gauge 
¢> = 0). 

APPENDIX 

Here we derive explicit conditions for an operator N to 
be potential with respect to the pairing (2.1), namely 
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(h,k > = L h (x).k (x) dr. 

Specifically, we look at the system offourth-order differen
tial equations 

(AI) 

in the unknown functions UB on the n variables Xt, ..• ,Xn , 

where A and B run over a suitable set of indices; for example, 
A = l, ... ,m or A = (i,)), i,} = l, ... ,m. According to Vain
berg's theorem, a Gateaux differentiable operator N (u) is po
tential if and only if 

(DN(ulh), k > = (DN(ulk), h > 

for arbitrary test functions h, k. On applying the definition 
(2.3) to the operator N defined by the system (AI) we have I 

afA 

aUB,pq 

afA ] + hB,pqrs kA dr, 
aUB,pqrS 

An analogous expression holds for (DfB(UA I hA), kB>' Then, 
on performing a suitable sequence of integrations by parts 
and appealing to the arbitrariness of the test functions h A , k B 

we can assert that 

(DfA(uBlhB),kA> = (DfB(uAlkA),hB> 

is true if and only if the conditions 

afA afB 

aUB,pqrs aUA,pqrS 

afA afB + 4 ( JfB ) 
aUB,pqr aUA,pqr JUA,pqrs ,s 
afB 

- 3 (a:~:q)r + 6 (a:::qrJ,rs aUA,pq 

(A2a) 

(A2b) 

(A2c) 

afA afB ( afB) ( afB ) 
+ 4 (aU~:qrs trs 

(A2d) = --+2 -- -3--
auB,p au A, p au A, pq ,q au A, pqr ,qr 

afA 

aUB 
afB ( afB ) (afB) ( afB ) 
aUA - auA,p ,p + aUA,pq ,pq - aUA,pqr ,pqr 

+ (aU~:qrs tqrs 
(A2e) 

are satisfied, 
Observe that, upon disregarding the left-hand side of 

these relations, each column involves derivatives offB with 
respect to derivatives of U A of a particular order, say a, and 
that the sign of the coefficients of such a column is ( - I )a, 
Apart from the sign so determined, the entire set of coeffi
cients results in Pascal's (or Tartaglia's) triangle, With these 
rules it is immediate to write explicitly necessary and suffi
cient conditions for a differential operator of any order to be 
potential. 

A comment is now in order. WhenfA and U B represent 
in fact one equation,f = 0, in one unknown, u, some of the 
conditions (A2) become very powerful. First, iff = ° is an 
odd-order differential equation then the condition involving 
the highest order derivative, namely 

af af 

au, pqr.... au, pqr ... 

implies that no variational formulation is possible. As an 
immediate consequence, the KdV equation in its original 
form does not admit a variational formulation. Second, if 
flu): = au,xx + bu,x + g(u, x), where u, a, andb are functions 
on x only, the condition (A2d) shows that the equation 

,u(x)f(u) = ° 
does always admit a variational formulation provided 
,u = exp[S (b fa) dx), 
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We note in passing that the check of the conditions (A2) 
for a system of equations requires a preliminary labeling of 
the equations and of the unknowns, Accordingly, the fact 
that the given system of equations is or not a system of 
Euler-Lagrange equations may depend on the labeling. 

Finally we mention that when the number of equations 
is different from the number of unknowns then no variation
al formulation can be obtained merely because the range and 
the domain of the corresponding differential operator N are 
different and hence N cannot be the derivative (gradient) of a 
functional. 
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The upper bound on the spin-flip cross section is improved by adding a fourth constraint in a 
variational calculus. The total cross section, elastic cross section, the forward slope, and the 
backward slope of the imaginary part of the amplitude form the equality constraints. In addition 
the unitarity of the partial waves gives inequality constraints. 

PACS numbers: 02.30.Wd, 11.80.Et 

I. INTRODUCTION 

The application of the variational calculus to scattering 
problems in particle physics 1.2 was generalized to cases with 
spin, in Refs. 3

-
s The results of those papers were applied to 

spin (1I2)-spin 0 cases to find numerical solutions. Thus, the 
cases 1T+ p and K + p were investigated6 ,7 with only two con
straints, namely, the forward slope and the total cross sec
tion. For this, the phase shifts of several groups were 
used.8

-
w One totally unexpected result of this study was the 

wide discrepancy between the predictions of different phase 
shift sets for the spin-flip cross section. Apparently this 
quantity had never been tested with phase shifts before. They 
differed by as much as a factor of 6. Still, the bounds found 
with two constraints were weak. In the best cases they were 
larger by a factor of 8 and in many cases more than a factor of 
to. When we added a third constraint, namely the elastic 
total cross section, the bounds improved greatly. In general 
they were now larger by only a factor of 2 and in some cases 
even smaller. 

In this paper we add a fourth constraint, the backward 
slope of the imaginary part of the amplitude. The complica
tion introduced by this new constraint is the separation of 
the partial waves into even and odd 1 types. Also a fourth 1-
independent Lagrange multiplier appears. The forms of the 
partial waves depend now on four Lagrange parameters. 
However, since the fourth constraint we are adding is linear 
in imaginary parts of the partial waves the new multiplier 
appears, unlike the third one, on equal footing with the mul
tipliers corresponding to the first two constraints. The third 
constraint, that is the elastic cross section, was quadratic in 
the real and imaginary parts of the partial waves. As a conse
quence of this its Lagrange parameter had appeared in the 
denominators of the partial waves.s This feature had made 
the problem of fitting the constraints a nonlinear problem. It 
still remains nonlinear, but now we have to fit four con
straints with four parameters to maximize the spin-flip cross 
section. 

In Sec. II we define our constraints and the quantity to 
be maximized. We write the Lagrange function and taking 
its second derivatives we find the maximum conditions. 
Spins of the particles are taken fully into account by defining 
four classes for this spin (l/2)-spin 0 case according to the 
elasticity of the partial waves. 

·1 Research supported by the Natural Sciences and Engineering Research 
Council (NSERC). 

In Sec. III we find, using the consequences of inequality 
constraints satisfied by the partial waves in different classes, 
the explicit forms of the partial waves in terms of the I-inde
pendent Lagrange parameters. 

In the conclusion we outline the formalism used to 
maximize the spin-flip cross section subject to the given four 
constraints using the forms of the partial waves in different 
classes. We also summarize and discuss our results. 

II. FOUR CONSTRAINTS AND UNITARITY 

In order not to carry the multiplicative factors in the 
calculations we define instead of 
C1sF,a

T,aL,{dA Idt )I,,~ 1 ,IdA Idt )1, = _ I the quantities G, AI), 
E, S, and T. 

k 2 

Ao=-uT =I[(l+I)al+ +Ial_], (2) 
41T 

E=~aL=I [(1+ l)(ai· +r:+)+/(0;- +rJ)], {3) 
41T 

S = 4k 2 ~ dA I = I ' (l + 1) [ (l + 1) a 1 + + la 1- ], vs dt Z= 1 

(4) 

T=4k2~ dA I vs dt z=-I 

= I 1(1 + 1)[(1 + l)al + + lal_ ]( - 1)1+ I. (5) 

Here U SF is the spin-flip cross section, u T the total cross 
section, aL elastic cross section, A the imaginary part of the 
scattering amplitude, dA Idt I. = 1 its derivative in the for
ward direction and dA Idt I. = _ 1 the derivative in the back
ward direction. k is the c.m. momentum, 01 + ,al _ ,'1 + ' '1_ 
are the imaginary and real parts of the partial waves. 

Unitarity gives the following inequality constraints: 

U I = 01+ - a7+ - rJ+ ;;;.0, 

VI = al _ - a1_ - rJ- ;;;.0. 

(6) 

(7) 

We want to maximize G subject to constraints (2)-(7). 
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The Lagrange function is 

L = G + aAo + rE + /3S + oT + I(I + l)A.,u, + IIIL,v,. 

(8) 

The Lagrange multipliers A, and IL' associated with the ine
quality constraints satisfy 

A, >0, IL, >0. 

The factors (I + 1) and I in the series are chosen for conve
nience. We also define the frequently appearing combina
tions: 

B=_2_1_, D_2(/+ 1). 
21 + 1 (21 + 1) 

(9) 

Differentiating the Lagrange function with respect to differ
ent variables we find (aL I aa, + ) = ° gives 

(B + r - Ada,+ - Ba,_ + Ha + 1(1 + liB 

+ 1(1 + 1)0( - 1)/+ 1 + Ad = 0, (10) 

(aLlaa,_ ) = ° gives 

Da,+ -(D+r-IL,)al_ -Ha+/(/+liB 

+ 1(1 + 1)0( - 1)'+ 1 +ILd = 0, 

(aL la" + ) = ° gives 

(B + r -Ad',+ - B,,_ = 0, 

(aL la'l_ ) = ° gives 

D,,+ - (D + r - IL,)"- = 0. 

(11) 

(12) 

(13) 

For a given value of I there are two amplitudes jj + and h _ . 
A pair of partial wave amplitudes belong to one and only one 
of the following four classes: 

I+I-={/lu,>O,v,>O}, A,=O, IL,=O, (14) 

1+ B - = {/lu, >O,v, = o}, A, = 0, IL,>O, (15) 

I-B+={/lu,=o,v,>o}, A,>O,IL,=O, (16) 

B + B - = {/lu, = o,v, = o}, A,>O, IL,>O. (17) 

Maximum conditions are found from the second derivatives 
ofL. 

(fL 
--=2(/+ I)(B+r-A,), (18) 
aat+ 

(fL = -BD(21 + I), 
aa,+ aa,_ 

(fL 
--= 2(1 + 1)(B + r - Atl, 
art + 

a
2

L = _ BD(21 + I), 
a" + a,,_ 
(fL 
--= 2/(D + r - ILtl, 
aa7_ 

(fL 
--= 2/(D+ r-IL,). art_ 

(19) 

(20) 

(21) 

(22) 

(23) 

These conditions have not changed from the three constraint 
case by adding the fourth constraint T, because T is linear in 
a,+ and a,_ . For maxima, the condition that second de
rivatives be negative give 
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B + r-AI<O, 

D + r - IL,<O. 

III. PARTIAL WAVES IN FOUR CLASSES 

(24) 

(25) 

Class I + I -: In this class A, = 0, IL, = 0. Hence Eqs. 
(10) and (11) become 

(B+r)a,+ -Ba,_ +~ [a+/(/+ liB 
+/(/+ 1)/j(-I)'+I] =0, (26) 

Da,+ -(D+r)a,_ -! [a+/(/+ 1)1:1 

+ I (I + I )o( - 1)' + I] = O. (27) 

Unless the determinant 

-B I 
-(D+r) 

vanishes, that is unless 2 + r = 0, we have 

= - (l/2r)[a + 1(1 + 1lf3 + 1(1 + 1)0( - 1)'+ I]. 

(28) 

Unitarity gives 

0< -(l/2y)(a+/(/+ 1lf3+/(/+ I)o{ -1)/+1]<1. (29) 

WithAl = IL, = Oin this class, the maximum conditions (24), 
(25) become 

B+r<O, 

D+r<O, 

(30) 

(31) 

r being I-independent only certain values of I will satisfy 
these inequalities. 

In this class Eqs. (12) and (13) take the forms 

(B + r)', + - B,,_ = 0, 

D,,+ - (D + r)',- = 0, 

(32) 

(33) 

" + and ',_ are different from zero only if the determinant 
vanishes, e.g., 

y= -2. (34) 

When 2 + r = 0 the inhomogeneous Eqs. (26) and (27) are 
consistent. That is 

B+r =_B_= -1. 
D D+r 

(35) 

The real and imaginary parts of the partial waves then satisfy 

(B-2)a,+ -Ba,_ +~[a+/(/+I)/3 

+/(/+ 1)0(-1)'+1] =0, (36) 

(B - 2),,+ - B,,_ = 0, (37) 

a,+ -a7+ -rt+ >0, (38) 

a,_ - a7_ - rt- > 0. (39) 

If the determinant does not vanish, that is, if2 + r#O we 
have 

(40) 

Class I + B -: In this class A, = 0, IL, >0. The Eqs. (10)
(13) become 
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(B + y)al + - Bal _ + Ha + IIi + 1)/3 

+/(/+ 1)15(_1)/+1] =0, 

Dal + -(D+y-Ildal _ -~[a+l(/+I).8 

+ 1(1 + I)D( - 1)1+ 1+ Iltl = 0, 

(B + y)rl+ - Brl _ = 0, 

Dr,+ - (D + Y - IlI)rl _ = 0. 

(41) 

(42) 

(43) 

(44) 

Again in order that r l + and rl_ be different from zero the 
determinant ofEqs. (43) and (44) mush vanish. This gives 

IldB + y) = y(y + 2). (45) 

Equation (45) can be satisfied only by certain values of /. 
When the determinant is zero, the other two determinants of 
the inhomogeneous equations (41) and (42) also must vanish. 
Or 

B+y B --=----
D D+ y-Ill 

a + IIi + 1)/3 + IIi + I)D( - 1)/+ I 

a + / (/ + 1).8 + / (/ + I)D( - 1)1 + I + III 

For this equation to be satisfied we must have either 

y + 2 = III = 0, 

or 

a + / (/ + 1)/3 + / (/ + I)D( - 1)/+ 1+ Y = 0. 

(46) 

(47) 

(48) 

As we have Al = ° in I + B -, the first case is similar to the 
class I + 1-, except that VI = 0. 

The second possibility / (/ + 1) = - [(a + y)/ 
/j3 + D( - 1)1 + I )] can be satisfied by at most one / value if the 
right-hand side is a positive integer. 

In the first case the equations satisfied by the partial 
waves are identical with the Eqs. (36)-(39), except that (39) is 
now an equality. 

In the second case, they are 

(B + y)al + - Bal _ -!y = 0, (49) 

(B+y)rl+ -Brl_ =0, (50) 

al + -aT+ -0+ >0, (51) 

al _ -aT_ -0- =0. (52) 

When the determinant is different from zero, we have 

rl+ =rl _ =0. 

In this class 

vI=al _ -aT_ -0- =0. 

Hence, except for the values of / which might satisfy Eq. (45) 
we have in general 

VI =al _ -aT_ =0. 

Thus 
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(1) If al _ = 1, we find from Eq. (41) for al+ 

al + =_I_{B_~ [a+/(/+ 1)/3 
B+y 

+ 1(1 + l)o( - 1)1+ I]). 
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(53) 

Equation (42) gives 

III = 2+y [a+/(/+ 1)/3 
B+y 

+ /(1 + l)o( - 1)1+ 1+ 2y]. (54) 

We impose the unitarity condition O.;;;;a l + .;;;; 1 on Eq. (53). 
Together with the maximum condition (24) this gives 

2B.;;;;a + IIi + 1)/3 + IIi + I)D( - 1)1+ I.;;;; - 2y. (55) 

The maximum condition (25) imposed on (54), together with 
Eq. (55) and Eq. (24) gives 

y> -2 (56) 

and 

a+/(/+ 1).8+/(/+ 1)15(-1)1+1.;;;; BD _y. (57) 
2+y 

(2) If a l _ = 0, we find from Eq. (41), 

1 [a + IIi + 1)/3 + /(1 + l)o( _ 1)1+ I]. 
2(B+y) 

(58) 

From Eq. (42) we find 

III = - 2 + Y [a + IIi + 1).8 + /(1 + l)o( - 1)1+ I]. 
B+y 

(59) 

The unitary condition 

imposed on (58), together with the maximum condition (24), 
gives 

O';;;;a + IIi + 1)/3 + IIi + I)D( - 1)1+ I.;;;; - 2(B + y). 
(60) 

The maximum condition (25) imposed on (59) together with 
III >0, Eq. (60), and B + y.;;;;O gives 

y+ 2>0, (61) 

and 

a+l(/+I)/3+1(/+I)D(-I)I+I>- BD _y. (62) 
2+y 

The contributions of the partial waves of the form (53) or (58) 
to G, Ao, S, E, and T cannot be summed in closed form as was 
the case with two constraints. The reason for this is the pres
ence of y in the denominators of these two formulas. How
ever, in practical calculations6

•
7 this has no effect since a 

finite numer of partial waves are summed numerically. 
Class I - B +: In this class A I >0, III = 0. The Eqs. (10)

(13) become 

(B + Y - A I )a 1+ - Ba 1- +! [a + / (I + 1)/3 

+ 1(1 + I)D( - 1)1+ I +AI] = 0, (63) 

Da l + - (D + y)a l _ - ~ [a + 1(/ + 1)/3 

+ I (l + I )o( - 1)1 + I] = 0, 

(B + Y - AI)r,+ - Brl _ = 0, 

Drl + - (D + y)r l _ = O. 

(64) 

(65) 

(66) 

For r l + and rl_ to be different from zero the determinant of 
the Eqs. (65) and (66) must vanish. This condition gives 
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A/(D + r) = r(r + 2). (67) 

Since r is I-independent only certain I values will satisfy this 
equation. When the determinant of the homogeneous Eqs. 
(65) and (66) vanishes, the two other determinants of the in
homogeneous Eqs. (63) and (64) must vanish. Hence 

B+r-AI B 

D D+r 

a+/(/+ 1).8+1(/+ I)D(-I)/+I+ AI 

a + 1(1 + 1).8 + 1(1 + I)D( - 1)/+ 1 

(68) 

These equations give either 

r+2=AI =0, 

or 

(69) 

a + 1(1 + 1).8 + 1(1 + I)D( - 1)/+ 1 + r= O. (70) 

Since in the class I - B + J-li = 0, the first case is similar to the 
class I + I - except that UI = O. Writing Eq. (70) in the form 

1(/+1)= _ a+r , 
f3 + D( - 1)/+ 1 

one can see that this relation can be satisfied at most by one 
positive integer / if the right-hand side is a positive integer. 

In the first case (69) Eqs. (36)-(39) remain the same ex-
cept that Eq. (38) is now an equality. 

In the second case (70) they become 

Dal + -(D+r)al _ +~r=O, (71) 

Drl + - (D + r)rl _ = 0, (72) 

a 1+ - a7 + - rY + = 0, 

al _ - a7_ - rY- >0. 

(73) 

(74) 

When the determinant of Eqs. (65) and (66) is different from 
zero, 

rl+ = rl_ = O. 

Except for the special values of I which might satisfy Eq. (67) 
we have in general 

ul=al + -a7+ =0. 

Hence 

(1) Ifal+ = 1, we find from Eq. (64), 

1 
al __ =--!D-![a+/(/+l).8 

D+r 

+ I (I + 1 )D( - 1)1 + I] J . 

Equation (63) gives 

AI= 2+r la+/(/+1).8 
D+r 

+ 1(1 + l)D( - 1)/+ 1 + 2rJ. 
We impose the unitarity condition, 

O<al_ <1 

(75) 

(76) 

on Eq. (75). Together with the maximum condition (25) this 
gives 
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2D<a + 1(1 + 1).8 + 1(1 + I)D( - 1)/+ 1< - 2r. (77) 

The maximum condition (24) imposed on (76), together with 
AI>O, Eq. (77), and 

D+r..;;O, 

gives 

2 + r>O, (78) 

and 

a+/(/+ 1).8+1(/+ 1)D(-I)/+I..;; BD -r. (79) 
2+r 

(2) If a l + = 0, we find from Eq. (64), 

al _ 1 [a+/(/+l).8 
2(D+r) 

+ 1(1 + I)D( - 1)/+ I]. (80) 

Equation (63) gives 

AI = - 2 + r [a + 1(1 + 1).8 + 1(1 + I)D( _ 1)/+ I]. (81) 
D+r 

We impose the unitarity condition O..;;al _ <1, on Eq. (80). 
Together with the maximum condition (25) this gives 

O..;;a + 1(1 + 1).8 + 1(1 + I)D( - 1)/+ I..;; - 2(D + r). (82) 

The maximum condition (24) imposed on (81), together with 
AI >0, Eq. (82), and D + r<O, 

gives 

2 + r>O, 

and 

a+/(/+ 1).8+1(/+ I)D(-I)/+I>- BD -r. 
2+r 

(83) 

(84) 

The remarks about summing the series G, Ao, E, S, and T 
with partial waves given by their forms in the class I + B -
apply also to the class I - B + . 

Class B + B -: In this class neither AI nor J-li is zero. As 
before we have to solve Eqs. (10)-(13). We also note that the 
determinant ofthe homogeneous Eqs. (12) and (13) is the 
same as the determinant of the inhomogeneous Eqs. (10) and 
(11). If this determinant does not vanish the solutions ofEqs. 
(12) and (13) are trivial: 

rl+ =rl _ =0. 

Since in the class B + B -, UI = 0 and VI = 0, we have 
1 1 

al + = <0 and al _ = <0' 
This leads to four possibilities: 

(1) When a l + = al _ = 0, 

a + 1(1 + 1).8+ 1(/+ 1)D( - 1)/+ 1 +AI =0, 

a + 1(1 + 1).8 + 1(1 + I)D( - 1)/+ 1 +J-l1 = O. 

Hence 

AI = - [a + /(1 + 1).8 + 1(1 + 1)D( - 1)/+ 1]>0, 

J-li = - [a + 1(1 + 1).8 + 1(1 + 1)D( - 1)/+ 1]>0. 
(85) 

Obviously this case does not contribute to G, Ao, E, S, or T. 
(2) When al+ = 0, a l _ = 1 Eqs. (10) and (11) give 
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Al = 2B - [a + 1(1 + 1)11 + 1(1 + 1)15( - 1)1+ 1]>0, 
(86) 

III = 2(D + r) + [a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ I] >0. 
(87) 

The analysis of these inequalities as function of I is different 
from the two (Ao,S) or three (Ao,S,E ) constraint cases. In the 
relation 

y = a + I (I + 1 liP + 8( - 1)1 + 1 ], 

analytic continuation from integer values of I to a real vari
able is made difficult by the factor ( - 1)1 + 1 . 

We should therefore define two continuations, one for 
even and the other for odd I: 

y+ =a+/(/+ 1)(f3-8), 

y_ = a + 1(1 + 1)(f3 + 8). 

These are two parabolas in the variable I with their extrema 
at 1= -!. The sign of (f3 - 8 ) or (f3 + 8) determines 
whether this extremum is a maximum or minimum. Band D 
as defined by Eqs. (9) are, respectively, monotonically in
creasing or decreasing functions of I, asymptotically ap
proaching 1. 

(3)Whena l + = 1,a l _ =0, Eqs. (10) and (11) give 

Al =2(B+r)+ [a+/(/+ 1)11+/(/+ 1)8(-1)1+1]>0, 
(88) 

III = 2D - [a + 1(1 + 1)11 + 1(1 + 1)8( - 1)/+ 1]>0. (89) 

With Eqs. (24) and (25) we also find from (88) and (89), 

a + 1(1 + 1)11 + 1(1 + 1)8( - 1)/+ 1 + r> - B, (88a) 

a+/(/+ 1)11+1(/+ 1)8(-1)1+I+r<D. (89a) 

(4)Whena l + = 1,a l _ = 1,Eqs.(1O)and(11)give 

Al =Ill =2r+ [a+/(/+ 1)11+/(/+ 1)15(_1)/+1]>0. 
(90) 

Again using the Eqs. (24) and (25) we find from (90), 

a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ 1 + r>B, (90a) 

a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ 1 + r>D. (90b) 

We note that this case does not contribute to G, even though 
it contributes to Ao, E, S, and T. 

(5) Finally there is a fifth case for the class B + B -. This 
is when the determinant of the homogeneous Eqs. (12) and 
(13) vanishes. In this case the remaining two determinants of 
the Eqs. (10) and (11) also vanish. We can then write 

B+r-AI B 

D D+ r-Ill 

a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ 1 +AI 

a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ 1 + III 

(91) 

These equations are satisfied for 

Al = III = 2 + r· (92) 

In this case Eq. (10) is proportional to (11) and Eq. (12) pro
portional to (13). The partial waves are given by the solutions 
of the following set: 

Dal + +Ba l _ -Ha+/(/+ IJP 

+1(l+1)8(-1)1+1+2+rl=O, (93) 

Drl+ + Brl _ = 0, 

al + - af + -1+ = 0, 

al _ -af_ -1- =0. 

The solutions of these equations are 

(94) 

(95) 

(96) 

=~ a+/(/+1)11+/(/+1)8(-1)1+I+r+2 [a+/(/+1JP+/(/+1)8(-1)1+'+ +D-B], 
4 [a+/(/+1JP+/(/+1)8(-I)I+I+y]D r 

(97) 

= ~ a + l(l + 1JP + 1(1 + 1)8( - 1)1+ 1 + r + 2 [a + 1(1 + IJP + 1(1 + 1)8( _ 1)1+ 1 + r + B _ D], 
4 [a + I (I + 1JP + I (l + 1 )8( - 1)1 + 1 + r] B 

r12+ = _1_ a + 1(1 + 1JP + 1(1 + 1)8( - 1)/+ I + r + 2 [a + 1(1 + l)P + 1(1 + 1)8( _ 1)/+ 1+ + D _ B 1 
16 [a+/(/+1)P+/(/+1)8(-1)1+I+rFD2 r 

X [B 2 - (a + I (I + IJP + I (I + 1)8( - 1)1 + 1 + r - D )2], 

1~ = _1_ a + 1(1 + 1)/:1 + 1(1 + 1)8( - 1)1+ 1 + r + 2 [a + 1(1 + IJP + 1(1 + 1)8( _ 1)/+ 1 + r + B - D 1 
16 [a + 1(1 + 1JP + 1(1 + 1)8( - 1f+ 1 + rFB2 

X [D2 - (a + 1(1 + 1JP + 1(1 + 1)8( - 1)/+ 1 + r - B)2]. 

I 
mains both for al + and al_ . They are 

(98) 

(99) 

(100) 

Here because of the positivity of Al and III and Eq. (92), 

r+ 2;>0. 

Unitarity imposed on (97) and (98) gives two possible do-

[2/(21 + l)]<a + 1(1 + 1)11 + 1(1 + 1)8( - 1)1+ 1+ r<2, 

(101) 
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or 

-2<a+/(/+ 1).8+/(/+ 1)8( _1)1+1 +r 

< - [2/(21 + 1)]. (102) 

Since in the class B + B - both partial waves are elastic their 
contributions to E and Ao will be equal as was the case with 
three constraints. 

IV. CONCLUSION 

We extended the application of the variational calculus 
to scattering problems to the cases with spin. As an example 
the spin-flip cross section G was maximized with four con
straints Ao, E, S, and T. The unitarity of partial waves gives 
additional restrictions in the form of inequality constraints. 
In a scattering problem for particles with spin there will be a 
certain number of partial waves. To handle the spin we de
fined classes according to the elasticity or inelasticity of the 
partial waves such as to exhaust the possible combinations. 
From the theory of inequality constraints the I-dependent 
Lagrange multipliers vanish whenever a partial wave is in
elastic. This property assigns to partial waves well defined 
forms in different classes in terms of I-independent Lagrange 
parameters and I. 

In the spin !-spin 0 case there are two partial waves J; + 

and J; _ and four classes in which both waves are elastic, 
both inelastic, one elastic the other inelastic, and vice versa. 
We found in those classes expressions for a 1 + ,a 1 _ ,rl + ,and 
rl _ • In some cases they are simple, like a 1 ± = 1 or rl ± = O. 
In other classes like in B + B - the expressions were fairly 
complicated. 

To maximize G one selects partial waves from different 
classes and expresses the four constraints with these waves. 
The four unknown Lagrange multipliers are thus deter
mined with these four relations. Hence the numerical values 
of the partial waves are found. However, the right form of 
the partial waves and fitting of the constraints does not yet 
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guarantee the solutions. Because the unitarity and the maxi
mum conditions obtained from the second derivatives of the 
Lagrange function impose further restrictions on the partial 
waves in the form of inequalities. Therefore, all sets of partial 
waves which fit the constraints must be tested against those 
inequality conditions. The solutions which satisfy these con
ditions will give us a maximum. In general there are more 
than one, but a small number of, solutions because we are 
working in an infinite dimensional space. Among those we 
choose the one which gives the largest spin-flip cross section. 
In the numerical applications we have numbered the possi
ble forms of the partial waves. Even though there are only 
four classes, there may be more than one form in a given class 
consistent with the conditions of this class. For the three 
constraints case nine different forms can contribute to the 
solutions. We therefore gave the solutions in the form of a set 
of numbers like 9,9,2,8 for example. This means that the 
1 = 1 partial waves are of the form labeled 9, I = 2 partial 
waves are of the form labeled 9, I = 3 partial waves are of the 
form labeled 2 and so on. 
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A ~ie op~ra~or method for constructing action-angle transformations continuously connected to 
the Identity IS developed for area preserving mappings. By a simple change of variable from action 
to angular frequency, a perturbation expansion is obtained in which the small denominators have 
been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation 
method of Greene and Percival, which converges on KAM surfaces. The method is not 
supe~conv~rgent bu~ yields simple recursion relations which allow automatic algebraic 
mampulatlon techmque~ to ?e used to develop the series to high order. It is argued that the 
operator method ca? be Justified by analytically continuing from the complex angular frequency 
plan~ onto the reallme. The resulting picture is one where preserved primary KAM surfaces are 
contmuously connected to one another. 

PACS numbers: 02.40. + m, 02.30. + g, 02.50.Ey 

I. INTRODUCTION 

The construction of action-angle transformations I for 
Hamiltonian systems is an important goal since it represents 
an essentially complete solution of the dynamics. An inte
grable system is one where these transformations are defined 
almost everywhere in phase space, with the possible excep
tion of the separatrices between regions where the topologies 
of the orbits are different (in general a set of zero measure). 

The Kolmogorov-Arnold-Moser theorem2 guarantees 
that for a wide class of nonintegrable systems sufficiently 
close to integrability a privileged set of invariant surfaces 
exists (the KAM surfaces). This set is of finite measure, and 
on each KAM surface a form of action-angle variables is well 
defined.3

•
4 As we increase the perturbation parameter which 

takes us away from integrability, the isolating integrals (ac
tions) cease to exist locally. Accordingly, KAM surfaces are 
broken when action is no longer well defined.5 When, in a 
given region of phase space, the last KAM surface with the 
same topology as the unperturbed surfaces is broken, con
nected stochasticity prevails throughout that region. The 
purpose of this paper is to examine methods that make use of 
the notion of action as an isolating integral. Our aim is to 
develop perturbative methods that will be practical tools for 
determining the transition to stochastic behavior, but with a 
more solid foundation than the empirical observations that 
lead to the "overlap-of-resonances" criterion.8 The transi
tion to global stochasticity can be determined if we have a 
method for calculating the action-angle transformation and 
a rule for selecting the most robust surfaces. 

In this paper we compare two perturbative approaches 
to the problem of constructing action-angle variables on the 
primary KAM surfaces. We limit ourselves to iterated two
dimensional area-preserving mappings, in particular to the 
Standard mapping ofChirikov and Taylor and a variant, the 
Semistandard mapping of Greene and Percival. 5 These map
pings can be regarded as return maps or surfaces of section of 
Hamiltonian flows. The perturbative approach can be readi-

alPresent address: Lawrence Berkeley Laboratory, Berkeley, California 
94720. 

blPresent address: Dept. of Theoretical Physics, Australian National Uni
versity, Canberra, Australia. 

ly extended to continuous flows and systems of dimensiona
lity higher than two. 

In Sec. II we set up the general problem of computing 
the action-angle transformation for primary KAM curves. 
The first method we examine is based on the assumption that 
there exists a global canonical transformation continuously 
connected to the identity, such that the primary KAM sur
faces (KAM curves in 2D) are reduced to straight lines. Lie 
methods are used to construct a formal power series in the 
perturbation parameter, E,7-1O which is justified by an argu
ment based on analytic continuation in the complex action 
plane. In Sec. III we review the Lie transform formalism. In 
Sec. IV we generate a perturbation theory in the canonical 
action-angle variables using Lie methods. The theory is af
fected by the well known problem of small denominators, 
even on preserved KAM surfaces, and therefore can provide 
only an asymptotic series. 

In Sec. V we review a different approach, the Lagran
gian perturbation theory of Greene and Percival. The theory 
has the remarkable property of avoiding resonant denomina
tors on primary KAM surfaces. In fact, this Lagrangian the
ory is convergent on a strip around the real axis of the angle 
variable, for small enough E. We call such a theory a renor
malized theory. 

In Sec. VI we alter the theory of Sec. IV to avoid the 
resonant denominators through the use of a noncanonical 
set of variables. We thus construct a renormalized Lie pertur
bation theory which shares the advantages of the Lagrangian 
renormalized method while being of wider applicability than 
it. In Sec. VII we show that the perturbation method can be 
used to provide an alternative and more justifiable version of 
the overlap of resonances picture.6 In Sec. VIII we examine 
the convergence of the perturbation series, while in Sec. IX 
we use the Fourier convergence method of Greene and Per
cival to map out the region of convergence in the complex 
angular frequency plane. 

II. ACTION-ANGLE TRANSFORMATIONS FOR 
PRIMARY KAM CURVES 

Suppose we have an area preserving T:]R2 --->- ]R2 (i.e., of 
a 2D real vector space onto itself). We denote the nth iterate 
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of the 2-vector (eo, 10 ) by (en' In). That is 

(en,In) = T(en - !l In _ 1) = ToT(8" - 2,In - 2) = ... , (1) 

wherefog(x)=f( g(x)) denotes the composition of any two 
functions f and g. 

We assume T to be analytic in both e and I, so that it 
may be extended to a complex mapping T:I(; _1(;2, where 1(;2 

is a 2D complex vector space. By the area preserving proper
ty, the Jacobian ofT is unity on R2, and hence on 1(;2 by 
analytic continuation: 

aen + 1 aln + 1 aen + 1 aln + 1 _ 1 ae:-~ -aI:-ae:- - . (2) 

Suppose further that T is the vector sum of an unper
turbed part To and a perturbation ET l' where E is a continu
ously variable parameter. We assume that (e,!) are action
angle variables for the unperturbed mapping, i.e., 

To(8,!) = (e + flo( /), /) . (3) 

We also assume T 1 to be 21T-periodic in e. 
In this paper we shall be applying the formalisms to an 

especially simple class of mappings whose unperturbed an
gular frequency is given by 

flo(I) = J. (4) 

The perturbed part of the mapping is assumed to be deriv
able from a potential, i.e., 

T.(e,/) = - V'(e).(l,l). 

Chirikov6 gives physical motivations for discussing this 
class, and has termed the choice 

Vie) = - cos e, 

(S) 

(6) 

the Standard mapping (we have changed the sign to put the 
potential well at e = 0). This is the potential which describes, 
in a continuous time formulation, the motion of a particle in 
an electrostatic wave; in this case, the action-angle transfor
mation can be called an oscillation-center transformation.7 

The slow transition to ergodic behavior that the KAM 
theorem implies occurs only for potentials whose Fourier 
expansion ~m Vm exp(ime) decays rapidly (e.g. exponen
tially) as m _ 00. For less smooth potentials, KAM curves 
may not exist at all for nonzero E. 11 The standard mapping 
has a finite Fourier series, and is therefore a good case to 
study. 

An even simpler representative of this class is obtained 
by deleting the m = - 1 component of cos e: 

Vie) = - ~ eiB 
• (7) 

This has been called the Semistandard mapping by Greene 
and Percival,5 and has a meaning only within the context of 
mappings on 1(;2. 

The mapping T = To + ET 1 is said to be integrable if 
phase space is covered with curves invariant under the appli
cation ofT. In this case the invariant curves can be labelled 
by a new action, J, constant on each curve, and parametrized 
along their length by a new angle 8, so that 

(e, /) = q8,J) , (8) 

where C is a canonical (unit Jacobian) transformation 21T
periodic in 8. Since we are interested in constructing C by a 
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perturbation expansion in tE, we require C:1(;2 _ 1(;2 to lie 
within the group of canonical transformations containing 
the identity . We also assume the inverse transformation to 
exist: 

(8, J) = C-1(e, J), (9) 

and assume C and C- l to be differentiable. That is, C is a 
diffeomorphism. These restrictions on C mean that 8 and J 
will correspond to action-angle variables, as ordinarily un
derstood, only when the invariant curvesJ = const. have the 
same topology as the unperturbed curves I = const. For ex
ample, in the case of the physical pendulum, with gravity 
regarded as the perturbation, C is an ordinary action-angle 
transformation only in the region of phase space correspond
ing to rotational motion. 1 The interpretation of C for libra
tory motion will be discussed elsewhere. 

In the new action-angle representation, the nth iterate 
ofthe point (80 , Jo) is given by composing n times a mapping 
S, which is similar to To, but with a different angular fre
quency function !1 ( J). That is: 

(8n>Jn)=S(8n_ l ,Jn_I)' (10) 

S(8, J) = (8 + fl (J,E), J). (11) 

From Eqs. (1), (4), and (6) we see that 

T = CoSoC- I
. (12) 

The relation between T and S is represented by the following 
commutative diagram: 

IC IC IC 

In this diagram horizontal direction corresponds to the dis
crete "time" flow, while the vertical direction corresponds to 
a continuous flow in E. 

The case when T is integrable for finite E is highly excep
tional; in general, no C exists such that S is everywhere of the 
form given by Eq. (11). However, the KAM theorem, for 
sufficiently small E there remains an infinity of invariant 
curves characterized by Eq. (11) with J = const. 2 Because C 
is a diffeomorphism, these invariant KAM surfaces are topo
logically equivalent to the straight line invariant curves of 
To. We term these the primary KAM curves to distinguish 
them from other invariant curves surrounding elliptic fixed 
points ofT. 

In Sec. IV we construct a perturbation theory using E as 
an expansion parameter by proceeding formally as ifT were 
integrable. If T is restricted to R2 this expansion can at best 
converge only for values of J on the primary KAM curves. 
Unfortunately, there is no way of telling a priori which val
ues of J to examine, since KAM curves are actually charac
terized by an irrational value of the winding number 21T/ 
!1 ( J,E). We follow Greene 12 in assuming that the most robust 
KAM surfaces, those which disrupt last as E increases, are 
those possessing inverse winding numbers which we can call 
generalized golden means. That is, the most robust surfaces 
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will be those with values of fl whose partial fraction expan
sion is terminated by an infinite number of ones, i.e., 

n = 21T[a,b, ... ,y,z.1,1,1, ... ]. (13) 

with a,b, ...• y,z integers. Since fl selects the most stable KAM 
surfaces, it would seem preferable to treat fl, rather than J, 
as the independent variable. Two such methods are dis
cussed in Sees. V and VI. 

From the above discussion it would appear that C is 
defined only on a highly pathological, perhaps not even 
dense, set of values of J or fl on which differentiation cannot 
be defined. This is true if fl is restricted to be real, but by 
continuing T and C into (?, we shall find that C is analytic in 
a large connected region of the complex fl plane. By pro
ceeding formally on the assumption that C exists we are im
plicitly working in (? The transformation is obtained on 
primary KAM curves by analytic continuation back to the 
real n axis. The analytic continuation across the real fl axis 
is justified by the theory of monogenic functions. 13 

111_ LIE THEORY 

There is a one to one correspondence between canonical 
transformations, such as T and C which map phase space 
onto itself, and certain unitary operators which map the 
space of functions defined on phase space onto itself. 14 For 
instance, given the transformation A, we define the corre
sponding unitary operator A by 

Af(e, J) = f(A(e, J)), (14) 

wherefis any function on phase space. Af(e, J) is known as 
the pullback off under A. 15 

Note that A is a nonlinear, vector-valued function of a 
vector, whereas A is a linear, scalar operator defined on func
tions of e and J. Given A, we can conversely construct A, 
since 

A(e,J) = (Ae,AJ). (15) 

We denote this one-to-one correspondence thus: A ++ A. 
Consider now afunctionf(AoB(e, J)) = f(A(B(e, J))). Ac
cording to Eq. (14) we get: 

f(AoB(e, J)) = (Af)(B(e, J)) = BAf(e, J), 

from where the composition rule for unitary operators is 
given by 

AB ++ BoA. (16) 

Similarly, ABC ++ C oBoA, and so on. In particular, the op
erator equation corresponding to Eq. (12) is 

T = C - ISC . (17) 

It is well known that a Hamiltonian flow generates a 
family of canonical transformations parametrized by the 
time variable. Analogously, by inventing a suitable gener
ator Wwhich plays the role of the Hamiltonian, we can ob
tain any canonical transformation that is continuously con
nected to the identity by "advancing" the coordinates in a 
new variable which plays the role of time (the Lie parameter, 
c). The canonical transformation C is thus forced to be con
tinuously connected to the identity at E = 0, while T and S 
are assumed to be continuously connected to the unper-
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turbed mapping, i.e., To = T(c = 0) = Sic = 0). Following 
Dewar7 we seek "Lie generating functions" 
Ute, J,c), vie, J,c), and W(e, J,E)suchthattheunitaryoper
ators S, T, and C obey the following operator equations and 
boundary conditions: 

aE T=Lv T, T(E=O)=To , 

aES=LuS, S(E=O)=To , 

aE C = Lw C, C(E = 0) = 1 , 

(18) 

(19) 

(20) 

where aE=a IOE. Lw denotes the Lie derivative or Poisson 
bracket operator: 

(21) 

and To is the operator exp[flo( J)oel Similarly, by Eq. (11) 

S = exp( fl (J,E)ae ] . (22) 

Comparing Eqs. (19), (21) and (22) we see that U =U( J,E) 
such that 

il(J,c)=ilo(J)+ f dc'oJ U(J,E'). (23) 

In similar fashion, we can determine V, since T is associated 
with the prescribed mapping T. For instance, in the special 
case of mappings defined by Eqs. (6) and (7), the generating 
function Vis readily verified to be the potential V(e). What 
we need now is to find equations for Wand U. We take the £ 

derivative ofEq. (17), and using Eqs. (18)-(20) and the 
expression 7 

: 

OE C -I = - C -IL w , (24) 

we get 

- C-ILwSC+ C-IL u SC+ C-ISLwC=L v T. 
(25) 

As Dewar? shows, the identities 

C-ILrC=Lc-'f' SLrS- 1 =Lsr , (26) 

are obeyed for any function! By inserting the identity opera
tor in the forms CC -I and S - IS in the proper places in Eq. 
(25), Eqs. (26) can be used to show that 

-Lc-'w T+Lc-'u T+Lc-'sw T=Lv T, 

which can be satisfied by choosing the generating function 
Wand an arbitrary constant in U so that 

(S - 1) W = CV - U. (27) 

This is the analogue of the "Hamilton-Jacobi equation for 
the Lie generating function" derived previously for contin
uous Hamiltonian flows, 7 with U playing the role of the 
"new Hamiltonian," K. In order to determine U( J,E), ob
serve that 

< (S - 1) W > = (S - 1)< W> = 0 , 

where the averaging operation ( ) is defined for any fby 

1 i21r 
(1)=- def· 

21T 0 

The average of Eq. (27) yields 

U = (CV) . (28) 

Eq. (28) ensures that W will be a generator for an action
ang1e transformation, but it is stm not unique, since we have 
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not yet specified (W). The simplest choice is to take 
( W) = 0; instead, to facilitate comparison with the Lagran
gian perturbation theory, we can require 

(CO-O) =0. (29) 

This is not necessarily equivalent to specifying ( W) = 0, but 
the difference corresponds simply to a trivial action-depen
dent phase shift in the 0 coordinate. In the case ofthe Stan
dard and Semistandard mappings, Eq. (29) is equivalent to 
(W) =0. 

IV. CANONICAL PERTURBATION THEORY 

Adding (To - S) W to both sides ofEq. (27) we write it in 
the form: 

(To-l)W=CV+(To-S)W- U. (30) 

Since (To - 1) is independent of E, Eq. (30) is in a form ame
nable to solution by simple power-series expansion of 
W (0, J,E) which we term aprimitive perturbation expansion. 

In order to avoid working with operators, it is conven
ient to define auxiliary variables: 

v=CV, (31) 

B=CO, 

w=(To-S)W. 

(32) 

(33) 

The variable B (0, J,E) is simply the old angle in terms of the 
new phase space coordinates 0 and J. It is needed to imple
ment Eq. (29). The auxiliary variable v(O, J,E) is simply V(B) 
in the case ofthe mappings defined by Eqs. (6) and (7). 

We now expand Wand U according to the convention: 

(34) 

(35) 

(we assume (V) = 0 so that Eq. (28) implies U1 = 0). The 
convention for v is 

(36) 

and similarly for Band w. Differentiating Eqs. (31) and (32) 
with respect to E, using Eq. (20), and equating coefficients of 
different powers of E, we find the following simple nonlinear 
recursion relations for n> 1 : 

(37) 

1 n 

Bn=- L !Bn-m,Wml, (38) 
n m~1 

where! J, g I denotes the Poisson bracket Lg J, and the re
cursion is initialized with 

vo= V(O), 

Bo = O. 

(39) 

(40) 

The recursion for Wn is much more complicated: 

[nl2) [nl2 - m) CIk 
Wn = - To k~1 I~O kta~ Wn-2k-2/+1' (41) 

where 
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1 I 
Clk =- L (vk-l+v)AvCI_V for/> 0 , 

, lAo v~1 

CO,k =A~, (42) 

Av = [1I2(v + 1)] aJ U2(v+ II ' 

and [I] denotes the integer part off We have assumed that V 
involves only odd Fourier components (as for the Standard 
and Semistandard map cases), so that U2n + I = 0 for all inte
gers n. The coefficients Cl,k are independent of 0, so Eq. (41) 
does not couple Fourier components. 

Denoting (f - (f») by]; we split Eq. (30) into its aver
age and fluctuating parts, and equating powers of E, we ob
tain two more recurrence relations: 

Un + I = (vn ) , 

Wn+ I = (To - l)-I(vn + wn )· 

By Eqs. (29) and (40) we require 

(Bn) = 0 for n>I. 

(43) 

(44) 

Equation (38) then gives a recursion relation for (Wn + I ): 

aJ (Wn+l ) = - ± qOn+lm,WmJ>. (45) 
m=l 

Equations (37), (41)-(45) make up a complete set ofre
currence relations for all unknowns. The inversion of To - 1 
in Eq. (44) is most easily accomplished in Fourier space: 

W;;' + I = [(v;;' + w;;')/(exp[imflo( J)] - 1)] , (46) 

for m #0. Here, and in the following sections, the Fourier 
representationfm of any functionf(O) is defined by: 

oc 

flO) = L fm exp imO. (47) 
m = - IX: 

Clearly, Eq. (46) will be undefined for some value of m 
whenever flo( J)/21T is a rational fraction. Since 
flo( J)#fl (J,E) in general, we can expect this primitive per
turbation series to be divergent even if J is chosen so that fl is 
a "generalized golden mean". Also, the complicated nature 
of the recursion for Wn suggests that adding (To - S) W to Eq. 
(27) was not the best thing to do. In Sec. VI we present a 
method which allows (S - 1) to be inverted directly. 

V. LAGRANGIAN PERTURBATION THEORY 

The work of Greene and PercivaV based on the aver
aged Lagrangian variational principle of Percival3 shows 
that there is indeed an alternative and simple perturbation 
method for primary KAM surfaces; this method is conver
gent (for E small enough) within a strip containing the real 
axis in the complex angle variable (0) plane. Their starting 
point is the discretization of the Lagrangian differential 
equations of motion. The use of canonical variables and 
Poisson brackets is avoided, simplifying the recursion rela
tions significantly. The method does not give rise in general 
to simple recursion relations. For this reason, we restrict 
ourselves in this section to an examination of the Standard 
and the Semistandard maps. 

From Eqs. (1)-(5) and (8)-(11) we can show that: 

o20-B(O +fl)-20(O)+O(O-fl)= -EV'(O). 
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Since J and E can be regarded as constants in Eq. (48), we 
have suppressed the last two arguments of 0 (e, J,E). 

For a concrete example let us consider the Standard 
mapping, given by Eq. (6). Defining auxiliary variables: 

I(O,n,E) = - V'(O) = - sin 0, (49) 

and 

V(O,n,E) = V(O) = - cos 0, (50) 

we get 

a.l= - va. 0, a. v =la.O. (51) 

The derivatives with respect to E are taken at fixed n, rather 
than at fixed J. We now assume that E is a small parameter, 
and expandj, v and 0 as in Eq. (36). From Eqs. (48) and (51), 
by equating powers of E, we obtain simple nonlinear recur
sion relations [c.r. Eqs. (37)-(44)]: 

n 

nVn = I vln_v Ov' 
v=l 

n 

nln= - I vvn_vOv, 
v=l 

{POn = In-I' 

(52) 

Note that the existence of a finite set of quadratically nonlin
ear recursion relations is critically dependent on the specific 
form of V, in contrast to the canonical perturbation theory. 

The second difference operator is inverted by Fourier 
expanding OJ' Vj and./; in e, getting: 

v: = ~ i I v I: ~ t o~ , 
n v=lJ1.=-oo 

n 00 

I: = I I vv:~t o~, 
n v =lJ1.=-oo 

exp imn I: _ I . 

2(exp[imn] - 1)2 

(53) 

Equations (53) furnish us with a closed recursion proce
dure, provided we start with finite Fourier series in e for/o 
and vo, because the J.l summations truncate after a finite 
number of terms. Note that the recursion formulas are com
pletely algebraic in nature, involving no differential opera
tors. In particular, for the Standard mapping we start with: 

16 = (1/2i), 10- 1 = - (1/2i), 

V6 = (1/2), VO-
I = (1/2), (54) 

and/; = v; = 0 for m#l, - 1. The Fourier-power coeffi
cients form a triangular array, such that the nth power in E 

contains Fourier modes ranging from - n through n, and 
only those terms where n has the same parity as m are non
zero, i.e., 

0: 0 0
1
- 1 

O~ 0 0 0 
2 0 0- 2 

2 
(55) 

om 0 om2 Om m+2 0 o -m m m m 

and similarly for I and v. 
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A similar procedure can be followed for the Semistan
dard mapping. In this case, all harmonic coupling raises the 
Fourier index; the only terms that survive in the Fourier
power coefficient matrix are those on the left edge of the 
triangular array (55). Remarkably, for this case the Fourier 
series is the perturbation series. This allows for a very efficient 
recursion procedure. 

VI. RENORMALIZED CANONICAL PERTURBATION 
THEORY 

A simple renormalization of the resonant denominators 
in Eq. (46) can be effected by changing from the canonical set 
! e, J,E J to the noncanonical set! e,I1,E J of independent 
variables. 16 The procedure amounts to a simple change of 
variables. Therefore a. and a e will hencelorth imply that 11, 
rather than J, is to be held fixed. Where a. and aJ occurred 
previously, they must be replaced according to the rule: 

aJ -+ (an J)-Ian , (56) 

a. -+ (an J)-l[(an J)a. - (a. J)an ] . (57) 

We again need the auxiliary variables v and 0, but w 
does not have to be used since S - 1 is now independent of E, 

and Eq. (27) is now in suitable form for recursively generat
ing W (e,I1,E), again assuming power series expansions of the 
forms in Eqs. (34) and (36). 

An equation for v is obtained by taking the E derivative 
ofEq. (31) at constant Jand using Eqs. (20), (56) and (57): 

[(an J)a. - (a. J)an]v = [v,W]!. (58) 

where [,] denotes the modified Poisson bracket 

[j, gJ = (ae/)(an g) - (anl)(ae g). (59) 

Similarly, 0 obeys 

[(an J)a. - (a. J)an ] 0 = [O,W] . (60) 

An equation for J is obtained by differentiating Eq. (23) with 
respect to E at constant J and using Eqs. (56) and (57): 

J(I1,E)=Jo(I1)- {dE'an U(I1,E') , (61) 

where Jo(11 ) is the solution of the equation 

110(Jo) = 11 . (62) 

We insert Eq. (61) in Eq. (58) having expanded all func
tions as in Eqs. (34)-(36) and the additional expansions: 

00 

J = Jo(I1)+ I I n En , (63) 
n=1 

(64) 

After expanding all functions in Fourier series over ewe 
obtain a recursive expression for the coefficients of the dou
ble expansion for v, given by Eqs. (36) and (47): 

1 n-I ( 
v~ =- I Ii(j-v) [v~=;;' an W;;'+I 

n m=O v 

a v Wj-V] - n Vn - m m+ 1 
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The Fourier analysis in 8 permits the explicit evalua
tion of(S - l)Win the fluctuating part ofEq. (27), yielding 

m = 0 (by assumption), 
(66) 

Eqs. (65H66) constitute a closed set of recursion formulas, 
since U is given by the average of v. 

Similarly, starting from Eq. (60), we find that () can be 
computed from 

1 n-I ( 
()~ =- I Ii(j-v) [()~-=-Vm an W;;'+I 

n m=O v 

- an ()~-m W~-;d 
. n-m+l· if; ) 

-an ()~-m anUm + m ()~-m n Um . 

(67) 

The recursion formulas are fairly straightforward, and 
the resonant denominators now involve only n directly. 
This achieves the desired renormalization. In fact, Eq. (67) 
reproduces the results of the Lagrangian theory of Sec. V for 
the Standard and Semistandard mappings. 

VII. PERTURBATION SERIES AND A RESONANCE 
OVERLAP CRITERION 

We have constructed different perturbation theories 
which share certain characteristics: they are recursive, do 
not involve any approximations beyond those inherent in the 
perturbative formulation itself, and have relatively simple 
recursion formulas. Their practical value depends strongly 
on our ability to obtain high-order results. The recursion 
relations we have described so far are simple enough to per
mit this, in contrast to other possible avenues of attack, such 
as superconvergent expansions.2 

The primitive perturbation theory yields, at best, an 
asymptotic series. While reasonable results can often be 
otained from such series, 17 a convergent series is clearly pre
ferable (for the special case of the Semistandard mapping, 
the primitive perturbation theory is equivalent to the renor
malized theory, since in this case J = n identically). The 
renormalized theory is simple and convergent on KAM sur
faces for small enough values of E, in both its canonical and 
Lagrangian formulations. The formulas of the renormalized 
canonical theory are of wider applicability than those of the 
Lagrangian formulation, since the recursion relations are 
closed through the use of a generating function instead of the 
properties ofthe potentials used. We pay a price for this, 
however: the canonical theory is more difficult to use, be
cause it involves differential operators in its recursion for
mulas, as opposed to purely algebraic recursive relations for 
the Lagrangian theory. 

The recursive formulations of perturbation theories are 
ideally suited to computer implementation. We can obtain 
analytic results to relatively high order in E through the use 
of an automatic algebraic manipulator. 18 We have used 
MACSYMA to obtain results to order ElO before the complex
ity ofthe expressions involved made it impractical to pro-
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ceed further. The analytic results provide us with significant 
insight into the resonance-resonance interaction mecha
nism. The first few orders in the primitive perturbation the
ory for Wand U are given by 

_ 2 B2 

W=E 2(Y-l) +E 4(Y-l)3(y+ 1) 

+ ~ (y(yz + I)(Yz + 3Y + I)B 
16(Y - 1)5(y + 1)2 

U= 

yZ(y2 + 4Y + I)B 3 
) 

+ 16(Y- 1)5(y+ w(Yz + Y+ 1) + o (€4) , 

2(Y-W 
+O(c), 

(68) 

~y2(y4 + 2y 3 + 4Y z + 2Y + 1) 

8(Y - 1)6(y + If 
(69) 

whereB=exp(ie)and Y=exp(i J).ByusingEq. (23) we can 
attempt to determine the angular frequency for a given value 
of J, but the denominators in U will produce undefined val
ues at the resonances. A selective ressumation of the primi
tive perturbation series could provide us with an alternative 
renormalization, 19 but that requires a much better picture of 
the structure of the series than that which we have been able 
to obtain analytically. 

In contrast to the primitive theory, the renormalized 
perturbation theory in either its Lagrangian or canonical 
formulations uses n as the expansion variable. The resonant 
denominators in the renormalized theory will never be zero 
provided we choose an irrational value for n /21T. The per
turbation theory will converge for small enough € on a sur
face characterized by one such value. As E is increased a 
point will be reached where the perturbation series will cease 
to converge. This point marks the destruction of the particu
lar KAM surface corresponding to the chosen value of n. It 
is sufficient to consider the perturbation series for W, since if 
W diverges, so will all other quantities. 8 

The perturbation theories can provide information 
about the local properties of the mapping close to a reso
nance. By expanding every term in the € series for W in par
tial fractions, we obtain a series whose general form is 

W=IWI" 
I' 

with 

"max a 
WI' = II €"exp(im8) I nml'v, (70) 

n m v = 0 (Y - Yl't 

where Y =exp(in ), v max is an integer which depends on n, m 
and fl, anml'v is some constant, and YI' = exp(2i1Tfl) for 
fl = q/p, where q and p are any two mutually prime integers 
such that O<,fl < 1. YI' is termed a primitive pth root of uni
ty.zo We approximate WI' by retaining only the most diver
gent terms, v = V max ' and get an approximation which is 
good near the Y = YI' resonance 

_ "" a nml' €"exp(ime) 
WI'_£...£... . 

m n (Y - Yl'tm
., 

(71) 

To examine a simple case, we restrict ourselves to the 
Semistandard map, since in this case anml'v = a~l'v 0';; we 
thus get: 
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TABLE l. Local approximations to the generating function W for the Semistandard mapping at selected resonances. Notation corresponds to Eq. (72). 

M" = Y'J = -1 Yp = 

n l'm,n a~/1 Vmax a;'/-l VnHl.x 

-1 

2 

2 3 
8 32 

-1 
2 

-1 
5 --- -

32 256 

-1 
2 4 7 --

128 2048 

5 9 
-1 

4 2 
512 16384 

1 
6 11 --- 3 

2048 131072 

7 13 
-1 

6 
-1 

4 
8192 1048076 

8 15 
1 

7 
-1 

4 
32768 8388608 

9 17 
-1 

8 5 
13172 67108864 

a~,,tnexp(ine ) 
WIl:::::L . n (Y - y,Jm", 

(72) 

A table of a;"l and Vrnax for the Semistandard map is shown 
in Table I, while Table II shows the values for the coeffi
cients anmll ,. for one particular resonance, f..l = O. A more 
refined approximation than Eq. (71) can be obtained by con
sidering more terms in Eq. (70) than those with v = Vrnax (cf. 
Table II). 

The "radius of divergence" of the WI" series in the com
plex Y-plane can be determined by taking ratios of terms in 
Eq. (71) for a fixed value of c. The detailed scaling of the size 
of the divergent regions can be extracted from Table I. We 
take ratios of those terms in Eq. (72) where the differences in 
Vrnax are 2. By following this procedure, we obtain fixed ra
tios for each resonance, from which we can conclude that the 

e(2i1T131 Y = 
" a~fJ Vma" a~1-l 

- e,e!3 + 1 

144 

2e .. 11 - I - 5i 

2592 1538 

e'rr/3 + 1 
2 

- 5;- 5 

7776 24576 

2 
5 --

41472 49152 

_ 5(e;rr/J + 1)-1 
2 

- 5; + 5 

1492992 131072 

7em /J 
3 

- 25; 

448976(e;rr/3 + 2) 4718592 

_ (e;rr/3 _ 1)-1 
4 

- 25 

11943936 50331648(i - 1) 

radius of divergence at Y = YI" scales as C" 12, where A. is the 
order in c at which the resonance at YI" first appears. This 
means that the size of the resonance at Y = 1 scales at V c, at 
Y = - 1 it scales as c, etc.; this is the scaling we would ex
pect from direct mode-coupling between the primary reson
ances. 

The partial fraction decomposition provides a more rig
orous version of the overlapping resonances picture of the 
breakup of KAM surfaces than does Chirikov's criterion. 6 

Consider an irrational value of n /21T. Definep,,(n) as the 
"radius of divergence" associated with the nth convergent of 
n /21T, f..l" q"/p,, [Ref. 21] (nth order truncations of the 
continued fraction expansion). The invariant curve associat
ed with n will be preserved only if p" (n ) ---+ 0 faster than 
q,,/ Pn ---+ n /21Tasn ---+ 00. AScisincreased,p,,(n ) ceases to 
be a rapidly decreasing function of n as n ---+ 00, and there-

TABLE II. Coefficients for the partial fraction expansion of W near the primary resonance (Y" = 1) for the Semistandard map. Notation corresponds to Eq. 
170). 

n 

2 

3 

4 

6 

2334 

1'=1 

1 

2 

32 

- 23 

4608 

- 125 

165888 

3973 

9830400 

28561931 

21233664000 

2 

16 

0 

- 313 

110592 

- 481 

165888 

- 12186443 

3538944000 

3 

8 

5 

384 

313 

55296 

481 

165888 

9927143 

5308416000 
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a nmOv 

4 

1 
--

32 

256 

0 

7531 

5894240 

5 6 7 8 9 10 11 

32 

3 

256 256 128 

- 3457 3 -1 -1 

1105920 1024 1024 256 512 

-7531 31 1 - 25 -5 5 
- ----

9949120 32768 768 16384 24576 4096 2048 
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FIG. 1. Regions of divergence of the renormalized perturbation theory 
around selected resonances for the Semistandard Mapping. The shaded 10' 

areas denote the regions of divergence in the Y;;exp(ifl) complex plane. E; 10' 

fore the invariant curve will be destroyed when £ is greater 
than £cri! (11 ), the value at which Pn (11 ) and 11 - 21TJ-ln ap
proach 0 at the same asymptotic rate. Even if an invariant 
curve is destroyed on the real 11 axis, "surfaces" will still be 
preserved for complex 11 's far enough away from the axis, to 
avoid being overlapped by any of the circles of divergence 
(see Fig. 1). Because Pn (11) decreases rapidly with n, the re
gion of convergence will have "tendrils", touching the real 
line at the preserved primary KAM curves, if any of them are 
left. An alternative method for extrapolating the behavior of 
P n (11 ) at infinitely high order has been suggested by Escande 
and Doveil,22 through the use of renormalization group 
techniques. 

VIII. CONVERGENCE OF THE E POWER SERIES 

In either the Lagrangian or the canonical perturbation 
theory, the functions of interest are expressed as a double 
series: a power series in £ and a Fourier series in e. Greene 
and Percivals examine the convergence of the Fourier series 
to determine analyticity of their perturbation theory. This 
assumes that the power series expansion for each Fourier 
mode converges. We shall examine the convergence ofthe 
Fourier series in Sec. IX, but it is necessary to examine the £ 
power series for convergence first. 

For the semistandard mapping the double summation 
collapses into a single sum. For this case the convergence 
study is reduced to a determination of the convergence of the 
Fourier series (see Sec. IX). Regretfully, this cannot be done 
for the Standard mapping, where the assumption of conver
gence of the £ power series must be justified. 

Figure 2(a) shows a plot of the magnitude of the coeffi
cients (J;:' of the Lagrangian theory [see Eqs. (53)] for m = 1, 
11 /21T = (v'5 - 1)/2 as a function of the £ power index n. 
The general features of this plot are obtained for other har
monics as well. The magnitude of the coefficients has a rag
ged behavior, which will be explained in Sec. IX. However, 
the general trend is for these coefficients to decay rapidly for 
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10 2 
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10- 1 

10- 2 
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(b) 

FIG. 2. Magnitude of the power series coefficients for the m = 1 mode of 
the Standard Mapping obtained from the Lagrangian perturbation theory 
for n /211' = (v5 - 1)/2. The behavior shown is typical of all modes. 

small n, and then more and more slowly as n increases. In 
this case, the first few terms of the £-series give a good ap
proximation to each Fourier coefficient, even when the se
ries is not absolutely convergent. 

In contrast, Fig. 2(b) shows the same plot for a surface 
that breaks very early, 11 /21T = 1T - 3. Now the coefficients 
grow exponentially. For a sufficiently small value of £, how
ever, the exponential growth can be overcome. For this value 
of 11, we estimate that the power series for each Fourier 
mode can be majorized by a convergent geometric series if 
£ S 0.465 ± 0.02. For this particular value of 11 /21T, it is dif
ficult to insure that the majorization will persist beyond the 
point where the recursive calculation was stopped. This is 
due to the peculiar continued-fraction expansion that the 
number 1T - 3 possesses. In general, for nonquadratic irra
tional values of 11 /21T, we can safely establish values of £ 
beyond which the power series is guaranteed to diverge, but 
it appears hazardous to claim that the power series would 
converge for £ less than a specific number. Note that this 
qualification is unnecessary for quadratic irrational values of 
11 /21T. 

In the next section we will discuss the analyticity of the 
Fourier series. For this analysis, we will assume that the 
power series for each Fourier mode converges, at least up to 
Ecri! (11), the critical value at which the Fourier series ceases 
to converge uniformly for real e. We have examined the 
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perturbation theories for several different values of n /211". 
For all quadratic irr{ltional values of n /211" examined the 
empirical evidence is that each E series has a radius of con
vergence approximately equal to Ecrit (n). The agreement is 
to within 2 % or better with a computational horizon (i.e. the 
value of n at which we stop our calculation) of n = 80. Thus 
to get very accurate values for the Fourier coefficients near 
E = Ecrit (n ) we would need a large number of terms in the E 

series. The study of convergence properties of the power se
ries defining one Fourier coefficient can be a more sensitive 
diagnostic of convergence than the study of the complete 
Fourier series for E:;::Ecrit (n ). Because of the finite computa
tional horizon we may see no apparent divergence in the 
Fourier series up to this horizon while the power series con
vergence estimate indicates that the double series is indeed 
diverging. It becomes apparent that the analyses described 
herein are valid provided we choose a large enough horizon 
to be able to discern some self-similar behavior, thus justify
ing the extrapolations used. This can be done by examining 
the continued fraction decompositions of n /211", which will 
. also be done in the next section. Since nonquadratic irra
tional values of n /211" do not exhibit self-similar behavior in 
their continued fraction expansions, one can safely infer only 
that E < Ecrit (n ) is a necessary but not sufficient condition for 
the convergence of the series. 

The difficulties of principle in determining convergence 
do not appear when using superconvergent expansions.2 In
deed, for a rigorous proof of convergence one probably has to 
resort to these expansions at the expense of increased com
plexity of the perturbation series. For practical work a sim
ple perturbation theory is sufficient to furnish reasonably 
high-precision quantitative results. 

IX. THE STRUCTURE OF THE FOURIER SERIES 

Assuming that the E series for the Fourier coefficients 
converges, and summing over different orders in E, we can 
examine the existence of the transformation by studying the 
convergence of the Fourier series, without using the partial 
fraction decomposition. This is the approach used by Greene 
and Percival.5 Because of the superposition of all the differ
ent resonances, the Fourier coefficients have a very irregular 
dependence on m, the mode index, necessitating the calcula
tion ofthe series to very high order. The Lagrangian formu
lation seems ideally suited to this task, because the algebraic 
nature of its recursion relations permits us to obtain ex
tremely high order results [0 (COOO

) for the Semistandard 
mapping] in a purely numerical fashion. 

The coefficients of the Fourier series must decay expon
entially if the series is to converge. We can estimate the decay 
rate of the Fourier coefficients by least-squares fits of expon
entials or exponential-polynomial products to the values of 
the coefficients of the series for () obtained from the perturba
tion theory. This yields the value for the critical E needed to 
break the golden-mean surface [n /211" = (v'S - 1)/2] to 
within 1 % ofthe value Greene l2 obtained for the Standard 
map (Ecrit = 0.97), considering only the first 80 Fourier coef
ficients. Figure 3 shows a least squares fit of amf3 exp my to 
the Fourier coefficients for the Standard mapping for the 

2336 J. Math. Phys., Vol. 23, No. 12, December 1982 
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FIG. 3. Fourier coefficients for the Standard Mapping obtained from the 
Lagrangian perturbation theory, summed up to order 78 in the perturbation 
theory. Least-squares fits of amP expmy are shown for two different values 
of E, before (E = 0.95, dashed curve) and after breakage (E = 0.95, solid 
curve) of the KAM surface at the golden mean,!1 /21T = (115 - 1)/2. 

golden mean, where we adjusta,p, and r. We show two such 
fits, for different values of E; y changes sign for E = 0.96 ... , 
which marks the point where the Fourier series starts to 
diverge. Higher accuracy can be obtained simply by consid
ering a larger number of Fourier coefficients. 

The Fourier coefficients for both the Standard and the 
Semistandard maps show some very interesting structure for 
real n. The structure is a direct consequence of the resonant 
denominators. If we construct the convergents21 qn/Pn of 
any irrational value of n, we can see that the Fourier coeffi
cients with mode index m = Pn are the slowest decaying 
ones. Further subsequences can be picked by a simple algo
rithm. It is easy to see that the subsequence m = Pn + Pn _ I 
again decays slowly, though not as slow as the subsequence 
m = Pn' In general, coefficients with mode index corre
sponding to linear combinations of Pn 's with integer coeffi
cients form slowly decaying subsequences, as can again be 
expected from mode beating arguments. Subsequences 
formed by modes where m cannot be expressed as one such 
linear combination will decay the fastest, and in general 

·1 ~ 10 .l.-__ ._,--_____ T 

o 8 16 
--- r 

24 40 
------r -- -- T--~~-, 

48 56 64 72 80 32 

FIG. 4. Smoothly decaying subsequences for the Standard Mapping. We 
show a case for!1 /21T = 2/(3 + 115) = [0.2,1,1,1, ... ]. Compare the posi
tions of the peaks with those in Fig. 3, where!1 /21T = [0,1,1,1, ... ]. The 
dashed curves pass through two "slowly decaying" subsequences of Fourier 
coefficients. 
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FIG, 5. Comparison ofthe Semistandard Mapping's Fourier coefficients on 
and off the real n axis for a E = I; the Fourier series diverges on the real axis 
but converges away from it. The top curve corresponds to n / 
2.". = h/5 - 1)/2, while the bottom n /2.". = h/5 - 1)/2 + O.Oli. 

three-mode combinations decay faster than two-mode com
binations. It is sufficient to fit exponential-polynomial decay 
curves to those coefficients decaying the slowest to deter
mine convergence or divergence of the whole series. Figure 4 
shows the absolute value of the Fourier coefficients of () for 
the Semistandard mapping. The exponential-power fit to 
each subsequence is now much better than in Fig. 3. 

When we analytically continue the mappings into the 
complex n plane, the spiky structure of the Fourier coeffi
cients is preserved close to the real axis. As we get farther 
from the real axis and the resonances therein, the magnitude 
of the Fourier coefficients begins to drop dramatically, again 
showing the convergence of the Fourier expansion in the 
same domain where the € expansion converges. Figure 5 
shows a comparison of the Fourier coefficients on and off the 
real axis. 

8.0.,-----------------, 

6,0 

-6,0 -
£ = 1.040 

-8.0 +----r-----r-----,---r---..----..-~ 
3,85 3,86 3.87 3,88 3.89 3,90 3,91 3,92 

2". Re(n) 

FIG. 6. Numerical scan aboutn /2.". = ('11'5 - 1)12. The dots correspond to 
cases where the numerical fit of exponential decay curves to the Fourier 
coe~cien~ oft~e Semi~~dard Mapping indicate divergence of the pertur
batlonsenes, usmg 0 (E ) perturbation theory. Tendrils of convergence can 
be seen reaching down to the real axis at the preserved KAM surfaces. 
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By scanning over complex values of n, we determine 
numerically the regions of divergence of the Fourier series 
for fixed values of € by looking at the exponential decay of 
the Fourier coefficients. Figure 6 shows such a scan for the 
Semistandard mapping, for n in the vicinity of the golden 
mean. The "tendrils" structure is again obtained. In the case 
of the Semistandard map this is not surprising, since the 
Fourier series is equivalent to the perturbation series in €; 
this is not true in the Standard mapping case, where the 
convergence studies can be carried out independently of 
each other. 

X.SUMMARY 

The renormalized perturbation theory, both in its La
grangian and in its canonical formulation appears to be a 
much more rigorous tool to study nonintegrable mappings 
than many others hitherto used. The theory is convergent on 
KAM surfaces and is remarkably useful both for under
standing the analytical structure of resonance-resonance in
teractions as well as for obtaining numerical estimates (such 
as critical values for the breakup of the KAM surfaces). 

The canonical formulation has a simpler recursive 
structure in general than the Lagrangian theory, but it in
volves differential operators that limit its use. Even though 
these differential operators are normal to the KAM surfaces, 
their presence is not of great concern because they can be 
understood as derivatives taken in the complex n plane; 
since a "tendril" of analyticity reaches down to a preserved 
KAM surface, the differential operators can be thought of as 
the analytic continuation to the real line of well defined oper
ators in the complex plane. 

The process of analytic continuation allows us to under
stand the process of the breakup ofKAM surfaces. Since we 
can compute the size of the divergent regions in the complex 
angular frequency plane, we can see clearly that KAM sur
faces are destroyed by an overlapping process reminiscent of 
that of Chirikov.6 In contrast to the Chirikov picture, how
ever, the resonances that ultimately destroy a given KAM 
surfaces are not the primary resonances; they are the high
order resonances lying nearby. The scaling of the widths of 
these resonances with € seems to be consistent with a picture 
where the primary resonances beat directly against each oth
er, i.e., where we neglect the interaction between resonances 
that have themselves been generated by beating. This fact is 
substantiated by a comparison between the divergent re
gions predicted by the Fourier series convergence studies 
and the analytical estimations of the radii of divergence of 
the perturbation series. 

The values of the perturbation parameters necessary to 
break any given KAM surface can be obtained with arbi
~rary acc.urac~ given enough computer time, using the theor
Ies descnbed 10 this paper to compute the regions of diver
gence associated with high-order resonances. This is a 
si.gnificant achievement for a perturbation theory, since, as 
dIscussed above, the existence of KAM surfaces is deter
mined by the interaction of resonances of arbitrarily high 
order. 

A study of the libratory motion of the physical pendu
lum, to be reported elsewhere, suggests that secondary (is-
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land-like) KAM surfaces correspond to certain complex val
ues of n. If this is true as well for nonintegrable systems, then 
the perturbative theories, coupled with the analytic continu
ation methods, may allow us to explore the nature of sto
chastic motion in a region where the quasilinear diffusion 
approximation fails. 23 
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The complexification of a non rotating sphere: An extension of the 
Newman- Janis algorithm 
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A procedure given by Newman and Janis, to obtain the exterior Kerr metric from the exterior 
Schwarzschild metric by performing a complex coordinate transformation, is applied to an 
interior spherically symmetric metric. The resulting metric can be matched to the exterior Kerr 
metric on the boundary of the source which is chosen to be an oblate spheroid. A specific example 
of an interior solution for which the energy density is positive is given in detail. 

PACS numbers: 02.40.Ky, 04.20. - q 

I. INTRODUCTION 

Since the discovery of the Kerr l metric there have been 
many attempts2

-6 to find a matter distribution that could be 
matched to it. With this aim we shall employ a procedure 
given by Newman and Janis,? by means of which one "de
rive" the Kerr metric from the Schwarzschild metric. The 
reason for the success of the Newman-Janis algorithm is 
quite obscure; it may be merely an accident. However, we 
feel it is worth exploring in a variety of circumstances to see if 
there is any method behind it, and if its uses can be extended 
to other cases. 

The procedure mentioned above is applied to a spheri
cal symmetric metric which contains the internal Schwarzs
child solution for a perfect fluid as a special case. The new 
metric can be matched at the surface of the source to the 
exterior Kerr metric. The spin coefficients and the scalars 
corresponding to the traceless Ricci tensor are calculated 
(see Appendix A). An inspection of the components of the 
energy-momentum tensor in the spherically symmetric lim
it, for the specific example given below, allows us to show 
that the energy density is everywhere positive for, at least, 
small values of the parameter a. 

In Sec. II we shall briefly recall the Newman-Janis pro
cedure. The new metric is given in Sec. III. In Sec. IV a 
discussion of the boundary conditions, and the matching of 
the solution is presented. 

A specific example is analyzed in Sec. V to illustrate the 
method. 

Finally a discussion of the results is given in the conclu
sions. 

II. THE NEWMAN-JANIS ALGORITHM 

For sake of completeness we shall very briefly recall 
how to obtain the Kerr (exterior) metric from the Schwarzs
child exterior metric following the algorithm indicated by 
Newman and Janis.? 

We start with the complex null tetrad associated to the 
Schwarzschild exterior metric. 

liJ=oi, niJ=ob -W -rolr)ot, 

m iJ = .~ (0 i + _._i_ 01]), 
v.t.r sm (J 

m iJ = _1_ (0 iJ __ 1_' 0 iJ) 
v'1r 2 sin (J 3 , 

a) Supported in part by C.O.N.I.C.I.T., Caracas, Venezuela. 

where the bar indicate complex conjugation, r ° is the gravita
tional radius, and the coordinates areXo == u a timelike co
ordinate such that u = const defines a null cone open to the 
future, X I = r a null radial coordinate, and X 2,3 = (J,¢ two 
angle variables. 

Now, the coordinate r is allowed to take complex values 
and the tetrad is rewritten in the form 

!iJ=ot;n iJ =ob-![I- ~( + + ~ )]ot, 

miJ= ~r(o~+ Si~(Jol]); 
- I ( i) m iJ = v'1r 0 ~ - sin (J 01] . 

Next, one performs the complex coordinate transformation 

r' = r + ia cos e, e' = e, 
u' = u' - ia cos (J, ¢ , = ¢. 

Finally, one allows r' and u' to be real, and obtains 

l'iJ = ot; n' iJ = ob -!P - ro[r'/(r'2 + a2 cos2 (J)] jot, 
m'iJ = [v'1(r' + ia cos e)]-I 

X [ia sin (J (0 ~ - 0 t) + 0 i + (i/sin e )0 n . (1) 

Now, it can be shown that the metric associated to this tetrad 
is the Kerr metric. 

In the next section a similar algorithm will be applied to 
a spherical symmetric metric which contain as special case 
the internal Schwarzschild metric. 

III. SOURCE CONSTRUCTION 

Let us start with the following metric; 

ds2 = (Ve2b /r) du2 + 2e2bdu dr - rIde 2 + sin2 e d¢ 2) 
(2) 

with 

A -B(I-r/R2)1/2 

(1 - r/R 2)1/2 

Ve2b /r = [A - B (1 - r/R 2)112]2, 

and the coordinates the same as in the Sec. II. 
If one chooses 

A = ~(1 - 2M /rl)I/2, B = ! 
and R 2 = r. /2M, then the metric (2) becomes the usual 
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Schwarzschild interior solution for a sphere of radius r I 
filled with a perfect fluid of density p = 3/81TR 2. The null 
tetrad associated with the metric (2) is 

{I-' = r 2b 15 r, n I-' = 15 b - (V 12r)t5 r, 
ml-'= _1_(t5 i + _._i_t5~), 

rv2 sm 8 
or in covariant components, 

{I-' = t5~, nl-' = (Ve2b Ir)~ + e2bt5~, 
ml-' = - (rlv'2)(t5~ + i sin 815 !). 

(3) 

(3') 

At this point it is worthwhile to make the following 
remark: We shall complexify the metric (2), with A, B, and R 
as arbitrary functions of r (after the complexification they 
become functions of 8 and r'), and not the interior Schwarzs
child metric. This is due to the fact that using the interior 
Schwarzschild solution, one is led to a metric that cannot be 
matched to the exterior Kerr metric on the boundary. Actu
ally it is impossible to choose an appropriate boundary for 
the source in that case. The reason for this could be found in 
the fact that the values of A, B, and R are closely related to 
the conditions on the boundary, which of course are differ
ent in the spherical and nonspherical case. 

Let us now come back to our tetrad field (3). Assuming 
the coordinate r is allowed to take complex values, the tetrad 
is rewritten in the form 

with 

{I-' = r 2bt5 r, n I-' = 15 b - ! Wt5 r, 

m I-' = _1,;;; (15 i + i cos 8t5~) 
rv2 

Performing the complex transformation 

r' = r + ia cos 8, 8' = 8, 

u' = u - ia cos 8, </J ' = </J, 

one is led to (dropping primes) 

{I-' = e - 2b 15 r = (X I Y)t5 r, 

n I-' = 15 b - !XYt5 r, 
1 

ml-'= -------
V1(r + ia cos 8 ) 

X [ia sin 8 (15 b - 15 r) + 15 i + i csc 815 n 
and 

(4) 

II-' = ~ - a sin2 8t5!, (4') 

Y 2 le Y lei . 2 Ll ( Y y2 ) le 3 
nl-' = -Ub+ -ul-' +asm 0 - - - VI-" 

2 X X 2 

= _ (r - ia cos 0) (le 2 + . . Llle 3 ) 
ml-' -V2 v I-' I sin ou I-' ' 
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where 

X== (1 _ ,z - a
2 

cos
2 

0 )112 
R2 ' 

Y==A -BX 

(note that A, B, and R are now functions of rand 0 ). We shall 
assume that a is a function of r, such that aIr) = a,da(r)1 
dr = 0 at the surface, and aIr = 0) = O. This freedom (letting 
a be a function) will be very helpful to avoid the presence of 
singularities at the center (r = 0). Thus, the metric is 

ds2 = y2 du2 + 2(Y IX) du dr 

+ 2a sin2 8(Y IX - y2) du d</J 

- 2a sin2 0 (Y IX) dr d</J - (,z + a2 cos2 0 ) d8 2 

- [(,z + a2 cos2 0) sin2 8 

+ 2a2 sin4 8(Y IX - y212)] d</J 2. (5) 

Now, the spin coefficients, the scalars corresponding to 
the traceless Ricci tensor, the curvature scalars, and the 
components of the energy-momentum tensor can be ob
tained8

•
9 (see Appendix A). 

IV. THE BOUNDARY CONDITIONS 

In order to consider the energy-momentum tensor giv
en by (A9) as a source of the Kerr metric, we should be able, 
on one hand, to match the metric (5) with the Kerr metric on 
the boundary of the source, and on the other hand, to satisfy 
certain physical requirements (e.g., that the energy density 
be nonnegative, that the stresses be not too large compared 
to the energy density, etc.). 

In this section we shall concentrate on the problem of 
matching the metric (5) to the Kerr metric. With this aim, let 
us start by choosing the equation of the boundary separating 
the interior and the exterior solutions. We shall choose as the 
equation of the boundary 

r = r l = const. (6) 

We make this choice both by simplicity and because in 
the coordinate system we are working with, Eq. (6) defines an 
oblate spheroid (at least in the weak field approximation). 
Oblatness, is of course an expected property of a rotating 
axially symmetric body. To see this, consider the flat space 
limit of the metric (5). 

ds2 = du2 + 2 du dr - 2a sin2 0 dr d</J 
- (,z + a2 cos2 0 ) dO 2 

- (,z + a2
) sin2 0 d</J 2. (7) 

Expression (7) can be transformed to the Minkowskian 
line element in Cartesian coordinates by means of the trans
formation 

t = u + r, 
x = (r cos </J + a sin </J ) sin 0, 

y = (r sin </J - a cos </J ) sin 8, 

z = rcos e. 
Now it is easy to see from (8) that 

x2 y2 Z2 _ 
--+--+--1. ,z + a2 ,z + a 2 ,z 

L. Herrera and J. Jimenez 

(8) 

(9) 
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For each value of r = const, Eq. (S) defines an oblate sphere. 
Next, in order to guarantee that the Lichnerowicz 

boundary conditions 10 hold in some coordinate system, it is 
sufficient to require that the first fundamental form 

1= ( gl-'vdx I-'dxV), = " (10) 

and the second fundamental form 

11= ( - nl-';vdx I-'dx V), = " (11) 

(where nl-' is the unit vector normal to the boundary), be 
continuous across the boundary. We start with condition 
(10), which implies (in Appendix B we give the line element 
and the spin coefficients for the exterior Kerr metric in the 
coordinate system we are working with) 

(12) 

and 

WI,=" = [1 - r 2~r 2]' (13) + a cos '=', 

Equations (12) and (13) are equivalent to 

[ 
A - B(1 - (r - a2 cos2 (J)/R 2)1/2 ] = 1 (14) 

(l-(r-a 2 cos2 (J)/R2)//2 '=', 

and 

[ 
r-a

2
cos

2
(J] [ 2Mr ] (15) 

R 2 , =', - r + a2 cos2 (J , = " . 

Finally (14) and (15) can be combined, to give 

(r4 _ a4 cos4 (J ), =', = (2MrR 2), = " (16) 

and 

[ 
2Mr ] = 1- (_A_)2 (17) 

r + a2 cos2 (J , = " 1 + B , = " . 

N ext, instead of (11) we shall satisfy a more stringent 
condition, namely, all the spin coefficients are continuous 
across the surface r = r I (it is not difficult to convince oneself 
that the latter condition implies (11). It can be seen very 
easily that in this particular example both conditions are 
equivalent. 

Now, the continuity of 7, which guarantees the contin
uity of -1., a, fJ, and 1T, implies, using (12), (7) and (B2), (B3), 

(X2 ),=" = (Y2 ),=", (IS) 

(19) 

and the continuity ofv leads, together with (IS) and (19) to 

(R ) = ( a
4 

cos) (J sin (J ) 
2,=" R ' mr r=r l 

(20) 

(21) 

Finally, the continuity ofy is assured if(12), (13) and 
[18), (19) are satisfied. 

V. AN EXAMPLE OF AN INTERIOR SOLUTION 

We shall now give an example which satisfies the 
boundary conditions and whose energy density is every
where positive for, at least, small values of the parameter a. II 

Let us take 
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where 

1 U=-, 
r l 

1T fJ=-, 
2r) 

(22) 

(23) 

r = ') defines the boundary of the source. The constant r is 
arbitrary, and its value can be chosen so that the stresses 
vanish at the surface of the sphere. However, with this choice 
of r, the stresses will be larger than the energy density inside 
the sphere. For this specific example it was impossible for the 
authors to find a y such that both conditions (vanishing of 
the stresses at the surface and the energy density larger than 
the stresses inside) are satisfied. 

It is very easy to check that all the boundary conditions 
are satisfied. In fact, (22) and (23) imply 

B= -I, A = rcos
2

fJr 
r + a2 cos2 (J + ~u(r - rl)2r ' 

R2= (r-a 2 cos2(J)[r+a 2 cos2
() + (r-rl)2r] 

2Mrsin2 fJr 

And, a trivial calculation leads to conditions (16)-(21). 
Please, note that since B + 1 = 0, condition (17) should be 
written as 

[ 1 - r + 2~r 2 () ] (1 + B )2 = (A 2), = " ' 

a cos '=', 

which is obviously true since (A )'=" = O. 
Next,let us consider for a moment the nonrotating limit 

(spherical symmetric limit) of our metric (e.g., take a = 0). 
In our coordinate system (see Ref. 12), 

Too = y2p, [24) 

where p is the energy density of the matter distribution, and 
from (A9), 

Too = 2(<,622 + !y4<,6oo + y2(<,611 + 3A)j. (25) 

Using (A2)-(AS) in (25) and comparing with (24) we get 

p=( l-
r

X
2 

_ ~X)). (26) 

Next, using (22), 

2M sin
2 
fJr [ r] p= 1 

r[r + aIr - r)f] - r + aIr - r l)2 

+ 4MfJsinfJrcosfJr 4Masin2fJr(r)-r) (27) 
[r + aIr - rd 2 ]r + r[r + a(r - riff . 

It is evident, that in the interval O-<;r-<;r), the density pis 
positive. Thus, at least for small values of the parameter a the 
correct sign of the energy density is guaranteed. 

In the same way we can obtain expressions for the radial 
and the tangential stresses (they are in general different). 

Thus we get 

(28) 

for the radial pressure, and 
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PI = ~ (x,y, +XY" + X,Y ~XY, ) (29) 

for the tangential stresses. Both expressions, as well as the 
expression for the energy density are singularity-free in the 
region O(r(r,. 

VI. CONCLUSIONS 

We have seen so far that the metric (5) can be matched 
to the exterior Kerr metric provided the functions X and Y 
are chosen so as to satisfy the conditions (16)-(21). 

Furthermore, the example given in Sec. V shows that a 
model with positive energy density is conceivable in the con
text of the method outlined above. 

We realize of course that the example presented is still 
quite imperfect to be considered as "the interior Kerr met
ric." However, it is worthwhile to note that with a rather 
simple example [Eqs. (22) and (23)], the boundary conditions 
and the positiveness of the energy density are fulfilled. These 
resuls lead us to think that the application of the Newman
Janis procedure has some chances to be "the way" to the 
construction of a source for the Kerr metric. 

It could be properly objected that the problem of the 
analyticity of the metric functions and the singular structure 
of the source have not been carefully analyzed. As a matter 
of fact the absence of singularities in the limit a = 0 does not 
say anything about the general ai=O case. Concerning this 
point we just introduce, the function a = air) such that in the 
flat space the equation r = 0 describes the origin in 3-space 
and not a disk, across which the coordinate (J will be discon
tinuous or multiple valued. [See Eq. (8).] 

Since in our present example it is inconvenient that the 
interior stresses exceed the energy density, we did not pre
sent a careful analysis of this point. 

It goes without saying that such analysis should be pre
sent in any attempt to construct a source for the Kerr metric. 

Finally, a remark can be made which sheds some light 
on the nature of the source presented above. In the limit 
a----.o, the expression for the energy-momentum tensor does , 

not reduce to that ofa perfect fluid. This result suggests that 
the stresses appearing in the source during the rotation do 
not vanish completely when the rotation stops. And the re
maining object is a "solid" sphere in the limit a----.o. 
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APPENDIX A 

For the spin coefficients we get 

K=O, p= 
r(X /Y) + ia cos (J 

A. =0, 
(r + a2 cos2 (J ) 

u=O, 1'= 
(X/Y) 

2 v2(r + ia cos (J ) 

x [ ia sin (J(XYI -Xly) + (X2Y -XY2 ) ] 

X2 ' 

r cot (J 
a= -- - ----~~-----

2 2 v2(r - ia cos (J) , 

(3 = ~ + cot (J 
2 2 v2 (r + ia cos (J) , 

(AI) 

€ = ia cos (J (X _ 1) 1T = _ 1', 
2(r + a2 cos2 (J ) Y , 

f.l = XY [ - r + ia cos (J..! (~ - 1)] , 
2(r + a2 cos2 (J ) X XY 

r = XY + ia cos (J Y 2 [~_ X_I] 
2 4(r + a2 cos2 (J ) XY Y , 

Y (ia sin (JY, + Y2) + y 2:r, 
v2(r - ia cos (J ) 

V= 

where the subscripts 1,2 indicate derivatives with respect to r 
and (J, respectively. Finally, the scalars corresponding to the 
traceless Ricci tensor and the curvature scalar are found 
from the Einstein equations (the notation is the same as in 
Ref. 8). 

<1>00 = Dp - ~K - (p2 + uu) - (€ + E') P + K1' + K(3a + P -tT) = D p _ p2 

= r(X /y)2 + a2 
cos

2 
(J _ (X /Yf [1 + r(XI Y - XYI) ] (A2) 

(r + a2 cos2 (J )2 (r + a2 cos2 (J ) XY' 

<1>10 =Da - ~€ - (p + E - 2E)a -(30-+(3€+ KA. +Kr - (€ +p)1T =Da - ~E - (p + E - 2€)a +p€ - (€ +p)1T 
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ia sin (J(XlIY -XYlI ) + (~2IY -XY;I +X2YI -XIY2 ) + ia sin (J(XIY _Xy.)2 + (X2Y -XY2)(XIY -XY.) 

4 v2(r -la cos (J)Y 4 v2(r - ia cos (J )Xy3 

ia sin (J(XIY -XY.) + (X2Y -XY2)XI 

2 v2(r - ia cos (J )XYz 
ia sin (J(XIY -XYI) + (XzY -XYz) 

4 v2(r - ia cos (J fy 2 

_ ia cos (J [ia sin (J (XI Y - XY.) + (X2Y - XYz)] 
2 v2(r - ia cos (J )(r + a2 cos2 (J )y2 

ria sin (J(XtY -XYI) + (X2 Y -XY2)] 

4 v2(r - ia cos (J )(r + a2 cos2 (J )XY 

x [(X)(r-3iacos(J)+4iacos(J] _ iacos(Jsin(J (X -1) [a
2

cos
2
(J-r(r+iacos(J)] (A3) 

Y 2 v2(r - ia cos (J ) Y (r + a2 cos2 (J )2 

J. Math. Phys., Vol. 23, No. 12, December 1982 L. Herrera and J. Jimenez 2342 



                                                                                                                                    

f/J'2 = ~r - iJ{3 + (ei + {3 - T)r - fl-T + (TV + €V + {3 (r - r - fl-) - aX = ~r - iJ{3 - fl-T + €V + _--=-/3_X_
Y 
__ 

2(r + ia cos () ) 
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with 

D = Xyal ' .1 = - X2Yal, 0 = v'1 ~ (a2 - ia sin Oad· 
(r + za cos 0) 

In terms of (A2)-(AS), the energy-momentum tensor of the source is 

Til" = 2cJ>22fllf" + 2cJ>oo nil nv + 2cJ>20 mil mv + 2fPzomil mv + 4cJ>1l [ 'Ill nv) + mill mV )] 

- 4cJ>zl fill mv) - 4~21 fill mV ) - 4cJ>1O nlll mv) - 4fPlO nlll mV ) + 1M [ 'Ill nv) - mill mV )] 

= 2 [cJ>22 + :4 cJ>oo + yZ(cJ>ll + 3A)] O::o~ + [ ~ cJ>oo + ~ (cJ>1I + 3A)] O::o~ 
- { a sin

2 
OY4 (2 ) + v'1 Re ! (r + ia cos 0 )(2cJ>12 + y 2 cJ>1O) I o~o~ + 2 4 XY - 1 cJ>oo - a sinz 0cJ>22 

+ v'1 Im[sin 0 (r + ia cos 0 )cJ>12] - ~ Im[(r - ia cos 0) sin 0cJ>1O] + a sinz OyZ (;y - 1 }cJ>1l + 3A )} O::o~ 

+ 2 ( ; rcJ>ooD~O~ + 2 v'1 ; Re[ cJ>lO(r - ia cos 0 )]0 ~o ~ 

+ ~ {(;y -1) ~2 cJ>oo- v'1sinOIm[(r-iasinO)cJ>IO] -asinzO(cJ>ll +3A)}0~0~ 
+ !2 Re[cJ>zo(r - ia cos 0)2] + 2(r + a+ cos2 0)(cJ>11 - 3A)) O!O~ 

+ {2 sin 0 Im[ cJ>zo(r + ia cos 0 )2] - 2 v2a sin2 0 Re[ cJ>21(r - ia cos 0)] + v'2a sinz Oy2 

X (;y - 1) Re[ cJ>lO(r - ia cos O)]} o!o ~ + {2a2 sin4 0cJ>22 

a
2 

sin
4 

0 (2 )2 + y4 _ -1 cJ>oo-2Re[cJ>zosin2 0(r-iacosO)2] +4v'2asin3 0Im[(r-iacosO)cJ>21] 
2 XY 

- 2 v'2a sin3 OY2 (;y - 1) 1m [cJ>IO(r - ia cos 0)] - 2a2 sin4 OY2 (;y - 1) 
X (cJ>ll + 3A) + 2 sin2 O(r + a2 cos2 0)(cJ>11 - 3A)} o!o~. (A9) 

APPENDIX B ~here the primes indicate that these spin coefficients have 
been calculated with a tetrad field obtained from (l) by 
means of a null rotation about the vector 'Il ' 

In the coordinate system we are working with, the exte
rior Kerr metric is given by 

ds2 = (1 _ 2Mr ) du2 
r + a2 cos2 0 

4a sin2 OMr + 2 du dr + ~ 2 2 du d¢J 
r+a cos 0 

- 2a sin2 0 dr drp - (r + a2 cos2 0) dO 2 

- [(r + a2 cos2 0) sin2 0 + 2a2 sin4 0 

X (~ + Mr )] drp 2 

2 r + a2 cos2 0 ' 

and for the corresponding spin coefficients one has 
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K' = v' = (7' = IL ' = E' = 0, 

p' = - (r - ia cos 0 ) - I, 

7' = - ia sin Opp/y2, 

1T' = ia sin Op2/y2, 

/3' = - cot Op/2 y2, 

a' == TT' - /3', 
fl' = (r + a2 - 2Mr)p2p/2, 

y' = fl' + (r - M)Pp/2, 

J. Math. Phys., Vol. 23, No. 12, December 1982 

(Bl) 

(B2) 

gl(z) = e ~), 
with 

Z = (ia p' sin 0 )/Y2. 

The relationship between the two sets of spin coefficients is 13 

p' =p +ZK, 

a' = a + z( p + E) + Z2K , 

IL' = IL + Z(1T + 2a) + Z2(p + 2E) + Z3K + 8z + zDz, 

K'=K, 

E' = E+ZK, 

1T' = 1T + 2zE + Z2K + Dz, 

(7' = (7 + ZK, 
(B3) 

/3' = /3 + Z(7 + ZE + ZZK, 

fl' = fl + 2z/3 + Z1T + Z2(7 + 2zZE + Z2zK + Oz + zDz, 

7' = 7 + Z(7 + zp + ZZK, 

y' = Y + Z(7 +/3) + za + Z2(7 + zz(p + E) + Z2ZK, 

V' = V + z( fl + 2y) + zlL + Z2(2f3 + 7) + zz(2a + 1T) 

+ z2z(2E + p) + Z3(7 + Z3ZK +.1z + zOz + zOz 

+zzDz. 
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momentum tensor. (We thank the referee for comments on this point.) 

lOA. Lichnerowicz, Theories Relativistes de la Gravitation et de /' Electro
magnetisme (Masson, Paris, 1955). 

"For simplicity we shall restrict ourselves, in this example, to functions air) 
such that in the limit a(r)-+O, a,(r), all (r)-+O also. (See Ref. 9.) 

I2H. Bondi, Proc. R. Soc. London Ser. A 281,39 (1964). 
13M. Carmeii, Group Theory and General Relativity (McGraw-Hili, New 

York, 1977). 
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Generalized Killing tensors (GKT) and generalized conformal Killing tensors (GCKT) are 
defined as the class of totally symmetric tensor fields that generate solutions of a suitable 
inhomogeneous equation of geodesic deviation along arbitrary and null geodesics. respectively. A 
geometric interpretation of these fields as generators of Jacobi fields along arbitrary and null 
geodesics is also given. It is shown that well known fields such as Killing tensors. conformal 
Killing tensors. and geodesic collineations belong to the above classes. Finally, first integrals of 
geodesic motion concomitant with the existence of GKT's and GCKT's are determined. 

PACS numbers: 02.40.Ky, 04.20.Me 

1. INTRODUCTION 

The knowledge of the geodesics in a given space-time 
manifold is of great interest in general relativity. In addition 
to the fundamental property of yielding the paths of freely 
falling particles, they are also involved, for instance, both in 
the determination of singular points and in the description of 
the global behavior of the given metric. 1.2 

The problem of solving the equation of the geodesics is 
considerably simplified when one knows first integrals (FI) 
of motion. 2.3 A remarkable class of such FI's, that may be 
written in the form of homogeneous polynomials in the tan
gent vector to the geodesic, in concomitant with the exis
tence of Killing vectors (KV), Killing tensors (KT), and con
formal Killing tensors (CKT).2 In general, it follows that in 
principle there exists a whole class of such generators ofFI's, 
but unfortunately this class is often empty, unless severe re
strictions on the geometry are satisfied.4 

To find a way out of these limitations, there have been 
attempts to extend the class of generators of FI's of motion. 
For instance, enlarged notions of symmetry related to the 
existence of projective collineations (PC) and homothetic 
motions (BM) have been used by various authors to derive 
additional FI's, provided that the manifold admits at least 
one generator of homogeneous polynomial FI'S.5-7 Follow
ing a different approach, Katzin and Levine have found nec
essary and sufficient conditions for the existence of geodesic 
FI's which are mth-order polynomials in the tangent vector 
and are assumed to depend explicitly on the path param
eter. 8 

The aim of this paper is to present an alternative proce
dure leading to an extension of the concept of generator of 
FI's of geodesic motion. Our investigation is based on the 
following result. If Ka, ... ap is a KT of order p and t a is the 
tangent vector to an affinely parametrized geodesic y. then 

.J Work done under the auspices of the National Group for Mathematical 
Physics ofC.N.R. 

the vector 

(1.1) 

is a solution of the equation of geodesic deviation (egd) along 
y.9 Accordingly, we introduce the concept of G KT as a total
ly symmetric tensor field yielding solutions X a of a suitably 
extended egd, through Eq. (1.1). The case of null geodesics is 
also examined in detail, leading to the definition of GCKT. 

A geometric interpretation ofGKT's (GCKT's) as gen
erators of Jacobi fields (J fields) along arbitrary (null) geode
sics is also given. 

Morevoer, it is shown that already well known fields, 
such as KV's, KT's, and PC's, belong to the class ofGKT's. 
In a similar way, it is proved that CKT's and conformal 
collineations (ConfC) satisfy the definition ofGCKT. 

In Sec. 3, we focus our attention on the determination of 
FI's of motion concomitant with the existence ofGKT's 
(GCKT's). In this respect, we find sufficient conditions for 
the existence ofFI's of motion related to a single GKT 
(GCKT). The connections with the above quoted recent re
sults of Katzin and Levine are also briefly discussed. 

In the last part of Sec. 3 we investigate the case when a 
pair ofGKT's (GCKT's), say Hand K, are given. We show 
that H, K and their covariant derivatives may always be 
combined to identify FI's of motion along arbitrary (null) 
geodesics. In turns out that this approach yields an extension 
of previously known procedures for deriving FI's of geode
sics motion. Namely, it will be shown that our analysis re
covers and unifies well known results concerning the Lie 
algebra ofKT's and CKT'slO and the so called "related inte
gral theorems".6 

A certain number of particular applications of our gen
eral statements will also be explicitly listed, in order to pro
vide instructive examples of FI's of motion. 

For generality in our analysis. we shall consider an n
dimensional indefinite Riemannian manifold of metric ten
sor gab' As far as notations are concerned, the action of the 
operator D m I Dsm on a tensor field is defined by 
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Dm a am" " 
--=t'···t v "'V , Dsm a, am 

where t a is the tangent vector to a geodesic of affine param
eter s. The following letter-saving conventions will also be 

employed: t a,···t ap will be denoted by t a, ... ap ; moreover the 
symbol K will be used to denote a tensor Ka ... a when no 
possibility of misunderstanding arises. 'p 

2. GENERALIZED KILLING TENSORS 

In a given manifold referred to local coordinates x a 

(a = 1, ... ,n), consider a geodesic ofequationxa = xa(s), where 
s is an affine parameter, and denote by t its tangent vector. 

We shall deal with the problem of determining a vector 
field X a = X a(s) and a function if; = if;(s) satisfying 

D 2X a 

-- +Ra t bX Ct d =2if;t a (2.1) 
DS2 ocd , 

where R a bed is, as usual, the curvature tensor. 
In the case if; = ° Eq. (2.1) reduces to the well known 

egd, and the vector X is usually referred to as a J field. II 
In general, every solution X of Eq. (2.1) may be decom

posed as 

xa=x
a

+ L(L>if;dU)dTt
a
, (2.2) 

A 

where X is a J field. Therefore, every solution of Eq. (2.1) is 
very simply related to a corresponding J field defined along 
the geodesic, through Eq. (2.2). In this section, we shall be 
dealing with remarkable properties of solutions of Eq. (2.1). 
As a matter of fact, it could be shown that similar remarks 
hold, with slight modifications, for the solutions of any inho
mogeneous extension of the egd. However, it will be shown 
that our particular choice turns out to be sufficiently general 
to lead to significant results and to avoid too much involved 
formal complexities. 

As it was stated in the In troduction, we shall character
ize the class of symmetric tensor fields that give rise to solu
tions of Eq. (2.1) along every geodesic. In this way we shall 
obtain an extension of the concept ofKT's as generators of J 
fields, through Eq. (2.2). Furthermore, it will also be shown 
that such generalized KT's identify FI's of geodesic motion, 
as it was to be expected by a proper extension of a KT. Name
ly, we have the following theorem: 

Theorem 2.1: Let K be a totally symmetric tensor of 
order p and let X be the vector defined by 

xa = Kaa, ... ap t a, ... ap
, ifp> 1, 

(2.3) 

where K is restricted to the geodesic of tangent vector t. Then 
X is a solution ofEq. (2.1) along every geodesic iff there exists 
a totally symmetric tensor field k of order p such that 

[(P + 2)V(b V aKa, ... ap ) - 2Va V (bKa, ... ap) ]Ip 
= ga (bka, ... ap )· (2.4) 

Moreover, the function if; is given by 

(2.5) 

Furthermore, X is aJ field along every geodesic iff k = 0, i.e., 
iff 
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Va V(bKa .. ap) = 0. (2.6) 
Proof Using the Ricci identity and the symmetry of the 

field K, it follows that the vector X defined by Eq. (2.3) satis
fies the identity 

d2Xa b d 
--2- + R abed t XJ 

Ds 

(2.7) 

It is now more convenient to rewrite Eq. (2.7) in the equiva
lent form 

1 = -[(P + 2)V(b V aKa .... a
p

) 

p 
- 2"1 a V(bKa ... ap)] t ba ... ap . (2.8) 

Comparing Eq. (2.8) with Eq. (2.1), we find that the vector 
(2.3) satisfies Eq. (2.1) for each geodesic iff there exists a ten
sor field k such that Eq. (2.4) holds. In this case if; is given by 
Eq. (2.5). 

To prove the second part of the theorem, notice that 
from Eq. (2.4) it follows 

V(b V aKa .... ap) = g(abka .... api' 

so that Eq. (2.4) is equivalent to 

V V K - p+2 k 
a (b a .... ap ) - -2-g (ab a .... ap ) 

P 
- -g k 2 alb a .... ap )· 

(2.9) 

(2.10) 

Moreover, X is a J field along every geodesic iff if; = 0, that is 
iff k = 0, in view ofEq. (2.5). It follows from Eq. (2.10) that k 
vanishes iff Eq. (2.6) holds. Q.E.D. 

Equation (2.4) may be regarded as a formal extension of 
the definition of KT 

(2.11) 

Namely, Eq. (2.4) reduces to Eq. (2.6) if k = 0, and Eq. (2.6) is 
simply the covariant derivative of Eq. (2.11). Accordingly, 
we shall refer to a field K, which satisfies Eq. (2.4) for a 
suitable k, as a generalized Killing tensor of order p. 

Denote by K ~O) a vector field and denote by K ~';;~.am 
(m = 1, ... ,r) a class of totally symmetric tensor fields. GKT's 
may also be characterized 12 as the generators of polynomial 
solutions of Eq. (2.1) of the type 

r 

xa = K(O)a + L K~':')~arn t a ... am (2.12) 
m=l 

in the sense clarified by the following corollary. 
Corollary 2.1: The field X defined by Eq. (2.12) is a solu

tion ofEq. (2.1) along every geodesic if and only if both K~) 
and K(m)aa .... a

m 
(m = 1, ... ,r) are GKT's. 

In order to obtain a further insight into the meaning of 
theorem 2.1, we recall that every GKT identifies a J field 
defined by Eq. (2.2) along every geodesic y. Moreover, such a 
J field gives rise to a I-parameter family of geodesics contain
ing the given curve y, i.e., to an infinitesimal variation of y, 
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and conversely. II Accordingly, the previous discussion al
lows the geometrical interpretation of GKT's described in 
the following theorem: 

Theorem 2.2: Every GKT defines an infinitesimal vari
ation along every geodesic. 

The above property applies directly to the vector de
fined by eq. (2.3) when K is a KT, and may be considered as 
an extension to arbitrary GKT's of a similar result holding 
for KV's. 

We shall now analyze GKT's of order 1. Eq. (2.10), 
which is equivalent to Eq. (2.4), reduces to 

Va VlbKc) =~glabKc) -!galbkc)' (2.13) 

Equation (2.13) coincides with the definition8 of PC. Fur
thermore, when ka vanishes, Eq. (2.13) yields the well known 
definition of affine collineation8 (AC). In other words, a PC 
is the most general vector field whose restriction to an arbi
trary geodesic is a solution of Eq. (2.1). In particular, the 
restriction of a vector field to an arbitrary geodesic is a J field 
iff the vector field is an AC. The above remarks are summar
ized in the following corollary. 

Corollary 2.2: The class of GKT's of order 1 coincides 
with the class of PC's. In particular, a GKT of order 1 is a 
solution of Eq. (2.6) iff it is an AC. 

Not.!ge also that, in view ofEq. (2.2), .£.very PC yields a 
solution X of the egd. However, in general X does not identi
fy a vector field of the given manifold, since it depends expli
citly on the tangent vector of the geodesic. 

The discussion that led to Theorem 2.1 may also be 
extended to the case of null geodesics, which is particularly 
relevant in view of possible applications to general relativity. 
To this aim, we notice that, going along the same lines al
ready described in the proof of Theorem 2.1, we obtain the 
following result. 

Theorem 2.3: Consider a totally symmetric tensor field 
K of order p and the vector X defined by Eq. (2.3), where t is 
the tangent vector to an arbitrary null geodesic and K is 
restricted to the geodesic. Then X is a solution of Eq. (2.1) 
whatever the choice of the null geodesic iff there exist tensor 
fields k and Z of order p such that 

(l/p)[(P + 2)V Ib V aKa, ... ap) - 2Va VlbKa, ... ap)] 
= galbka, ... ap) +zala, ... ap , gapb)' (2.14) 

The expression of", is given by Eq. (2.5). Moreover, X is a J 
field along every null geodesic iff k = 0, i.e., iff 

Va VlbKa, ... ap) = [(P + 2)/2]Zla,ap gab) 

- (p/2)zala, .. ap ,gapb)' (2.15) 

Equation (2.14) is to be regarded as the mathematical 
characterization of those totally symmetric tensor fields K 
yielding infinitesimal variations of null geodesics through 
Eqs. (2.3) and (2.2). 

A remarkable class of solutions ofEq. (2.14) is given by 
CKT's which are defined as solutions of the equation 

Vlb Ka, ... ap) = g Iba, Wa2 ... up i' (2.16) 

where W is a suitable tensor field. Namely, we have the fol
lowing theorem. 

Theorem 2.4: Let K be a CKT of order p. Then Eq. 
(2.14) holds, with k and Z given by 
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ka, ... ap = (2/p)V la, Wa, ... ap)' 

Za,.ap = (l/p)[(P - l)V lap W1a,la,ap ,) 

- Va, Wa, ... a,il, 

(2.17) 

(2.18) 

where W is defined by Eq. (2.16). Moreover, the following 
equation is satisfied along every geodesic of tangent vector t 

D'X 
- a R bxc d {2 

- DS2 + abed { (= pgac VbWa, a,. 

+ ~gbc[(P-1)Vup Wau, ... up ,-Va Wa,aJ}tbCa2ap, 

(2.19) 

where X is defined by Eq. (2.3) 
Proof By taking the covariant derivative Ve of Eq. 

(2.16) and after some manipulations of the indices, we obtain 
the identity 

(P + 2)V (b V uKu, ... ap) - 2V u V(bKu, .. a,) = 2ga Ib V u, wa, ... up) 
+(P-1)V(bw' l g -V W g. 

IQ GI···a" 2 Up I Up) a (ul··a p I arb) 

(2.20) 

Comparing Eq. (2.20) with Eq. (2.14), we conclude that Eq. 
(2.14) is satisfied when k and Z are defined by Eqs. (2.17) and 
(2.18). Substituting Eqs. (2.17) and (2.18) into Eq. (2.14), 
transvecting with (a,apb and using Eqs. (2.3) and (2.8), we 
obtain Eq. (2.19). Q.E.D. 

As suggested by the result of Theorem 2.4 every tensor 
field K of order p which is a solution of Eq. (2.14) will be 
referred to as generalized conformal Killing tensor or order p. 

When we restrict our analysis to null geodesics, we may 
extend to GCKT's the remarks already made for GKT's. In 
particular, Corollary 2.1 and Theorem 2.2 are still valid if we 
substitute GCKT's for GKT's. 

As far as the case p = 1 is concerned, referring to the 
diagrams of Katzin and Levine,s, 13 we have the following 
results. 

Corollary 2.3: (i) Every PC is a GCKT; (ii) every ConfC 
is a GCKT; (iii) the restriction of a vector field X to an arbi
trary null geodesic is a J field iff X is a null geodesic collinea
tion (NC). 

Proof The proofs of the statements (i) and (ii) are trivial. 
To prove (iii) notice that, in the casep = 1, eq. (2.15) yields 

V u V (bKc) = g a(bzc) , (2.21) 

which coincides with the definition ofNC.5 Q.E.D. 
We conclude this section with the following remarks. 

From the definitions (2.4) and (2.14) it follows that GKT's 
are a proper subclass ofGCKT's. However, due to the differ
ent role played by these fields in the analysis ofFl's of geode
sic motion, we have introduced them in a separate way and 
with different notations. It will be understood that every 
result established for GCKT's also holds for GKT's. More
over we shall refer for brevity to a solution ofEq. (2.6) [or 
(2.15)] as a homogeneous GKT (GCKT). 

3. FIRST INTEGRALS OF GEODESIC MOTION 

As it is well known, the fundamental motivation for the 
introduction ofKT's or CKT's is given by the fact that they 
generate FI's of geodesic motion which are homogeneous 
polynomials in the tangent vector. 
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In the previous section, we introduced the definitions of 
GKT and GCKT as an extension of the concepts ofKT and 
CKT. Then it seems worthwhile to see whether the new 
fields so defined could be generators of some type of geodesic 
FI's. We shall proceed to this investigation in two steps. 
Firstly, we derive FI's of geodesic motion which may be as
sociated with a single solution of Eq. (2.4) or (2.14); then we 
study the FI's which are obtained from any two distinct solu
tions of the same equations. We shall also report here a cer
tain number of already well known results which appear to 
have a common origin in this approach. 

We start by giving a set of constants of geodesic motion 
which are a direct consequence of the definitions (2.4) and 
(2.14). 

Lemma 3.1: Let K be a GKT of order p. Then we have 

V K taa, ... ap - g tablSk ta, ... ap dr = C
1
, (3.1) 

a QI .•. a" ab D, ... a p 

So 

- s(V K t aa, ... ap - g t abi
s 

k t a, ... ap dr) = c, (3.2) 
a a, ... a p ab a •... a" 2 

So 

with C I and C2 constant along every geodesic. If K is a GCKT, 
then Eqs. (3.1) and (3.2) hold along every null geodesic. 

Proof The prooffollows easily by differentiating the left 
hand sides of Eqs. (3.1) and (3.2) along a geodesic and using 
Eq. (2.9). By a similar procedure it may be shown that the 
quantities (3.1) and (3.2) are constant along null geodesics if 
K is a GCKT. Q.E.D. 

The conserved quantities defined by Eqs. (3.1) and (3.2) 
will be used to obtain an extension of known techniques for 
the generation of FI's of geodetic motion when K is proper! y 
chosen. Namely, we have the following results. 

Theorem 3.1: If K is a GCKT of order p, then the field 

V (aKa, ... apl' (3.3) 

is a CKT of order p + 1, and the quantity 

(3.4) 

is a FI of motion along null geodesics. Moreover, if K is a 
homogeneous GKT then the field (3.3) is a KT, and (3.4) is a 
FI along arbitrary geodesics. 

As a particular case, notice that, given a GCKT (homo
geneous GKT) of order 1, the FI (3.4) reduces to Kat a 
- sV aKbt ab for t null (arbitrary). In view of Corollary 2.3, 

this result agrees with Theorem 7.1 (5.2) ofa recent paper8 by 
Katzin and Levine. Moreover, in all cases listed in Corollary 
2.3 we obtain the well known result that the field V laKb I is a 
CKT of order 2. 

In general, an arbitrary GCKT identifies the FI of null 
geodesic motion described in Theorem 3.1. Further classes 
of Fl's may be found when K is subject to suitable con
straints. For instance, suppose that there exist an integer m 
and a field O"a,a

m 
cP-' such that the field k defined in Eq. 

(2.14) satisfies the condition 

(3.5) 

From Eq. (3.5) it follows that, along every null geodesic, we 
have 
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D m 

- (k ta, ... ap) =0. Dsm a •.. Op 
(3.6) 

Then Eq. (3.6) implies that 
m-I 

k t a,ap = '" asJ, (3.7) 
QI .. •a" £-} 

J~O 

where the expressions for the constant coefficients aj in 
terms of the covariant derivatives of k are given by 

1 m-I-j 1 .Di+j 
a = - '" -( -s)' __ (k ta, ... ap ) 

J ~.~., Di+J a, ... ap , J. l=f) I. S 
(3.8) 

with O<J~m - 1. Whenj varies over the prescribed interval, 
Eq. (3.8) yields m FI's of null geodesic motion. Taking also 
into account the results of Theorem 3.1, we obtain two addi
tional Fl's of null geodesic motion. To summarize: every 
GCKT for which Eq. (3.5) holds, admits m + 2 FI's of null 
geodesic motion. 

If we fix our attention to arbitrary geodesics, we find a 
similar analysis holds, provided that the field k of Eq. (2.4) 
satisfies the supplementary condition 

(3.9) 

for some integer m. The constraint (3.9) implies that Eq. (3.7) 
is satisfied along every geodesic. Then the FI's (3.8) hold for 
arbitrary geodesics. Moreover, in consequence of Lemma 
3.1 and Eq. (3.7), the quantities 

m-I si+1 
C =VK taa, ... ap _ g tab", a·--, (3.10) 

I a a, ... ap ab ~ J. + 1 
j~O } 

m - I SJ+ 2 

+ gabt ab L aJ -.--, 
J~O J + 2 

(3.11) 

are constant along every geodesics. Recalling the relation 
(3.8) between the coefficients aJ and the covariant deriva
tives of k, we conclude that the quantities (3.10) and (3.11) 
are FI's of motion. 

Equations of the form (3.9) have been found by Katzin 
and Levine8 to be a necessary and sufficient condition for the 
existence of FI's of geodesic motion with explicit depen
dence on the path parameter s. These Fl's are easily seen to 
be proportional to the a/s given by Eq. (3.8). In view of Eqs. 
(3.10) and (3.11), we may comment on this fact by saying that 
the existence of a GKT K subject to the constraint (3.9) is a 
sufficient condition for increasing the number of FI's con
comitant with k. 

We shall now describe a class ofFI's generated by pairs 
of GKT's or GCKT's. To this aim, we state a general result 
concerning constant of motion identified by solutions of Eq. 
(2.1). 

Let us denote by (X, ¢) and (Y, <p ) two solutions of Eq. 
(2.1), where the rhs is given by 2¢t a and 2# a, respectively. 
Then we have the following theorem. 

Theorem 3.2: Let (X, ¢), (Y, <p ) be any two solutions of 
Eq. (2.1) on a given geodesic of tangent vector t. Then we 
have 
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a DYa DXa IS X - - y a_ - 2(¢X t a_ ¢Y ta)dr=c 
Ds Ds So a a 3' 

(3.12) 

where C3 is constant along the geodesic. 
Proof A direct prooffollows easily by differentiating 

the l.h.s. ofEq. (3.12) along the geodesic and using the defini
tions of (X, ¢) and (Y, ¢ ). Q.E.D. 

Under the assumption that both X and Yare given by 
Eq. (2.3), Theorem 3.2 identifies FI's of motion that may be 
written in the form of homogeneous polynomials in the tan
gent vector to the geodesic. In other words, Theorem 3.2 will 
be used to generate KT's and CKT's. For instance, if 
¢ = ¢ = 0, i.e., if both X and Yare J fields, Theorem 3.2 
yields the following result. 

Corollary 3.1: Let K and Hbe homogeneous GKT's of 
order p and q, respectively. Then the field 

(3.13) 

is a KT of order p + q - 1. 
As an application of Corollary 3.1, notice that, if the 

fields K and Hare AC's, then the field Ka V bH a - Ha V bK a 
isaKV. 

If we consider HM's, the last relation easily reduces to 
the already known result that the commutator of two HM's 
is a KV.14 

The result given in Corollary 3.1 may be extended to the 
case of null geodesics as follows: 

Corollary 3.2: Let K and H be homogeneous GCKT's of 
order p and q respectively. Then the tensor field (3.13) is a 
CK T of order p + q - 1. 

In particular, two NC's identify a conformal Killing 
vector defined as Ka Vb H a - Ha Vb K a. 

The constant of motion defined by Theorem 3.2 reduces 
to a well known FI when both K and Hare KT's (CKT's), as 
it is shown by the following corollary. 

Corollary 3.3: Let K and H be KT's (CKT's of order p 
and q, respectively. If X and Yare related toK andHby Eq. 
(2.3), then the constant of motion (3.12) coincides with the FI 
concomitant with the Schouten-Nijenhuis brackee· lO of K 
and H, up to a constant factor. 

Proof Let K and H be arbitrary CKT's satisfying the 
equations 

V(aKa, ... a
p

) = g(aa, wa, ... a
p

) ' V(aHb, ... by) = g(ab, Vb, ... by)' 
(3.14) 

for suitably defined wand v. Consider Eq. (3.12) and put 

(3.15) 

From Eqs. (2.5) and (2.19) it follows that 

¢= ~~(v tb, ... b,). 
q Ds b,.by 

Since Xa t a is constant along null geodesics, we have 

I
s 1 

A.Xa t a dr = - K V t a, ... apb, ... by 
If' Q •..• Qp b 2 ... b q , 

s" q 
up to an additive constant. Writing down the analogous 
expression for f~o ¢ Ya t a dr and substituting into Eq. (3.12) 
we obtain, in view of Eqs. (3.14), 
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~ [Hb V K pq q (b, ... b, Ib I a, ... ap ) 

_pKb V H ]tb, ... b,a, ... ap_ c (a, ... ap _ , Ib I apb, .. b,) - 4' (3.16) 

with C4 constant along every null geodesic. The CKT appear
ing in the square brackets ofEq. (3.16) coincides with the 
Schouten-Nijenhuis bracket of K and H. 

The same procedure applies whenK andH are KT's. In 
this case, noting that ¢ = ¢ = 0, we still obtain a FI de
scribed by an equation of the form (3.16), holding for arbi-
trary geodesic. Q.E.D. 

In view of Corollary 3.3, the Frs obtained as a conse
quence of Theorem 3.2 may be regarded as extensions of the 
standard procedure for the generation of FI's based on the 
introduction of the Schouten-Nijenhuis bracket. 

Theorem 3.2 may also be used to find a class of Frs of 
motion yielding an immediate extension of the so called "Re
lated Integral Theorem".6 Namely, by direct substitution 
into Eq. (3.12) and after some manipulation of the indices, we 
obtain the following results. 

Corollary 3.4: Let H be a KT of order q. Then, denoting 
by !f K the Lie derivative with respect to the vector field K, 
we have: 
(i) !f KHa, a is a CKT if K is a NC, 
(ii) !f KHa,.~y - 2quHa, .. a with u = V jK j In is a CKT if K 
is a ConfC, y 

(iii)!f KHa,.a, - 2q)'Ha, .. a, with), = V jKjl(n + 1) is a KT 
ifKis a PC. 

lt is to be remarked that the statement (iii) coincides 
with the Related Integral Theorem. Moreover, the fields de
fined in (ii) and in (iii) reduce to the Schouten-Nijenhuis 
bracket of Hand K if K degenerates into a conformal motion 
or into a motion, respectively. 

The above discussion shows that the procedure for the 
construction ofFI's based on Theorem 3.2 works also under 
the assumption that, by themselves, neither H or K give rise 
to FI's. However, each corollary has been proved under the 
assumption that the fields Hand K, besides being GCKT's 
or GKT's, are subject to further supplementary conditions. 
We shall now deal with the problem of generating FI's from 
a more general viewpoint. It will be shown that the linear 
spaces of GCKT's and GKT's may be endowed with an alge
bra structure such that the properly defined product as
sumes values into the subalgebra of CKT's and KT's respec
tively. 

Namely, as far as GCKT's are concerned, we state the 
following theorem that, recalling Theorem 3.1, may be 
proved by direct calculation. 

Theorem 3.3: Let K and H be GCKT's of order p and q 
respectively. Then the field 

(3.17) 

is a CKToforderp + q + 1. In particular, whenKandHare 
homogeneous GKT's the tensor field (3.17) is a KT. 

For completeness, we list in detail the results obtained 
from Theorem 3.3 in the casep = q = 1. In view ofCorol
laries 2.2 and 2.3, we have the following statements. 

Corollary 3.5: Consider the field 

(3.18) 
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(i) The field (3.18) is a CKT of order 3 if Hand K, each 
independently of the other, are chosen in the set of PC's, of 
Conf C's, or of NC's. (ii) The field (3.18) is a KT of order 3 if 
both Hand K are AC's. 

The following theorem shows that there exists a FI of 
geodesic motion associated with every pair of GKT's. 

Theorem 3.4: Suppose thatK andH are GKT's of order 
p and q respectively. Then the field 

(3.19) 

is a KT of order p + q + 1. 
Proof: Consider the fields X and Y defined in Eqs. (3.15). 

On account of the fact that both vectors are solutions ofEq. 
(2.1), it follows that 

D2 (X a) 2.1, ab D2 (Y 0) ,),J. ab (320) Dil at = ylgab t 'DS2 at = ...."gab t . . 

Suppose the geodesic is non-null and consider the equation 
obtained by multiplying Eq. (3.12) by gab tab. Substituting 
Eqs. (3.20), it may be shown by a straightforward calculation 
that the following relation holds on every non-null geodesic: 

[ga,b,(XaVb Ya-yaVbXa)-Xa, Vb Yb, 
+ Ya, Vb Xb, ]ta,b,b=cs, (3.21) 

with Cs constant. Recalling the definitions (3.15) of X and Y, 
it follows from Eq. (3.21) that the quantity 

[ga,b,(Kaa, ... a
p 

VbHab, ... b. -Hab, ... b. VbKaa, ... ap ) 

- Ka, ... a
p 

Vb Hb, ... bq + Hb, ... b. Vb Ka, ... ap ] 

X t a, ... apbb, ... b. (3.22) 

is constant on every non-null geodesic. In view of Theorem 
(3.3) the quantity (3.22) is a FI also along every null geodesic. 
Therefore we conclude that the field (3.19) is a KT. Q.E.D. 

The content of Theorem 3.4 may be restated by saying 
that the operator defined by Eq. (3.19) assumes values into 
the class of KT's when acting on pairs of GKT's. 

To complete our scheme, we describe some remarkable 
particular cases of Theorem 3.4 in the following corollary. 

Corollary 3.6: (i) Let K and Hbe PC's. Then the field 

Ha V(cKagbd) - Ka V(cHagbd) + K(b Vc Hd) - H(d Vc Kb) 

(3.23) 

is a KT of order 3. 
(ii) LetHbea KToforderq, andletKbeaPC. Then the 

field 

g(ab::t' KHa, ... a,) - qH(a, .a, V bKa) 

is a KT of order q + 2. 

4. COMMENTS 

(3.24) 

In this work we have studied the so called GKT's 
(GCKT's) defined as the class of totally symmetric tensor 
fields that are generators of solutions of the inhomogeneous 
egd (2.1) along arbitrary (null) geodesics. We found the intro
duction ofthese fields to be of particular interest in two main 
respects. Firstly, we have shown that they provide a formal 
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context for a unified treatment of the algebraic and geomet
ric properties of some remarkable fields; like KT's, CKT's, 
and geodesic collineations. Secondly, they tum out to be 
among the most natural objects that can be used, either di
rectly or combined in some way, for finding new Frs of 
geodesic motion. 

From this point of view, the construction ofFI's con
comitant with GKT's and GCKT's is reduced to a straight
forward calculation, applying the theorems presented in this 
paper, provided one knows the GKT's and the GCKT's ad
mitted by a given metric. 

Some application to general relativity of the techniques 
described in this paper may be found in a recent work9 where 
the general integral of the egd is written down explicitly in a 
class of spherically symmetric space-times. The result is 
based on the fact that the metrics examined admit a suffi
cient number of KV's and KT's, i.e., of homogeneous 
GKT's. 

As far as the existence ofGKT's and GCKT's in gener
aly relativity is concerned, in the literature there are relative
ly few results related to K T's of order greater than one, while 
!l considerable amount of information regarding GKT's and 
GCKT's of order one is available. For instance HM's, which 
belong to the class ofGKT's, have been extensively stu
died. 14.15 In particular, it is well known that the only curva
ture collineations admitted by a vacuum space-time are 
HM's, unless the space is of Petrov type N. 14 In this case 
there exist also nontrivial conformal collineations. 

The peculiar role played by the vacuum type N is due to 
its high degree of symmetry, and appears in some interesting 
respects also in connection with our problem. Vacuum type 
N space-times are probably the most natural support for the 
homogeneous GKT's, since the definition (2.6) of such ten
sors involves the existence of parallel fields. In connection 
with this point, it is to be noticed that, if one considers second 
order tensors, Eq. (2.6) is satisfied only by KT's in all vacuum 
space-times, again with the exclusion of Petrov type N. 9.16 

Having in mind this exception, it would be interesting 
to see whether such conclusions extend to symmetric tensors 
of any order, thus giving a unique characterization of KT's 
as generators of J fields for arbitrary geodesics. 

Aside from these examples, no attempt has yet been 
made to give explicit solutions of Eqs. (2.4) and (2.14). The 
problem of finding nontrivial GCKT's in more general 
cases, which requires a study of the integrability conditions 
of these equations, is still a matter of investigation. 
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We investigate the counting statistics for stationary and nonstationary cascaded Poisson 
processes. A simple equation is obtained for the variance-to-mean ratio in the limit oflong 
counting times. Explicit expressions for the forward-recurrence and inter-event-time probability 
density functions are also obtained. The results are expected to be of use in a number of areas of 
physics. 

PACS numbers: 02.50. + s, 29.70. - e, 87.10. + e, 94.40.Pa 

I. INTRODUCTION 

Multiplication, reduction, and branching processes 
have been examined in a broad variety of contexts. 1-6 Appli
cations range from astrophysics to biological information 
transmission. In the great majority of mathematical treat
ments, the multiplication or branching is treated as an in
stantaneous effect [see Fig. l{a)]. However, in many physical 
systems, a random time delay (or spatial dispersion) is inher
ent in the multiplication process. In this paper, we carry out 
an analysis of a cascade of Poisson multiplications that in
cludes such time effects [see Fig. lib)]. Our results reduce to 
previously known descriptions, in the limit of instantaneous 
multiplication. 

In a recent series of papers, we examined the two-stage 
multiplicative-Poisson process with random time delay. The 
particular model that we analyzed is the shot-noise-driven 
doubly stochastic Poisson point process (SNDP), in which 
each event of a Poisson point process generates an inhomo
geneous rate function which, in turn, generates a second 
Poisson process. The SNDP is a doubly stochastic Poisson 
point process {DSPPf·8; it is also a special case of the Ney
man-Scott cluster process.9

•
IO 

A number of results were established in our study. We 
showed that the theoretical count variance is proportional to 
the count mean for an arbitrary inhomogeneous rate func
tion [we call this the impulse-response function h (t I]. For 
long counting times, the theoretical counting distribution 
was shown to be the Neyman Type-A, 11.12 and this distribu
tion was experimentally measured for radioluminescence 
from glass. I3 The forward-recurrence-time and inter-event
time probability densities were obtained, both in the absence 
and in the presence of self-excitation (dead time or refractori
ness). 14 The results were used to describe the detection of 
optical fluorescence or scintillation generated by ionizing 
radiation. They were also used to fit the maintained-dis
charge interspike-interval histograms recorded from a cat's 

on-center retinal ganglion cell in darkness. IS 

General expressions for the count mean and variance 
were also obtained in the presence of small dead time, and 
the results were experimentally verified for radiolumines
cence from several transparent materials. 16 We showed that 
self-excitation could be used to constructively enhance or 
diminish the effects of point processes that display cluster
ing, according to whether they are signal or noise. Finally, 
general expressions for the single- and multifold counting 
and time statistics, as well as for the power spectrum, were 
obtained for many cases of interest. 17 We presented a broad 
review of the application of such multiplied-Poisson noise to 
many areas in physics, optics, and electrical engineering 
(e.g., cathodoluminescence, x-ray radiography). 17 The statis
tics for a nonstationary SNDP were also obtained, and the 
counting distribution was found to reduce to the Neyman 
Type-A for input signals of short duration. 18 In this paper, 
we extend many of these results to the multistage case. 

The results of our cascade analysis are likely to find use 
in problems where a series of multiplicative effects occur. 
Examples are the behavior of photon and charged-particle 
detectors, the production of certain types of cosmic rays, and 
the transfer of neural information. In Sec. II, we briefly re
view the results for the case of instantaneous multiplication. 
In Sec. III, we obtain the cascade counting and time statis
tics, as well as the autocovariance function, in the more gen
eral case, when time effects are incorporated into the model. 
The behavior of the resulting counting statistics is discussed 
in Sec. IV, and the Conclusion is presented in Sec. V. 

II. THE INSTANTANEOUS MULTIPLICATION PROCESS 

We briefly discuss the instantaneous multiplication 
process. Letp(n) represent the probability that an event at 
the mth generation creates n events at the (m + 1 )st genera
tion. The quantity G m (z), which is the probability generating 
function for the total number of events produced at the mth 
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c: (a) 

0th GEN. 1 at GEN. 2nd GEN. Cm-l) at GEN. mth GE"'<. 

{Z}t)} {ZJSt)} {Z~~tr)} <Z~(t)} 

------Q-€}-----~ (b) 

FIG. I. Schematic representation of an m-stage cascaded system with Poisson multiplication at each stage. (a) Instantaneous multiplication; (b) time effects 
included. P. P. represents a Poisson process generator, whereas h,(t) represents a linear-filter impulse response function. 

generation, is given by 

Gm(z) = GI(Gm _ dz)), 

so that 

Gm(z) = GI(GI(GI(GI···GI(Z)))). , , -m times 
Here 

Go(z) =Z 

and 
00 

GI(z) = L r'p(n). 
n=O 

(1 ) 

Assuming thatp(n) is Poisson distributed with mean a, 
and substituting z = exp( - s) in (1), we obtain the moment 
generating function Qm (s) at the mth generation for the cas
caded Poisson instantaneous multiplication process: that is, 

Qm (s) = QI(Qm _ I (s)), 
or 

Qm (s) = QI(QI(QI(QI'"QI(S)))). (2) 
, I -m times 

Here 

QO(s) = exp( - s) 

and 

QI(S) = exp(a(exp( - s) - 1)). 

III. POISSON MULTIPLICATION WITH TIME DELAY 

As indicated in the Introduction, time delay can be an 
important effect in multiplication processes. In Subsec. A, 
we derive the counting-distribution moment generating 
function for an m-stage cascade of Poisson processes, for 
arbitrary T h-p • The quantity rp is the characteristic decay 
time of the inhomogeneous rate. This is followed by a calcu
lation of the counting statistics for the single and multifold 
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cases in Subsec. Band C, respectively. In Subsec. D, we de
rive the autocovariance function. The time statistics are ob
tained in Subsec. E. The counting statistics for the nonsta
tionary case are considered in Subsec. F. 

A. Moment generating function for the counting 
process at the mth stage 

We consider the system illustrated in Fig. I(b). The 
quantity J.l is the initial deterministic driving rate, ! Zj (t ) 1 is a 
process of impulses corresponding to the point process at the 
jth stage, and! Xj(t) 1 is the linearly filtered point process at 
thejth stage which, in turn, provides the driving rate process 
for the (j + I)st stage. The boxes labeled P.P. andhj(t) repre
sent Poisson point process generators and linear filters, re
spectively. The moment generating functional for the fil
tered point process at the jth stage is defined by 

Lx} (s)~ (exp( - J~ 00 sit )Xj(t) dt )), 

j = I,2, ... ,m - 1. (3) 

It can be shown (see Appendix A) that (3) can be written as 

Lx, (s) = (exp{J~ 00 Xj _ I (t) 

X [exp( - f" 00 hj(r - t )s(r) dr) - 1] dt }). 

(4) 

Ifwereplaceexp( - f""- 00 hj (r - t )s(r) dr) - 1 by - s(t), the 
right-hand side of (4) is, by definition, the moment generat
ing functional of the process! X; _ I (t ) l; that is, 

(exp{J~ 00 Xj _ dt)[ exp( - J~ 00 hj(r - t )s(r) dr) - 1] dt }) 

~(exp( - f~ooS(t)Xj-dt)dt))=Lx, ,Is). (5) 

Therefore, we have a recursive formula for the moment gen-
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{Z (t)} {X (t)} {Z (t)} {X (t)} .-. .-. .-1 M-1 

erating functional of the process !Xj(t)}, 

Lx, (s) = L xj _, {I - exp( - J: 00 hk' - t )s(r) dr)} , (6) 

where the moment generating functional of the first stage is 

Lx, (s) = exp{Jl J: J exp( - J: 00 hl(r - t )s(r) dr) 

- I] dt }. (7) 

For convenience, we define the following operator: 

qj(-) = exp{J: 00 hj(t - tj)[(-) - 1] dt }, 

j = 1,2, ... ,m - 1. 

By using the above equations recursively, the moment gener
ating functional for the process !Xm _ 2 (t)} becomes 

LXm ,Is) = exp{Jl J: Jql(q2(q3'" 

(Qm_3(exp( - 100 

hm_ 2(tm_ 1 -tm_2)s(tm_l)dtm_I))) 

... )) - 1 ]dtl (8) 

The integrated driving rate process at the mth stage is 
shown schematically in Fig. 2, and the moment generating 
functional for the process ! W m (t )} is defined by 

LwjS)~(exp( - J:ooS(t)Wm(t)dt)). (9) 

It can be shown that the above equation can be written as 

Lwjs) = (exp{J: 00 Xm_ 2(t) 

X [exp( - J: 00 hm - I,T(r - t )s(r) dr) - 1] dt }), 

(10) 

where the linear filter hm _ I,T(t) is a convolution of hm _ I (t) 
with an integrator (assumed to be noncausal for conve
nience) on the time interval (O,T), i.e" 

hm_I,T(t)= lThm_l(t+tl)dtl, (11) 

To find the moment generating function of ! Wm(t) J, we let 
s(t) = s8(t ) and we obtain 

QWm(s) 

= (exp{J: 00 X m_ 2(t)[exp( -Shm_I,T( - t)) -1] dt}) 

=Lxm , II - exp( -Shm _I.T( - t))}, (12) 
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{z.(t)} 

FIG, 2, Block diagram for generation of the 
integrated rate [Wm(t)l. 

Combining (8) and (12) yields 

Qw," (s) = exp{Jl J: 00 [QIlq2(Q3'" 

Qm _ 2 (exp( - shm _ I,T( - tm _ I)))"')) - 1] dt l}, 

(13) 
This result will be used subsequently to find the counting and 
time statistics. 

The moment generating function for the counting pro
cess at the mth stage is related to that of ! W m (t )} byl9 

Inserting (13) into (14) then yields the final result 

QNm (s) = exp{Jl J: 00 [QIlq2(Q3'''Qm_2(exp(1 - exp( - s)) 

X hm_I,T( - tm_ d)",)) - I dtl}' (15) 

B. Singlefold counting statistics at the mth stage 

The probability distribution for the occurrence of n 
events in a fixed time interval (O,T), at the mth stage, can be 
computed by using the formula 19 

(16) 

With the help of the results derived in Appendix B, we have 

Pm(o)=exp{JlJ:oo[D~OI(t)-I]dt}, m>2 (17a) 

and 

n ( l)k + I 

(n+l)Pm(n+l)=Jlk~o -k! Pm(n-k)Ilk+l l, 

m>2, (17b) 

where 

Ilk+ II = J: 00 D~k+ II(t) dt, 

Dj+ II(t) = ,to e)Dj-'I(t) 

X J: 00 hj(r - t )D~: fH dr, 

j = 1,2,3, ... ,m - 2, 
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D~)(t) = exp{f: '" hlr - t)[ D~~ I (r) - 1] dr}, 

j = 1,2, ... ,m - 2, 

D~)_ J!t) = [ - hm_I,T( - tWexp[ - hm_I,T( - t)}, 

m>2, k>O, 

ak
+ I I D j + I)(t) = ~ exp(Oj(t,s)) , 

as s~ I 

j = 1,2, ... ,m - 2, 

0m_ I (t,s) = - shm -1.T( - t), m>2. 

The count mean and variance at the mth stage can be 
derived by using the relations for the cumulant generating 
function 19 

(Nm(T) = - ! In QNJS)ls~o 
and 

a
2 

I Var{Nm(T)) = -2 In QN", (s) . as s~o 

(18a) 

(18b) 

However, a moment's thought will demonstrate that the sys
tem in Fig. 3 is equivalent to the one in Fig. 1 (b), as far as the 
first and the second moments are concerned. Here [ Volt ) J, 
[ VI(t) J , ... , [ Vm _ I (t) J are zero-mean, unit-variance white
processes, and the cross-correlation function of [ Vi (t ) J and 
[V;(t)j is 

{
o(r) for i = j, 

Rvv(r)=(Vi(t+r)Vj(t) = c" 
, , 0 10rl#J. 

(19) 

The identity is provided by the theory of random processes 
in linear systems. 20

,21 It can be shown that the mean and the 
autocorrelation function at the input to the mth stage are, 
respectively, 

m-I 
(Xm_l(t) =f.L II aj' m>2, (20a) 

j~1 

and 

RXm ,(r)=f.L2Ifa]+f.L
mf l {'Ii aj m~lgdr)}, m>2, 

j~1 ,~I j~O k-, 

where 

a o = 1, 

a k ~ J~ 00 hk (t) dt, 

gk(r)~hdr)*hd - r), 
m -- 1 

* gdr)~gi(r)*gi+ I (r)*···*gm _ I (r). 
k=i 

(20b) 

The symbol * indicates convolution. The counting statistics 
are easily derived by using the above equations. 19 The mean 
number of counts at the mth stage, in the counting interval 
(O,T), is22 

(Nm(T) = (Wm(T) 

(IT ) m-I 
= Xm_l(t)dt =,uTII a j . 

o j~1 

(21) 

The variance of the number of counts at the mth stage can be 
expressed as 19 

m-I 
VarIN m (T)) = f.L T II aj 

j~1 

+ f.L ~tll {j~( aj J~ T(T - IrlJ[ ~ :gdr )] d7}. 

(22) 
In the limit of long counting times, which is a special 

case of substantial interest, the results can be found by sub
stituting ako(t) for hk (t) in the above equations, which 
yields22 

Var(Nm(T)) =,uT~~r aj +f.LT~tll {X( aj·}I a~}. 
(23) 

The variance-to-mean ratio (Fano factor) is then expressed 
quite simply as 

_ Var(Nm(T)) _ m-I {m-I } 
Fm - - 1 + I II a k , m>2. 

(Nm(T) i~ I k~i 
(24a) 

When all a j = a, Eq. (24a) reduces to 

Fm = 1 + a[(1 - am - 1)/(1 - a)], m> 1. (24b) 

For m = 1 and m = 2, we recover the usual expressions for 
the Poisson and Neyman Type-A distributions, respectively. 

c. Multifold counting statistics at the mth stage 

The joint probability for the number of counts Ai in L 
time intervals [rj,rj + Tj] ,j = 1,2,3, ... ,L, for the m-stage 
cascaded Poisson system, can be written as l9 

L (- It,an
, I 

Pm(n)=JII nj!as)' Qw,"(s) S~l' (25) 

where 

n = (n l ,n 2 , ... ,nL ), 

s = (SI,S2, ... ,SL)' 

1 = (1,1, ... ,1), 

'l<x (t» {V (t)} 
,"_1 ... -1 

{Z ill} {let)} {Z(t)} 
J+l ... -1 

{X (t)} 
M_l 

FIG. 3. Equivalent model to that presented in Fig. I (b) as far as the count mean and variance are concerned. The [ "i(t) I represent zero-mean unit-variance 

white processes. 
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provided that the integrated rate processes! W m (t ) J at the 
mth stage are l7 

' 

(T, + T, 

Wm'=Jr Xm __ I(t)dt. 
T, 

(26) 

Here QWm (s) is the L-dimensional multifold moment gener
ating function of the integrated rate process at the mth stage, 
and can be expressed as 

Qw"!s) = exp{p f~ JQI(Q2(q3'" 

Qm _ 2 (exp( - jtlSjhm _ 1.7; (tm _ I + rj )) }.-)) - 1 ]dtl}' 

(27) 

However, it is quite difficult to obtain the joint probability 
distribution function using (25) and (27), and we therefore 
carry this result no further. 

The L-dimensional multifold moment generating func
tion for the counting process at the mth stage can be deter
mined by using the formula 19 

QN .. (s) = Qw .. ! 1- exp( - s)J, (28) 
where 

N m = (Nm,I,Nm,2, .. ·,Nm,L)' 

1 - exp( - s) = (1 - exp( - stl, 1 - exp( - S2)'"'' 
1 - exp( - S L )). 

Finally, we obtain the general expression 

QN,,, (s) = exp{p F" 00 [Ql( Q2( Q3'" 

Qm ~ 2 (exp( - jty - exp( - Sj))h m - I,T, (tm _ I + rj ))) 

.. .)) - 1 ] dt }. (29) 

D. Autocovariance function at the mth stage 

In this subsection we derive the autocovariance func
tion for the number of counts N m' registered in a time inter
val of duration T, for the m-stage cascaded Poisson process. 
The time separation between the intervals is r = t2 - tl' Us
ing the definition of the autocovariance function and (29) we 
have 

a
2 

I CN", (t l,t2) = -;-;-In QNm lt,INmlt,I(SI'S2) 
ciS IciS2 s, = S, = 0 

=p f~ oo!Um - l(t,tllUm - I (t,t21+ Vm - dt,t l,t2) J dt, 

(30a) 
where 

Uk (t,tj ) = f~ 00 h (r - t)Uk __ dr,tj ) dr, k = 1,2, ... ,m - 1, 

j = 1,2, (30b) 

UO(t,t l) = - [u(t-tj)-u(t-tj-T)], j= 1,2, (30c) 

Vdt,t l,t2) = f~ 00 h (r - t)[ Uk - I (r,ttlUk - I (r,t2) 

+ Vk_ dr,tl,t2)] dr, 
k = 1,2, ... ,m - 1, 
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(30d) 

(30e) 

It can be shown (see Appendix C) that, when all stages are 
identical, (30a) can be rewritten as 

foo {[IH(W)1 2Im-ll _ a m-l] C (r) = liT a .!....-..!........!..C-.-___ _ 

Nm r- _ 00 IH(wW - a 

+ IH(w)12Im-II}4>T(W)ejWT ~: ' (31) 

where 

r = t2 - tl' a = f~ 00 h (t) dt, 

H (w) = F.T. of h (t), 4>T(W) = T [sin(WT 12) ]2. 
(wT 12) 

From (31), we can obtain the variance of the counting pro
cess by simply setting r = 0, so that 

VarIN m (T)) = pTam - I 

+p ~~II {ai-J~T(T-Irll[m;ig(r)] dr}. 

(32) 

Equation (32) can also be obtained from (22), and the defini
tion of gk (r) given in (20b), by substituting hk (t) = h (t) for all 
k. The power spectral density for the process is obtained by 
taking the Fourier transform of (31). 

E. Time statistics at the mth stage 
The forward-recurrence-time probability density P ~I(t ) 

and the inter-event-time probability density P~I(t), for the 
m-stage cascaded Poisson system can be derived from the 
explicit expression for QWm (s). 19 The calculations are 
straightforward and lead to 

P~I(T) = - :T QWm (1) 

= pQw,.!l) f~ 00 f~ 00 "J~ 00 hm - dtm - I + T) 
1m - II-fold integrals 

Xh m _ 2 (tm _ 1 -tm _ 2 ) 

... h2(t3 - t2)h l(t2 - ttlexPC~11 Bj(tj )} 

Xdt l dt2· .. dtm_1> (33) 

and 

plm21(T) = - 1 a P(lI(T) 
(Xm_l(t) aT m 

~ ( Qw.l' (V: aj )H [[;,. ::I-h. - ,II. -, +T I 

xhm _ 2 (tm _ 1 -tm _ 2 ) 

... h,1 I, - 1,lh, II, - I, lexpl J: e,(I, Ildl, dl,··-dl. - ,} , 

- f~oof~oo .. J~Jhm-dtm-1 + T) 
1m - II-fold integrals 

a m-I a } x - I Bj(tj ) + -hm_l(tm_ 1 + T) 
aT )=1 aT 

xhm_ 2(tm_ 1 - tm_ 2) .. ·h2(t3 - t2)h l(t2 - ttl 

X "pi %: ejll) Idl, dl, .. -dl. -1 1341 
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where 

QwjI) = [Eq. (13)] Is ~ I' 

OJ(t) = J:",hiT-t)[exP(Oj+I(7))-I] d7, 

j = I,2, ... ,m - 1, 

F. Counting statistics for the nonstationary case 

In this section, we obtain the moment generating func
tion for the counting statistics, together with its mean and 
variance, for a nonstationary cascaded Poisson process (i.e., 
p, is a function of time). 

A schematic diagram illustrating the generation of the 
process can be obtained by replacing p, by p,(t) in Fig. l(b). 
The moment generating function for the m-stage integrated 
rate process I Wm (t,T) 1 can be found by using a similar ap
proach to that used in Subsec. A, giving rise to 

QWm(t,Tj(S) = exp{J: ",p,(t - t l)[qM2(q3 

···qm_2(exp( - Shm_I,T( - tm_ il))''')) - 1] dt l}, (35) 

where 

Given the statistics of the integrated rate process 
I Wm (t,T)} , we readily obtain the statistics of the mth stage 
counting process. The mean and variance are, respectively, 

m-2 
(N m (t,T) = p,(t ).hm _ u(t) • hj(t), 

j~1 

m-2 
VarIN m (t,T)) = p,(t ).hm _ I,T(t) • hj(t) 

j~ I 

Here 

j 

• h,(t) =8(t) for j<i, 
r=i 

and the moment generating function is 

QNm(t,TI(S) = exp{J: fIt - t l)[ql(q2(q3 

···qm_2(exp(I- exp( -s)) 

(36) 

Xhm_I,T(-tm_I)) ... ))-I]dtl}' (38) 

Note that (35), (36), (37), and (38) are identical to (13), (21), 
(22), and (15), where p,(t ) is not a function oftime. 

The L-dimensional multifold moment generating func
tions of the integrated rate process and the counting process 
at the mth stage are easily obtained, and they are, respective
ly, 
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(39) 
and 

QNmlt,T)(s) = exp{J: fIt - td[ql(q2(q3 

· .. qm ~ 2 (exp( - jtl (1 - exp( - Sj)) 

Xhm _ I,T, (tm _ I + Tj )) } .. )) - 1 ] dtl}' 

(40) 
These equations correspond to (27) and (29), respectively. 

We now consider an important limiting case in which 
the rate p,(t) has a time course 7s that is very short in dura
tion, compared with the counting time T, added to the total 
linear filter correlation time (m - 1 )Tc (7 s « T + (m - 1)7 c ). 

In that case, the quantity p,(t ) can be mathematically repre
sented by the limiting distribution 

p,(t) = E8(t ), (41) 

where E is the strength of the excitation (number of points) 
and 8 (t) is the Dirac delta function. Substituting (41) in (36) 

f 
t 

am.k'll 
:;: 
t 
t 

NUMBER OF STAGESCm) 

FIG. 4. Count mean {Nm(T), count variance Var(Nm(T)), and variance
to-mean ratio Var(Nm(T))/{Nm(T)), vs number of stages m, with a as a 
parameter. 
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FIG. 5. Counting distributionpm(n) vs count number n for T Irp> 1.0, 
flT = 25, and m = 1,2,3,6,10, and 50. (a) a = 0.8; (b) a = 1.0; (e) a = 1.2. 
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and (37) yields the mean and variance 
m-2 

(Nm (t,T) = Ehm _ I,T(t) * hj(t), (42) 
j= I 

m-2 

Var(Nm(t,T))=Ehm_I,T(t) * h.(t) 
j= I J 

+E:~II ~~ll hj(t)*[hm_I,T(t) ~~: hr(t)r (43) 

The variance-to-mean ratio (Fano factor) is 

Fm = 1 + {}ll:=: hj(l)*[hm_ I,T(t) :~: hr(t)r 

/hm_I,T(t) ~~12 hj(t)}, (44) 

IV. BEHAVIOR OF THE COUNTING STATISTICS 

In this section, we discuss the behavior of the counting 
distributions given by (17). For simplicity, we assume that 
the impulse response functions for all stages are identical 
exponential functions with areas a and time constants 7 /2 
so that P , 

(45) 

Here u(t ) is the unit step function. 
In Fig. 4, we plot the count mean (N m (T), the count 

variance VarIN m (t)), and the ratio F m 

= Var(Nm(T))/(Nm(T)) versus the number of stages m, 
with a as a parameter, when T hp > 1.0. For a = 0.8 ( < 1.0), 
(N m (T) and Var(Nm (T)) have exponentially decaying be
havior for large m; however, the ratio Fm approaches a con
stant as m becomes large, as is evident from (24). This is the 
same as for the SNDP, or in fact for any two-stage multiplied 
process in which the first stage is Poisson. 6. I 7 This is clearly a 
result of the decrease in mean and variance at each stage. 

For a = 1.0, (N m (t) is independent of m, but 
VarIN m (T)) and F m are identical, monotonically increasing 
functions of m, thereby transparently reflecting the broaden
ing ofthe distributions as the number of stages increases. For 
a = 1.2, the three functions, (N m (T), V ar(N m (T)), and F m 

are dramatically increasing functions of m, as expected from 
(21), (23), and (24). 

In Fig. 5, we exhibit the behavior of the counting distri
butions at the output of the mth stage (m = 1,2,3,6,10, and 
50), with T hp > 1.0, for three different values of a, withj.tT 
constant. In Fig. 5(a) (a = 0.8), the distributions move to the 
left as the mean decreases, and the variance also decreases as 
m increases. This is apparent from (21) and (23). In Fig. 5(b) 
(a = 1.0), the mean remains fixed, but the character of the 
distributions changes dramatically as the number of stages 
increases. This reflects the accentuation of the clustering in 
the process by increasing m. If we consider the curves for 
m = 10 and 50 in Fig. 5(b), small dips around n = 1 can be 
observed. It can be shown that under certain conditions for 
/-l, T, a, and m,Pm(l) <Pm (0) andPm(l) <Pm(2). In Fig. 5(c) 
(a = 1.2), the distributions move to the right, and the var
iances increase as m increases (the case for m = 50 is not 
shown). This can be understood from (21) and (23). 

The counting distributions for a large number of stages 
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FIG, 6, Counting distributionpm{n) vs count number n for m = 50, 

T irp>I.O, and (Nm{T) = 10, 

(m = 50) is shown in Fig. 6, when T /7p > 1.0. The mean of 
the output count is fixed at to, and a is a parameter. An 
increasing multiplication parameter gives rise to an increas
ingly flat counting distribution for n #0. 

In Fig. 7, we display the counting distributions for large 
T hp with the output count mean (N m (T) fixed at 5, and 
with a as a parameter. Note that for fixed m, the distribu
tions broaden as a increases. The distribution for large m 
and large a assumes a character resembling a delta function 
at n = O,together with a flat component. 

In Fig. 8, we display the dependence of the counting 
distributions on the ratio T hp' the number of stages m, and 
the area of the impulse response function a. For all cases, the 
average number of counts (N m (T) is fixed at 5. In the limit 
where aT hp <1.0 and T hp <1.0, the output ofthe first 
stage will be Poisson 13 so that, by induction, it is clear that 
the output of the cascade is also Poisson. Because of cumula
tive truncation and integration errors in the numerical calcu
lations, it is quite difficult to obtain accurate counting statis
tics for arbitrary T /7p ' for m > 4. 

V. CONCLUSION 

We have developed the statistics of a point process gen
erated by a cascade of independent Poisson processes, and 
have found the moment generating function, as well as the 
counting and time statistics when dynamics are included. 
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Both the stationary and nonstationary cases have been consi
dered. A simple expression for the variance-to-mean ratio at 
the mth stage has been obtained. We have carried out a para
metric study of the counting distributions, by employing the 
DEC PDP 11/60 and IBM 4341 computers. 
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son, independent of m and a, whereas in the limit T irp --> 00. the counting 
distributions approach those derived with instantaneous multiplication. (a) 
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In some of the aforementioned applications of cascaded 
Poisson processes, a statistically independent additive Pois
son point process may also be present, representing for ex
ample, broadband background light and/or thermionic 
emission in a photomultiplier tube. The counting statistics 
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for the superposition process can be simply determined by 
the use of numerical discrete convolution. Our approach 
may be useful for describing the detection of light by the 
human visual system at threshold. z3

,z4 We have applied a 
similar analysis to branching Poisson processes, in which all 
initiating events are included in the final point process. The 
results of this study will be reported shortly. 25 
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APPENDIX A: DERIVATION OF THE MOMENT 
GENERATING FUNCTIONAL FOR A FILTERED 
POISSON PROCESS AT THEjth STAGE 

Let (Xj(t) J be a filtered Poisson process in which points 
occur with intensity (Xj _ I (t ) J. The moment generating 
functional in the interval (O,T) is given byZI 

LXj(S)~(exp( -lTS(t)X}(t)dt)), (AI) 

which is evaluated to be 

Lxj(s) = (exp{lTXj_l(t) 

X [exp( -l\(T - t )sIT) dT) - I] dt D. (A2) 

Proof By using the conditional expectation and the 
property of the Poisson process, we have 

LX,lxj_. (s) 

= the moment generating functional of (Xj(t) l 
conditioned on the driving process (Xj _ I (t ) l 

00 

= Prob(NT = 0) + L Prob(NT = k) 
k=1 

where Prob(N T = k ) is the probability of having k events in 
0< t < T. The summation within the expectation is un
changed by a random reordering of the occurrence times, 
T1,Tz,oo.,Tk' With this reordering, the occurrence times, given 
NT = k, are independent and identically distributed, and the 
common density is 

PT. (T) = Xj_ I (Tv1
TXj

- I (t) dt, n = 1,2,oo.,k. 

Thus we obtain 

(exp{ - ntl1Thj(t - Tn)s(t) dt} INT = k) 

= {IT Xj(T)exp( -lThj(t - T)s(t) dt) d!1TXj _ I (t) dt } k. 

Substituting this expression into (A3), and using a straight
forward calculation with the Poisson distribution provides 
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Lx, IX, ,(s) = exp{lT Xj _ I (t) 

X [exp( -l\(T-t)S(T)dT)-I]dt}. (A4) 

To remove the conditioning of the process (Xj(t) J, we aver
age (A4) over (Xj _ I (t)J, to obtain (A2). Finally, setting 
t = - 00 (assuming the process starts at - 00) and T = 00, 

we have 

Lx, (s) = (exp{J: 00 Xj _ J (t) 

X [exp( - J: 00 hj(T - t )S(T) dT) - 1] dt D· (AS) 

APPENDIX B: DERIVATION OF THE COUNTING 
DISTRIBUTION AT THE mth STAGE 

Examining (13), we perform the following substitutions: 

8m_ l (t,s) = -Shm_I,T(-t), m>2 (Bla) 

and 

8j(t,s) = J: 00 hj(T - t) [exp(8j + J (T,S)) - 1] dT, 

j = 1,2" .. ,m - 2. (BIb) 

Then (13) becomes 

QwJs) = exp{,u J~ 00 [exp(8 J(t,s)) - 1] dt }. (B2) 

Taking the (n + 1 )st derivative, with respect to s, on both 
sides of (B2) yields 

an + J n (n) an - k 

a n + I QwJs) =,u L k a n _ k Qw_ (S) 
S k=O S 

ak
+ I J'" X-

k 
- exp(81(t,s)) dt. 

as + J _ '" 
(B3) 

Using (16), together with the substitution 

(B4) 

leads to a recurrence relation for the counting distribution at 
the mth stage, given by 

n ( l)k 
(n + I)Pm(n + 1) =,uk'1;O ~Pm(n - k)Ilk+ II, 

Pm (0)= Qw", (s)ls= J =exp{,u J: oc [exp(8 J(t,s))- 1] dt} Is= J' 

(BS) 

Equation (B4) can be rewritten as 

(B6) 

We have assumed that the order of integration and differen
tiation can be interchanged, and we have used the substitu
tion 
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ak
+ I I D Ilk + II(t) = k+I exp(BI(t,s)) . 

as s= I 

(B7) 

The (k + l)st derivative of the exponential function of (BIb) 
for j = 1 yields 

ak+ I k (k) ak~' 
k+I exp(BI(t,s)) = I ~ exp(BI(t,s)) as ,=0 r as 

f
oo a,+1 

x hl(r - t) --exp(B2(r,s)) dr. 
~ 00 as'+ I 

Substituting (B8) into (B7) gives rise to 

D\k+ II(t) = ,to e)D\k~'I(t) 

X f: 00 hl(r - t)D ~+ I)(r) dr. 

Similarly 

(B8) 

(B9) 

D ~ + II(t) = ,to e) D jk ~ I)(t )f: 00 hj(r - t)D )'++II)(r) dr, 

j = 1,2, ... ,m - 2, (BlO) 

and 

a
k 

I D~I~ I (t) = -k exp(Bm ~ I (t,s)) 
as s= I 

= ! - hm~ I.T( - tWexp! - hm~ I.T( - t)J. 

(Bll) 

APPENDIX C: DERIVATION OF THE 
AUTOCOVARIANCE FUNCTION 

From the Fourier transform (F. T.) of (30b) and (30c), we 
obtain 

- k-
UdliJ,tj) = [H*(liJ)] Uoku,tj), j = 1,2, (el) 

where 

Uo(liJ,tj ) = F.T. of Uo(t,tj)' 

Similarly, the Fourier transform of (30d) and (30e) yields 
k~1 

VdliJ,t l,t2 ) = I ¢,(liJ,t l,t2)[H *(liJ)] k ~', (e2) 
,.=0 

where 

¢,(liJ,t l,t2) = U,(liJ,t d* U ~(liJ,t2)' 

Taking the inverse Fourier transform of (el) and (e2), and 
substituting into (30a), results in (31). 
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The generating integralI/(.1,A ';E) = fd 3r d 3r'exp( - .1r - A 'r')(rr')/- I YI,m(O,tP)G (r,r';E) 
X YI,m(O ',tP ') is evaluated, where the Coulomb Green's function Gis the inverse (E - H)-I with 
H the hydrogenic Hamiltonian - ! V2 

- Zr- I and YI•m is a spherical harmonic. The result can be 
used for the evaluation of matrix elements of G with respect to wave functions of the form 
YI.m (O,tP If\~(r) wheref\~(r) = N\~exp( - ar/2)(ar)'L ):'I(ar) with L ~al a Laguerre polynomial and 
N \~ a normalizing factor. For general E the result is given in terms of a special case of the 
hypergeometric function which satisfies an inhomogeneous linear first-order ordinary differential 
equation. For E = En where En = - Z 2/(2n2) is a hydrogenic bound state energy, G is replaced 
by the generalized Green's function (generalized inverse) and the results are given in closed form 
in terms of elementary functions. 

PACS numbers: 02.70 + d, 32.90. + a 

I. INTRODUCTION 
A. Statement of the problem 

The present work was motivated by the need to com
pute matrix elements of the generalized Coulomb Green's 
function (also known as the reduced Coulomb Green's func
tion) for use in the computation oflower bounds to the eigen
values of atomic Hamiltonians. The desired matrix elements 
were of the form 

f d 3r d 3r ' IJI\~~.P (r)G (r,r';E )1JI\~!m"p' (r'), (1.1) 

where the Coulomb Green's function G is the inverse 
(E - H) - I with H the hydrogenic Hamiltonian 

H = -! V2 _ Zr- I. 

When E = En' where 

En = - Z2/(2n2) 

(1.2) 

(1.3) 

is an eigenvalue of H, G is the generalized inverse (general
ized Green's function). The basis functions with respect to 
which matrix elements were needed are 

(1.4) 

with 

f\~(r) = N\~ exp ( - ar/2)(ar)IL ):'I(ar), (1.5) 

where Y I•m is a spherical harmonic, L ~al is a generalized La
guerre polynomial, and N\~ is a normalizing factor. 

B. Outline 

Matrix elements of the form (1.1) can be evaluated from 
the generating integral 

I,(.1,A';E)= f d 3rd 3r'exp(-.1r-.1'r') 

X (rr')/- I YI.m(O,tP)G (r,r';E )YI,m(O ',tP ') 

by using the generating function 
(1.6) 

alWork done in partial fulfillment of the requirements for the B. S. Degree 
with Distinction. 

"" (1 - w) - a - I exp [ - 77w/(1 - w)] = L wPL ~al(77) 
p=o 

(1.7) 

for the generalized Laguerre polynomials. The generating 
integral in (1.6) is essentially a Laplace transform of the radi
al Coulomb Green's functiongl , which appears in the partial 
wave expansion 

"" I 
G(r,r';E)= L L YI,m(O,tP) YI,m(O',tP')g/(r,r';E) 

I=Om= -I 

and satisfies the radial equation 

(HI - E)g/(r,r';E) = - (rr')-ID(r - r') 

with HI the radial Hamiltonian 

HI = _~ ~r+ /(/+ 1) _ Z. 
2r Jr 2r r 

(1.8) 

(1.9) 

(1.10) 

The differential operator HI has a regular singular point at 
r = 0 and an irregular singular point at r = 00; the solution 
of (1.9) is made unique by the boundary conditions 

gdr,r';E)=O(r), r-o (1.11) 

and 

g/(r,r';E) = O(r- I +Z/a exp (- ar)), 

a = ( - 2E )1/2, r-+oo. 

The use of(1.8) in (1.6) yields 

1/(.1".1. ';E) = L"" dr L"" dr' 

X exp( - .1r - A 'r')(rr')1 + Igi (r,r';E ), 

(1.12) 

(1.13) 

which shows that II is the (double) Laplace transform of 
(rr')1 + Ig/(r,r';E). Our results for II are obtained by Laplace 
transforming the differential equation (1.9) in rand r' to ob
tain an equation which can be solved (with appropriate 
boundary conditions) by solving a linear first-order ordinary 
differential equation. Results for the generalized Green's 
function which occurs when E = En are obtained via a limit
ing procedure from the result for general E. Make the defini-
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tions 

and 

In,1 (A,A ')-fO dr L'" dr' 

X exp ( - Ar - A 'r')(rr')1 + Ign,l(r,r'), (1.15) 

For t;;,n, gn,l(r,r') is just the ordinary radial Green's function 
gl(r,r';En) which satisfies (1.9), (1.11), and (1.12), with 
E = En. For I<n - 1, the prescription (1.14) gives thegener
alized radial Green's function which satisfies 

(HI - En )gn,l(r,r') 

(1.16) 

the boundary conditions (1,11) and (1,12), and the orthogon
ality condition 

fO Rn,l (r)gn,l (r,r')rdr = 0, (1.17) 

where the Rn,l (r), given by 

Rn,k) = 2Zn- 2[(n -1- 1)!Z lin + l)!] 1/2 

Xexp( - Zr/n)(2Zr/n)IL ~~+I~ I (2Zr/n), 
(1.18) 

are the normalized bound state eigenfunctions of HI' It fol
lows from the prescription (1.14) for g n,l that 

In,/(A,A ') = [~(E - En )II(A,A ';E)] . (1.19) 
JE E~E" 

Equation (1.19) is the basis of the limiting procedure used 
when E = En. Section II records the general result for 
II(A,A ';E) and closed-form results for In,I(A,A ') for both the 
case I;;'n, where gn.1 is the ordinary radial Green's function, 
and the case I<n - 1, wheregn ,/ is the generalized radial 
Green's function. Section III sketches the details of the com
putations, 

C. Relation to previous work 

Recent work of Johnson and Hirschfelder, I which was 
in turn based on earlier work by Hameka,2 Hostler,3 Sher
styuk,4 and Laurenzi and FlambergS showed that general 
closed-form expressions could be obtained for the gn,Ilr,r'). 
Closed-form expressions for In,/(A,A ') can be obtained from 
the Johnson-Hirschfelder l results for thegn,/; in fact the re
sult (2.6) for In,/(A,A ') when t;;.n given in Sec, II was initially 
obtained, after a long and tedious calculation, from Johnson 
and Hirschfelder's Eq. (2.13). A few special cases of the gen
eral result (2.7) for In,/(A,A ') when I<n - 1 were also ob
tained from Johnson and Hirschfelder's equation (2.1S), We 
have, however, found it easier to obtain general results for 
In,/(A,A ') from (1.19), with II(A,A ';E) obtained by Laplace 
transforming the differential equation (1.9) for gl (r,r';E ). The 
Johnson-Hirschfelder work was nevertheless an important 
starting point for us, because their results made it clear that a 
closed-form evaluation of In,/ is possible. The notation of the 
present paper is consistent with the notation of Johnson and 
Hirschfelder. 

We are grateful to an unknown referee for pointing out 
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that our general result (2.1) for II has been obtained previous
ly by Zon, Manakov, and Rapoport6 via a different method. 
Their gl(E;r,r') is the same as our gl(r,r';E) if one sets 
m = d = 1 in their formulas and uses their (4) to definegl • 

Their result (S) then agrees with our (2.1). There is a sign 
discrepancy among their Eqs. (2), (3), and (4). The closed 
form results (2.6) and (2.7) for v = n are, we believe, new. 
Related work by Maquer7 and by Suffczynski and Swier
kowski8 was also called to our attention by the referee. 

II. RESULTS 

and 

The general result for II is 

II(A,A ';E) = - 2(21 + 1)!(/- v + 1)-1 [v/(2Z)]21+ 3 

X [(VA + Z)(VA' + Z)/(4Z2)] -21-2 

X 2FI(21 + 2,/ - v + 1;1 - v + 2; 1 - (;), 

(2.1) 
v=Z(-2E)-I12 (2.2) 

(; = 2vZ(A +..1. ')[(vA + Z)(vA' + Z)]-I, (2.3) 

with 2FI the hypergeometric function in standard notation. 
The integral representation 

F (a,b'c'z) = ric) ( t b - I 

2 I " rIb )F(c - b )Jo 

x(1 - q-b-I(1 - tz)-adt, (2.4) 

Re c > Re b > 0, I arg( 1 - z) I < 1T, is a convenient definition of 
2FI for our purposes. The inhomogeneous first-order differ
ential equation 

[(1-{;)~ -(/-V+l)] 

X 2FI(21 + 2,/ - v + 1; - 1+ 2; 1 - (;) 

= _ (/ _ v + 1){; - 21 - 2 (2.5) 
can be useful for the recursive computation of derivatives of 
II with respect to A and/or A '. 

If E is an eigenvalue En' then v = n. When v = n with 
I;;,n, the closed form result 

In,/(A,A ') = - 2[n/(2Z)]21+3[(nA +Z)(nA' 

+ Z )/(2Z )2] - 21- 2(n + I)! 
X nil(k+l-n)!{;n-k-I-1 (2.6) 
k~O k! 

is obtained, with {; given by (2.3) with v = n. When v = n 
with I<n - 1, the closed form result 

I (A,A')=2[n/(2Z)]21+3 (/+n)! 
n,/ (n -1- I)! 

X {[(nA + Z)(nA' + Z)/(4Z2)] - 21- 2 

X [ _ (n + I + 1)(1 _ {;)n-I 
2n 

+ (In{; + I/I(n + 1+ 1) - I/I(n-l) 

_ (21 + 3))( 1 _ (;)" -1- I 

2n 

+ (n-I-l)(I_{;)"-1-2 
2n 
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n-I-2 (l-;f 
+ k~O n - 1- 1 - k 
- (n -I-I)! 

X f (21 - k)! ; - 21 - I + k ] 

k=o(n+l-k)! 
+ [(nil. + Z )(nA' + Z )/(4Z2)] - 2/- 3 

X [In + 1+ 1)(1 - ;r- I - I 

2n 

_(n-2~-I)(I_;)n-I-2]) (2.7) 

is obtained, with; again given by (2.3) with v = n. tf/ is the 
logarithmic derivative of the gamma function. 

III. DETAILS 

The derivation of the result (2.1), from which the other 
results follow, begins with the changes of variable 

s=2Zr/v, s'=2Zr'/v, (3.1) 

where v is given by (2.2). For E = En, V = n is used. Make 
the definitions 

and 

YIIfJ,fJ ';E )= f" ds fO ds 'exp( - {:Js - (:J '5 ') 

X(f:f:')/+lg(VS vS"E) 
~~ I 2Z'2Z' , 

Yn.llfJ,fJ ')= i"" ds i"" ds' exp( - {:Js - (:J '5 ') 

(f:f: ')1 + I (ns ns ) 
X ~~ gn,l 2Z' 2Z ' 

(3.2) 

(3.3) 

It follows that the generating integrals II andln,l are given by 

I A "E - ~ ~_V_/l,_'E 
( )

21 + 4 ( .1 .1' ) 

I( ,A, ) - 2Z YI 2Z' 2Z ' (3.5) 

and 

( 
n )21 + 4 (nil. nA') 

In,/(A,A ') = 2Z Yn.1 2Z' 2Z . (3,6) 

The formula (1.18) for obtaining In,l from II becomes 

Y I(~~) = {[!!...(~) + E..(~) 
n, 2Z' 2Z n a{:J tr.v n a{:J' p,v 

(a) + 41 + 5 J 
+aVp./3'~ 

X [(V - n)Y/~,fJ'; - ~;) JL=n' 

Here v = n implies that {:J and {:J , are to be evaluated at 
{:J = nil. /(2Z ), {:J' = nil. '/(2Z ). 

(3.7) 

We will now characterize YI and Yn,l by a differential 
equation. Define the differential operator Kp(v) by 

a2 

Kp(V)==1fJ2 -!~ 
a{:J 

+ [2(1 + 2)P - v]~ + 2(1 + 1). (3.8) 
a{:J 
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It follows from (3.2), (3.8), and the differential equation (1.12) 
for gl that YI satisfies the differential equation 

K (v) ({:J,fJ" _ Z2) = 4Z(21 + 2)! (3.9) 
p YI , 2v 2 vlfJ + (:J ')21 + 3 • 

For r~n, Yn,IIfJ,fJ) = YIIfJ,fJ '; - Z 2/(2n2)) satisfies the differ
ential equation (3.9) with v = n. For I<n - I, (3.3), (3.4), 
(3.8), and the differential equation (1.16) for gn,l imply that 
Y n,l satisfies the differential equation 

K (n) 1fJ,fJ ') _ 4Z (21 + 2)! 
p Y n,l - nlfJ + (:J ')21 + 3 

n
2 

a
2
pIfJ )plfJ 'I· (3.10) 

2Z 2 a{:J2 

Similarly it can be shown that 

(3.11) 

The orthogonality condition (1.17), which is needed to 
uniquely determine the generalized Green's function gn,l for 
I<n - I, implies that 

L~"" an,l( - (:J )Yn,llfJ,fJ ')d{:J = 0, (3.12) 

where an,l(z) is determined by 

an,/(z) = i"" exp[ - (z + !)s ]L ~~+I ~.(s)s ds· (3.13) 

The contour is (3.12) runs along the imaginary axis. The 
generating function (1.7) for the generalized Laguerre poly
nomials can be used to show that 

an,o(z) = n(z + !)-2[(Z - !)I(z + mn
-

I (3.14) 

and that 

an,l(z) = (z + !)-2 

X n -±- I(n + 1- 2 - k)(k + 1)(~)k, 
k=O n-I-l-k z+~ 

I> 1, 

(3.15) 

where 

~) pip - 1)1p - 2) ... 1p - q + 1)/q! (3.16) 

is a binomial coefficient. 
Boundary conditions are needed to make the solutions 

to (3.9)-(3.11) unique. The differential operator Kp(v) has 
regular singular points at {:J = -~, at {:J = ~, and at {:J = 00, 

and can, if desired, be transformed into the hypergeometric 
operator. We will impose boundary conditions at{:J = ~ and 
at (:J = 00. The method of Frobenius shows that the homo
geneous equation 

Kp(v)ylfJ) = 0 (3.17) 

has solutions YIIfJ), Y21fJ) in the neighborhood of (:J = ~ with 
the behaviors 

YIIfJ)=O(l), Y21fJ)=O(IfJ-l/2)-I+v-l) (3.18a) 

for (:J-+~ and solutions Y31fJ ), Y 41fJ) in the neighborhood of 
{:J = 00 with the behaviors 

(3.18b) 

for {:J-+ 00. We will show that Y2 and Y3 are not allowed; the 
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solutions of(3.9)-(3.11) must behave likeYI for fJ-! and like 
Y 4 for fJ- 00 . 

The Laplace transforms (3.2)-(3.4) define analytic func
tions of fJ in the domain in which the integrals converge. The 
boundary condition (1.14), which holds for R n.1 (r) as well as 
gl(r,r';E), implies thatpn,,((3) is an analytic function offJ for 
Ref3> -!. For both rand r' large and r>r', the boundary 
condition (1.14) plus the fact that the exponentially increas
ing solution is 0 (r- 1 - Z laexp(ar)) for large r implies that 

g,(r,r';E) = O((rr/)-I(r/r/)Zla exp[ - aIr - r/)]), 
r_oo,r'_oo,r>r'. (3.19) 

The generalized radial Green's functiongn,t!r,r /) also has the 
behavior (3.19) for large rand r'. It follows that YI (fJ,fJ I;E) 
andy".,((3,{J/)areanalyticfunctionsoffJ for RefJ > max ( -!, 
- Re fJ '). In particular, Pn,l is analytic at /3 = !, and YI and 

Y",I are analytic at/3 = ! for RefJ I > 0.1t follows that a solu
tion which behaves likely Y2((3), which is not analytic atfJ = ! 
except when v = n with n>/ + 1, is not acceptable. 

According to Watson's lemma,9 the behavior of the La
place transforms (3.2)-(3.4) for large /3 (large fJ ') is deter
mined by the behavior of gl' gn,l' andp"" for small r (small r/), 
and may be computed by inserting a small r expansion (small 
r' expansion) and integrating term by term. This works be
causethefactorexp( - fJs )[exp( - fJ IS ')] cuts off the integral 
very rapidly for large/3 (large/3 '), so that only small S (small 
S ') matters. For both rand r' small and r<,r' , the boundary 
condition (1.13) plus the fact that the increasing solution is 
o (r -1- I) for small r implies that 

gl(r,r';E) = 0 (r'r' -1- I), 

r-o,r'-o, r<,r'. 

It follows that 

YI((3,{J I;E) = 0(((3/3 ')-1((3 + fJ ') - 21- I), 

Yn,/((3,{J ') = 0(((3/3 ')-1((3 + fJ ') - 21- I), 

f3~oo, (J'----1>-OO, 

and that 

(3.20) 

(3.21) 

Pn,/((3) = 0((3 -21-2), fJ-oo. (3.22) 

It follows that a solution which behaves like Y3(fJ ) for fJ- 00 is 
not acceptable. 

I t will now be shown that the boundary conditions of ( 1 ) 
analyticity at/3 = 1/2 and (2) large/3behavior given by (3.21) 
and (3.22) are enough to uniquely determine the solution YI 
to (3.9) except when v = n with n>/ + 1, in which case these 
boundary conditions plus (3.12) uniquely determine the solu
tion Y",/ to (3.10). The solutionYI((3) to the homogeneous 
equation (3.17) can be taken to be 

YI((3) = C((3 + !)- 1
2F 1( - v - /,1;1- v + 2; 

(fJ - !)/((3 + !ll, (3.23) 

where C is an arbitrary constant. The behavior ofthis Y 1 for fJ 
large follows from the formula 

2FI(a,b;c;l) = r(c)r(c - a - b )[r(c - a)r(c - b )]-1, 

Re(a+b-c)<O, c#0,-I,-2, ... , (3.24) 

which implies that 

YI((3) = 0((3 -I), /3-00 (3.25) 
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except when v = n with n >/ + 1. It follows that YI is unique
ly determined by (3.9) plus the boundary conditions (1) and 
(2) except when v = n with n>/ + 1. When v = n with 
n>/ + 1, the only solution to the homogeneous Eq. (3.17) 
which satisfies boundary conditions (1) and (2) is Cpn,I(fJ) 
with C an arbitrary constant. The condition (3.12) fixes the 
amount of the homogeneous solutionpn.' which can be add
ed to a particular solution of (3.1 0) which satisfies the bound
ary conditions. It follows that Y",/ for n>/ + 1 is uniquely 
determined by (3.10), (3.12), and the boundary conditions (1) 
and (2). 

We now look for a particular solution to (3.9) in the 
form 

YI((3,fJ I;E) = [((3 + !)(fJ '+ m -2/- 2Fv ,/(;) (3.26) 

with; given by 

; = ((3 + /3 ')/[((3 + !)((3 I + !)]. (3.27) 

It is straightforward to show that (3.9) will be satisfied if 

[ (I-!-)~-(/-V+ 1)]F (!-)= 4Z(2/+ I)!. 
~ d; 1',/ ~ v; 21 + 2 

(3.28) 

The boundary conditions of analyticity at fJ = ! and fJ - 21 - 2 

fall-off at infinity will be satisfied ifFy,I(;) is analytic at; = 1. 
The solution of the homogeneous version of (3.28) is 
(1 - ; )"-1- I, which is analytic at; = 1 only if v = n with 
n>/ + 1. The standard method for the solution of linear 
first-order ordinary differential equations then shows that 
the unique solution of (3.28) analytic at; = 1 is 

F1',,(;) = 4Z(2/+ 1)!(I-;)1'-I-1 
v 

(3.29) 

The change of variables (rJ = 1 - t + ;t brings this to the 
form 

4Z i l 

F1',/(;) = --(2/+ I)! t l
-

1'(1-t+;t)-2I- 2dt. 
v 0 

(3.30) 

The solution (3.29), or equivalently (3.30), is valid only for 
Re v < / + 1, because the integral diverges at (rJ = 1 (at t = 0) 
forRev>/ + 1. The integral representations (3.29)and(3.30) 
can, however, be extended via analytic continuation in v to 
obtain a solution of (3.28), analytic in ; at; = 1, for all com
plex v except v = n with n>/ + 1, where the analytic con
tinuation in v of Fy,/ has poles [as must happen because 
g,(r,r';E) has poles at E = En, i.e., at v = n, for n>/ + 1]. 
Comparison of (3.30) with (2.4) shows that 

F1',/(;) = -4Z(2/+ 1)![v(/-v+ 1)]-1 

X 2F I (21 + 2,/ - v + 1;/ - v + 2;1 -;). (3.31) 

The general result (2.1) for II with; given by (2.3) now fol
lows from (3.2), (3.26), (3.27), and (3.31). The differential 
equation (3.28) is equivalent to (2.5). 

The results (2.6) and (2.7) for v = n can be obtained 
from suitable transformations of F1'" (; ). The change of varia
bles t = (1 + ;x) -1 in (3.30) brings it to the form 
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Fv,l(t) = - 4Z(2/+ 1)!t -2/-1 
v 

X 1"'(1 +tx)/+Y(1 +X)-2/- 2dx. (3.32) 

Repeated integration by parts, which integrates 
(1 + x) - 2/- 3 + k and differentiates (1 + tX)/+ v - I + k at the 
k th step, yields 

F (t)= - {f (2/-j)!F(/+v+ l)t j - 21 - 1 

v,l j=O F(/+v-j+l) 

+ F(I + v + I)J (!-)} Re v<1 + 1, (3.33) 
F(v -I) v,l ~ , 

where Jv,l (t ) is defined by 

Jv,l(t) = 1"'(1 +txr- I- I(1 +x)-Idx. (3.34) 

For v = n with n</, the formula (3.33) reduces to 

Fn./(t) = - 4zni/(2/-j)!(/+.n)!tj-2/-1, n<J 
n j = 0 (I + n - J)! 

(3.35) 

The result (2.6) now follows from (3.5), (3.26), (3.27), and 
(3.35). 

The case v = n with n >1 + 1 requires additional work. 
The desired results can be obtained by analytic continuation 
of the integral representation (3.34) in v. Use the change of 
variables 1 + tx = t -I to bring (3.34) to the form 

Jv,l(t) = f tl - V [I+(t- 1)t]-ldt. (3.36) 

Make the definitions 

(3.37) 

k 

II(v-I-j) 
j= I 

_ kil (- tY , k>1. (3.38) 
j=oJl(k - j - I)!(v-I- k + j) 

With the aid of the partial fraction expansion 

k-I (-IY 

ll(v-I-j) = j~oJl(k-j-I)!(v-l-k+j) 
j=1 

(3.39) 

it can be shown that r tPk.v(t ')dt' = tPk + I.v(t), k>O, (3.40) 

that 

(3.41) 

and that tPk.v(t) is an analytic function of vat v = I + j, 
1 <J<k despite the apparent poles at these values of v. It can 
also be shown from (3.38) that 

tPk.v(O) = - [(k - I)!(v -/- k)] - I, k> 1. (3.42) 

Repeated integration by parts which uses (3.37) and (3.40)
(3.42) and which always integrates tPk,v(t) and differentiates 
[1 + (t - I)t]- k-I brings (3.36) to the form 
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n-/(1_tY- I 

Jv,l(t) = - j~1 V _ 1-j 

+ (n -I)!(/- tr -I f tPn _I,v(t) 

X[I+(t-I)t]-n+I-Idt, n>I+1. (3.43) 

The formula (3.43) provides the analytic continuation in vof 
Jv,/(t ) from thedomainRev< I + 1 in which (3.36) is valid to 
the larger domain Re v < n + 1. It follows from (3.33) and 
(3.43) that, for n>1 + 1, 

lim(v - n)Fv,l(t) = 4Z(n + I)! (1 - tr- I- I (3.44) 
v_n n(n - I - I)! 

and that 

lim~[(v - n)Fv,l(t)] 
v_n av 

= 4Z { _ (n + I)! f (21 - j)! t - 2/- I + j 

n j=o(n+l-j)! 

+ (n + I)! (/_!-)n-I-I[K (!-) 
(n - I _ I)! ~ n,l ~ 

+ tJi(n + 1+ 1) - tJi(n -I) - n- I ] 

(n + I)! n - 1- 2 (1 _ t Y } 
+ L ' (n - 1- I)! j = 0 n - 1- 1 - j 

where 

Kn,/(t)=(n -/)!(t-I)f tPn-I,n(t) 

X [1 + (t - I)t ] - n + 1- Idt. 

Here 

tPn _ I,n (t) = limtPn _I,v(t) v_n 

1 { n-I-I[ 
= - lnt+ L r l 

(n - I - I)! j = I 

(3.45) 

(3.46) 

+(n-;-I)(~t)j]}. (3.47) 

The sum in (3.47) is to be counted as zero for n = 1+ 1. 

It can be shown from (3.47) that 

1 [ n - I - I (1 - t Y] 
tPn-I,n(t) = - (n-I-I)! lnt+ j~1 -J-' -. 

(3.48) 

It can be shown from either (3.47) or (3.48) that 

dtPn_I,n(t) (1 - tr- I- I 

dt (n -1- I)!t 
(3.49) 

An integration by parts which uses (3.48) to show that 
tPn -1.n(1) is zero brings (3.46) to the form 

Kn,l(t) = (n - 1- 1 )!f {[ 1 + (t - I)t ] - n + I - I} 

X dtPn -I,n (t) dt. (3.50) 
dt 

It follows from (3.49) and (3.50) that 

dKn,l(t) 

dt 

= (n - l)f (1 - t r -1- 1[1 + (t - I)t]- n + 1- Idt 
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{ 1[ I-t ]n-'}'=l 1 
= -;- 1 +(;-I)t '=0 ='p (3.51) 

and that 

(3.52) 

Integrating (3.51) with the initial condition (3.52) yields 

Kn,d;) = In;. (3.53) 

The result (2.7) for v = n with n>l + 1 now follows from 
(3.6), (3.7), (3.26), (3,27), (3.44), (3.45), and (3.53). The result 
obtained from (3.7) for Yn,l(fJ,{3') with n>l + 1 has been 
checked by verifying that (3.10), (3.12), and the boundary 
conditions are all satisfied. 
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For a classical Hamiltonian H = (1/2) p2 + V(q,t) with an arbitrary time-dependent potential 
V(q,t ),exactinvariantsthatcanbeexpressedasseriesinpositivepowersof p, I (q,p,t ) = ~: = opYn 
(q,t), are examined. The method is based on direct use of the equation dIldt = aIlat + [I,H] 
= O. A recursion relation for the coefficients!n (q,t) is obtained. All potentials that admit an 

invariant quadratic in p are found and, for those potentials, all invariants quadratic in pare 
determined. The feasibility of extending the analysis to find invariants that are polynomials in p of 
higher degree than quadratic is discussed. The systems for which invariants quadratic in p have 
been found are transformed to autonomous systems by a canonical transformation. 

PACS numbers: 03.20. + i 

I. INTRODUCTION 

Time-dependent linear systems with Hamiltonians of 
the form 

H = !p2 + V(q,t) (1.1) 

are of considerable interest in various fields, for example in 
plasma physics. The degree of interest may be gauged by the 
number of workers who have searched by various means for 
invariants for systems of the type described by (1.1). To men
tion but a few, reference is made to the works of Lutzky, 1 
Sarlet,2-4 Sarlet and Bahar,5,6 Ray/,8 Ray and Reid,9,l0 and 
Prince and Eliezer, 11 as well as to some contributions by the 
present writers: Lewis, 12-14 Leach, 15-17 and Lewis and 
Leach, 18,19 

Recently there has been some criticism6 of the practice 
of determining invariants (used throughout this note solely 
in the sense of first integral or constant of the motion) via the 
generators of symmetry transformations, which is the case 
when Noether's theorem or the method of the Lie theory of 
extended groups is employed. The basis of the criticism is 
that such a procedure is roundabout. Certainly this is so if 
there is no interest in the associated algebra of the group of 
generators of symmetry transformations or if the group is of 
no interest in itself. 

In this paper we discuss a direct method for construct
ing invariants for systems of the type (1.1) and, in Secs. II and 
III, we apply the method to find explicitly all invariants that 
are either linear or quadratic in the momentump. Only cer
tain potentials V(q,t) admit such invariants, and we deter
mine those potentials explicitly. In Sec. IV, we give some 
examples of invariants quadratic in p and we comment on 
the case of polynomial invariants in p of degree higher than 
two in Sec. V. In Sec. VI, we use a canonical transformation 
to transform the systems for which we have invariants qua
dratic in p into autonomous systems. We present some con
cluding remarks in Sec. VII. 

Any invariant satisfies the fundamental defining equa
tion 

dI 

dt 
aI + [I,H] 
at 

aI + aI aH _ aI aH = O. 
at aq ap ap aq 

(1.2) 

We assume a formal power series expansion in p of the invar
iant, 

00 

I (q,p,t ) = L pn!n (q,t ). (1.3) 
n=O 

In general, such a series would not have an infinite radius of 
convergence in p. The functions!n (q,t ) are determined by the 
conditions obtained by substituting (1.3) into the defining 
equation (1.2) and setting the coefficient ofpn equal to zero 
for each n. This yields a system of differential equations that 
the functions!n (q,t ) must satisfy: 

a!n afn~ 1 ( I)/, av - 0 -+----n+ n+1--' 
at aq aq 

(1.4) 

Equation (1.4) may be considered as a recursion relation, 

a!n a!n~ 1 -+--
at aq 

(n + 1) av 
aq 

!n+1 = (1.5) 

from which in principle each!n' for n > 0, could be calculat
ed in terms of!o and its derivatives. This point of view has not 
been productive. 

In the present application, we concentrate on the cases 
in which the series for I (q,p,t ) terminates to give an invariant 
that is either linear inp or quadratic inp. Some consideration 
is given to the case in which the invariant is a polynomial in p 
of degree higher than two. It turns out that I (q,p,t ) can be 
linear inp only if V(q,t) is quadratic in q; a much wider class 
of potentials can be treated if the invariant is allowed to be 
quadratic inp. 

The Hamiltonian (1.1) is sufficient for treating all Ham
iltonians of the form 
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H = a(t )p2 + b (q,t )p + c(q,t ) (1.6) 

because (1.1) may be obtained from (1.6) by the generalized 
canonical transformation20 

Q=q, P=p+ :a, T= J'a(t')dt', (1.7) 

provided that Tis monotonic. By discussing the general case 
(1.6) through the simpler intermediate case (1.1), the calcula
tions are simplified. 

II. INVARIANTS LINEAR INp 

If the invariant is linear in p, 

I (q,p,t ) = pll(q,t) + lo(q,t), (2.1) 

then, with H as given in (1.1), the equation defining the invar
iant, Eq. (1.2), becomes 

p2 all + p (alo + all) + alo -II av = O. (2.2) 
aq aq at at aq 

The coefficient of each power of p may be equated to zero to 
give the system of partial differential equations 

all =0 
aq , 

alo + ai, =0, 
aq at 

alo -II av = o. 
at aq 

From (2.3), 

II =a(t), 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where, because of the assumed form of I, a(t) is not identical
ly zero. By substituting this into (2.4), we obtain 

10 = b (t) - aq, (2.7) 

whence (2.S) becomes 

b'·· av 0 -aq-a- = . 
aq 

(2.8) 

By integrating this last equation with respect to q, we find 
that the potential must be 

hq iiq2 
V(q,t) =c(t) + - - -. (2.9) 

a 2a 

The additive function of time cIt ) may be ignored, and we can 
state the result for invariants linear in p as follows. The Ha
miltonian 

H = J.- p2 + hq _ iiq2 
2 a 2a 

(2.10) 

has the invariant linear inp given by 

I=ap + b -aq, (2.11) 

and this Hamiltonian is the only one that possesses an invar
iant linear in p. 

As a simple example of a Hamiltonian of this type, we 
consider the time-dependent linear oscillator, 

H=~p2+~lii(t)q2. (2.12) 

Comparing (2.12) with (2.10) we see that b is identically zero 
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and that 

ii + u?(t)a = O. (2.13) 

From (2.13) it is evident that there are two linearly indepen
dent solutions for a(t). In terms of the solution21 of an auxil
iary equation 

p + liJ2(t)p = l/p3, (2.14) 

the solution set for (2.13) is 

{a(t)=psinT,PcosT;T= f'p-2(t')dt'}' (2.15) 

Thus, there are two linearly independent invariants of the 
form (2.11), viz., 

I, = pp cos T - ~ cos T - ~ sin T )q, (2.16) 

12 = pp sin T - ~ sin T + ; cos T )q. (2.17) 

Because these expressions can be inverted to give 

q=I,psin T-I2pcos T, (2.18) 

P = II ~ sin T + ; cos T) 
- 12 (p cos T - ~ sin T). (2.19) 

I, and 12 clearly relate to the initial conditions and (2.16) and 
(2. 17) may be called the initial condition integrals. It is evi
dent that a similar result applies to the general potential (2.9). 

III. INVARIANTS QUADRATIC IN P 

We now assume the invariant to be quadratic inp, 

I (q,p,t) = p2/2(q,t) + pll(q,t) + lo(q,t). (3.1) 

Following the same procedure as in Sec. II for invariants 
linear in p, we find that the functions/oJIJ2' and V are 
required to satisfy the system of partial differential equations 

a/2 =0 
aq , 

all + al2 =0, 
aq at 

alo _ 2' avail - 0 
aq :12 aq + at - , 

-II av + alo =0. 
aq at 

From (3.2) and (3.3) we find 

12 = 2a(t), II = b (t ) - 2a(t )q, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where a(t ) and b (t ) are arbitrary functions. Substituting for/2 

and II in (3.4) we obtain 

alo 4a av b' 2" - 0 - - - + - aq- , 
aq aq 

which can be integrated immediately to give 

(3.7) 

V(q,t) = _1_ [/o(q,t) - iiq2 + hq] + g(t), (3.8) 
4a 

where g(t) is an arbitrary function. Thus (3.5) becomes 
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(2Qq - b) (al o _ 2iiq + b) + 4a alo = O. (3.9) 
aq at 

Equation (3.9) is a linear, first-order, partial differential 
equation for 10 whose characteristic equations are 

dq = _1 (2Qq _ b), (3.10) 
dt 4a 

dlo = (2Qq - b )(2iiq - b ) 
dt 4a 

= :t [~ (aq - +b )1 (3.11) 

The solution of the characteristic equations is 

q 1 It b (t ') d ' (3 12 
u = a ll2 +"4 a3/2(t ') t, . ) 

v =/o(q,t) - ~ (aq - ~ b )2, (3.13) 

where u and v are constant along the characteristics. There
fore, the general solution of (3.9) is 

lo(q,t) = G ()/2 + ! r a~/~/') dt') + ~ (aq - !b )2, 

(3.14) 

where G is an arbitrary function. 
Now we have determined the potentials for which an 

invariant quadratic in p exists and we have determined the 
invariants. A convenient way of expressing the result is in 
terms of functions p, a, and G defined by 

p = 2a 1/2, 

-!:. = ~It~dt' 
p 8 a3/2(t ') , 

G ( x) = G (2x). 

(3.15) 

(3.16) 

(3.17) 

The result is that an invariant quadratic in p exists if and only 
if the potential is of the form 

V(q,t) = (pa -a)q- ~P q2+ ~G(q-a),(3.18) 
p 2 P p2 P 

wherep, a and G are arbitrary functions of their arguments. 
We have chosen the irrelevant functiong(t) such that no ad
ditive function of t appears in the potential. The invariant 
quadratic in p that is associated with this potential is 

[(q,p,t) = +[P(P - a) -p(q - aW + G (q ~ a). 

(3.19) 

Another convenient way of expressing the result is the 
following. The potentials for which there exists an invariant 
quadratic in p have the form 

V(q,t) = - F(t)q + !fl2(t )q2 + ;2 U (q ~ a). (3.20) 

where U is an arbitrary function of its argument, and where 
F, fl2, p, and a are arbitrary functions that satisfy 

p+fl2(t1o- ~ =0, 
p 

a + fl2(t)a = F(t), 

(3.21) 

(3.22) 

and k is an arbitrary constant. Now we have chosen the irre-
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levant function g(t ) such that no additive function of t ap
pears in this form of the potential. The invariant quadratic in 
p that is associated with this potential is 

[(q,P,!) = H p(p - a) - p(q - aW 

+ ~ k(q~ar + u(q~a). (3.23) 

This invariant is more general in form than those re
ported in Refs. 1-18. The main reason for this greater genera
lity is that there are two arbitrary time-dependent functions, 
p(t) and a(t). The invariant (3.23) for the potential (3.20) can 
also be obtained by considering a certain transformed Erma
kov system.22 

The result can be viewed in two ways. The first is, given 
a potential, can it be written in the form (3.20) or (3.18)? If so, 
then our invariant applies. The second is constructive in na
ture: given functions p, a, and U, the invariant can be con
structed and the associated Hamiltonian deduced. 

IV. SOME EXAMPLES OF INVARIANTS QUADRATIC INp 

Before considering the problem of finding invariants 
that are polynomials in p of higher degree than two, it will be 
instructive to consider some examples. First we take the case 
of the time-dependent linear oscillator whose Hamiltonian is 

H = !p2 + ~lii(! )q2; (4.1) 

this problem has been of great interest. We can obtain (4.1) 
from (3.18) by taking a equal to zero and 

G ( x) = ¥2. (4.2) 

This leads to the familiar differential equation for p(t ), 

P + liJ2(t 10 - l/p3 = O. (4.3) 

A closely related problem is the time-dependent linear 
oscillator to which has been added a centrifugal force. The 
Hamiltonian is 

(4.4) 

where K is a constant. We can obtain this by taking a equal 
to zero and 

(4.5) 

Againp satisfies (4.3). 
As an example of a problem that is not some variant of 

the harmonic oscillator, we consider the Emden equation, 

.. 2. 5 0 x+ -x+x = . 
t 

This can be converted to the reduced form 

Q+q5It 4 =0 

by the transformation 

q=tx. 

A Hamiltonian for (4.7) is 

H = !p2 + q6/6t 4. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

We can obtain this Hamiltonian by taking a equal to zero 
and choosing 

G (x) = !kx2 + /3x6, (4.10) 

where p(t ) and the constants k and /3 must satisfy 
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pp _klp2 =0, 

{Jp-8 = 1/6t 4. 

These conditions can be satisfied by choosing 

(J=~, p-2=t, k= -~. 

From (3.19), the invariant is 

I (q,p,t ) = !(tp2 _ pq + q6/3t 3), 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

in agreement with the result given by Sarlet and Bahar.5 

V. POLYNOMIAL INVARIANTS INp OF HIGHER DEGREE 

It would be useful to have invariants for a wider class of 
potentials than we have been able to treat with invariants 
quadratic in p. All invariants that are polynomials in pare 
determined by (1.3) and (1.4). For a polynomial of a given 
degree, one can obtain expressions for all of the functions 
fn(q,t) in terms of V(q,t) and its integrals, arbitrary functions 
of t, and powers of q by integrating with respect to q the 
equations (1.4) for which n#O. Substitution of the expres
sion forfl andfo into the equation (1.4) for which n = 0, 

afo _/ av = 0 (5.1) at I aq , 
yields a consistency relation that V(q,t) must satisfy in order 
that there exist an invariant that is a polynomial in p of the 
given degree. Unlike the cases in which the invariant is linear 
or quadratic in p, this consistency relation is nonlinear, the 
amount of nonlinearity increasing with the degree. Explicit 
formulas analogous to those given in Sees. II and III have 
not been obtained. 

VI. CANONICAL TRANSFORMATION 
INTERPRETATION FOR INVARIANTS QUADRATIC INp 

We can transform the systems for which we have invar
iants quadratic in p into autonomous systems as follows. We 
make the canonical transformation specified by 

q-a 
Q=-, 

p 
P= [p(p - a) -p(q - a)]. 

(6.1) 

(6.2) 

With this canonical transformation, which is given in terms 
of the old variables and time, the new Hamiltonian K is given 
bylS 

(6.3) 

A generating function F for this transformation is 

F(q,t) = J.....tq2 + (a - ..ta)q. 
2 p P 

(6.4) 

The new Hamiltonian may be taken to be 

K = ;2[+p
2 + G(Q)). (6.5) 

where we have dropped an irrelevant function of t alone. If 
we further transform the time variable from t to T according 
to 
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T= f'p-2(t')dtI, (6.6) 

then the Hamiltonian becomes 

K(Q,P,T) = ~p2 + G(Q), (6.7) 

which is exactly the invariant (3.19) written in terms of the 
new variables. It is interesting to note that the coordinate 
transformation is a linear point transformation and that the 
momentum transformation is that which is induced by the 
(q,t) to (Q,T) transformation. 

VII. CONCLUSION 

We have investigated potentials for which there exist 
invariants that are polynomials in the momentum by direct 
application of the fundamental definition of an invariant, 
(1.2). We have found the class of potentials for which there 
exists an invariant that is linear or quadratic in the momen
tum. For those potentials we have also found the invariants 
explicitly. The case of invariants that are polynomials in the 
momentum of degree higher than two has not been solved 
explicitly. Finally, for the case of invariants quadratic in the 
momentum, we have found a canonical transformation that 
transforms the system to an autonomous system. 
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I. INTRODUCTION 

In spite of its long and colorful history, classical me
chanics has been unable either to solve the system of differ
ential equations or completely describe the behavior of solu
tions of general mechanical problems. The only exceptions 
are the well-known completely integrable systems like the 
heavy symmetric spinning top, the problem of attraction by 
two fixed centers, etc. 1.2 

Complete integrability is the exception rather than the 
rule; in fact, such systems are not generic in the set of all 
Hamiltonian systems. 3 Nevertheless, during the past several 
years there has been a surge of activity and excitement as 
new completely integrable systems were discovered. This in
terest heightened when seemingly unrelated examples like 
the Toda lattice, the geodesic flow on semisimple Lie groups 
and the infinite-dimensional Hamiltonian system of the 
Korteweg-de Vries equation could be treated uniformly.4 

In the light of these new developments it is natural to 
reconsider the question of complete integrability of linear 
Hamiltonian differential equations. Since linear differential 
equations can be readily solved, it is hardly surprising that 
they are completely integrable. In 1930 Wintner conjectured 
that they are integrable with quadratic functions and this 
was proved by Williamson in 1940.5 

The real symplectic group acts on its Lie algebra natu
rally by conjugation, called the adjoint action, as follows: 

Sp(n,H) Xsp(n,H) - sp(n,H), 

(P,A )I----+P~IAP. 

Equivalence classes of time-independent, real, linear Hamil
tonian systems up to canonical transformations can be iden
tified with the orbits of this adjoint action. Representatives 
of these orbits are called normal forms. It suffices to prove 
the complete integrability of systems in normal form only. 

After giving a precise formulation of the normal form 
problem, we present a complete list of normal forms specifi
cally designed for our purposes. Since Williamson the nor
mal form question has been studied by many authors; the 
interested reader is referred to Refs. 5~7. We conclude with a 
new proof of the theorem of Williamson by explicitly exhi
biting a sufficient number of quadratic integrals and deter
mining the sets on which they are functionally dependent. 

II. THE NORMAL FORM PROBLEM 

In this section we give an invariant characterization of 
real, linear, time-independent Hamiltonian differential 

equations and a precise algebraic statement of the normal 
form problem. 

Let Vbe an n-dimensional vector space over the real 
numbers H. The group of all linear automorphisms of V, 
under composition, is called the general linear group 
GL(n,H).lts Lie algebra, the general linear algebragl (n,H), is 
the set of all endomorphisms of V with Lie bracket given by 
[A,B] =AoB -BoA for A,B Egl(n,H). 

A bilinear mapping w: V X V _ H is called symplectic if 
for all x, y E V it has the properties 

(i) w(x, y) = - w( y,x), that is, w is skew symmetric; 
(ii) the linear mapping 

Wll: V _ V* : x 1----+ w(x,.) 

is an isomorphism, that is, w is nondegenerate, where V* 
denotes the dual space of V. 

Note that the nondegeneracy of w forces V to be even 
dimensional. The pair (V,w) is called a symplectic vector 
space. 

The real symplectic group Sp(n,H) is defined to be the 
subgroup of GL(2n,H) of all elements which leave w invar
iant, that is, 

w(Ax,Ay) = w(x, y). (1) 

Similarly, the Lie subalgebra of gl (2n,H) of all elements satis
fying 

w(Ax, y) + w(x,Ay) = 0 (2) 

is called the real symplectic algebra sp(n,H). The elements of 
Sp(n,H) and of sp(n,H) are called, respectively, symplectic and 
infinitesimally symplectic linear mappings. The matrix ana
logs of the defining equations (1) and (2) can be written as 

A 'wliA = wll, 

A 'w ll + wliA = 0 

and the matrix of wll can be chosen to be 

-In] 
o ' 

(3) 

(4) 

where In is the n X n identity matrix in an appropriate basis 
of V, called a symplectic basis. 

Let H: V - H be a quadratic form on (V,w) given by 
H(x) = !H(x,x)whereHisasymmetricbilinearform.Differ
entiating H gives a linear mapping DH: V-V· defined by 
x 1----+ H (x,.), which is symmetric. The symplectic gradient of 
H is the real linear map 

XH : V- V:xl----+(wll)~IDH(x) 
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on (V,w); it is the real linear Hamiltonian vector field asso
ciated to H. A curve y:R ~ V is an integral curve of this 
Hamiltonian vector field if and only if, for tER, 

d - y(t) = XH(y(t)). 
dt 

(5) 

In a symplectic basis of V if we let x = (p,q) with x E Vand 
p,q are n-vectors, then Eq. (5) can be written as 

d [p] [0 In] [DIH (P,q)], (6) 
dt q = -In 0 D2H(p,q) 

where (DIH(p,q), D2H(p,q)) is the matrix of DH(p,q). The 
system of differential equations (6) is the usual form of Ham
ilton's equations. 

Proposition 2.16: Let Q (V,R) be the vector space of qua
dratic functions on V, a 2n-dimensional real vector space. 
The map 

K:sp(n,R)~Q(V,R):A ~K(A), 

K (A )x = w(Ax,x) 

is an isomorphism of vector spaces and its inverse is given by 

K- I : Q(V,R)~sp(n,R) :H~XH' 

Example: Let x = (x I,X2,X3,X4) and H (x) = !x~ + X IX4' 
The associated Hamiltonian vector field X H at x is given by 

XH(x) = (W")-IDH(x) 

M~~lli4 Gf] _ 0 I X2 _ XI 
- - I 0 - -x

4
' 

o - I XI -X2 

The matrix of the linear transformation x ~ X H (x) is the 
infinitesimally symplectic matrix corresponding to H and it 
is equal to 

o 
1 

X H = 0 
o 

o - 1 

o - 1 0 

Conversely, we can recover H from X H as follows: 

H(x) = ~xwllXHXt 

= ~x~ + X IX 4. 

Proposition 2.2 6
: The elements ofSp(n,R) are the canoni

cal transformations of real linear Hamiltonian systems 
sp(n,R) and 

p-IXH P=XHoP ' 

where HoP: V~R :x~H(Px). 
Two elements X H and X H' of sp(n,R) are said to be sym-
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plectically conjugate if there exists aPE Sp(n,R) such that 
P - IX H P = X H" Symplectic conjugacy is an equivalence 
relation and determining a representative of each equiv
alence class is the normal form problem for real linear Ha
miltonian differential equations. 

III. LIST OF NORMAL FORMS 

This section contains the statement of the normal form 
theorem along with a list of normal forms. To facilitate the 
presentation we begin with several algebraic concepts.6 

Consider the pair (A I W, W) where A E sp(n,R) and Wis 
an w-nondegenerate, A-invariant subspace of a 2n-dimen
sional symplectic vector space (V,w). Two pairs (All WI' WI) 
and (A 21 W2, W2 ) are equivalent if and only if there is a real 
symplectic mapping P E Sp(n,R) such that P (W2 ) = WI and 
(P -IA I P)I W2 = A21 W2• An equivalence class of pairs is 
called a type. 

Suppose that the pair (A I W, W) is an element ofthe type, 
say ..1, and there are proper A-invariant, w-nondegenerate, 
w-orthogonaI subspaces WI and W2 such that 
W = WI Ell W2 • Then we write..1 =..1 1 +..12 where 
(A I w" W;) E ..1 j for i = 1,2. A type..1 is an indecomposable 
type if it cannot be written as the sum of two types. 

Theorem 3.1: Every type is the sum of indecomposable 
types which are uniquely determined up to the order of the 
summands. Furthermore, List I contains all possible inde
composable types. 

For the proof of this theorem, which is rather long and 
intricate linear algebra, the reader is referred to Burgoyne 
and Cushman6 and Kocak.7 

In order to simplify the later matrix computations, a 
little more linear algebra is needed. 

A linear endomorphism S of Vis called semisimple if for 
every S-invariant subspace U of V there is an S-invariant 
subspace W such that V = U Ell W. Since the field of real 
numbers is not algebraically closed semisimple linear trans
formations, in general, are not diagonalizable. A linear endo
morphism N of V is called nilpotent of index m if N m =1= 0 on 
V, but N m + I = O. 

Proposition 3.28
: Let A E End( V), the set oflinear endo

morphisms of V. Then, 
(i) There exist unique S, N E End( V) satisfying the condi

tions A = S + N, Sis semisimple, N is nilpotent, Sand N 
commute. 

(ii) There exist polynomials p, q in one indeterminate, 
without constant terms, such that S = piA ) and N = q(A ). In 
particular, Sand N commute with any endomorphism 
which commutes with A. 

The decomposition A = S + N is called the (additive) 
Jordan-Chavelley decomposition of A; Sand N are called, 
respectively, the semisimple and the nilpotent parts of A. If A 
is infinitesimally symplectic, so are its semisimple and nilpo
tent parts. 6 

If A = N + SwithN having index of nil potency m, then 
m is called the height of (A, V) E..1 and it is an invariant ofthe 
type..1. _ 

If A is an eigenvalue of A E sp(n,R), then - A, A, and 
- Jc are also eigenvalues of A. This fact is called the infini-
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tesimally symplectic eigenvalue theorem.! 
Finally, € is a parameter with possible values + 1 or 

-1. 
In local problems of Hamiltonian mechanics the stan

dard form of the symplectic form is almost sacred. Unfor
tunately, in the symplectic basis most of the necessary ma
trix computations become unmanageably cumbersome. In 
order to overcome these problems, in the following list the 
bases of the underlying vector spaces are chosen so that ma
trices of nilpotent parts become the classical Jordan normal 
form and the matrices of semisimple parts are piecewise di
agonal. In these new bases the matrix of the symplectic form 
w is no longer the standard one. Matrices of the new sym
plectic form are included in the list as well. If necessary, 
using the results of Kocak 7 the theorems we prove can be 
pulled back to the standard symplectic basis. 

LIST I. Indecomposable types of linear Hamiltonian sys
tems 

2377 

(1) Eigenvalue: ° (zero), 
Height: m, odd, 
Jordan-Chavelley decomposition: A = N (no semis
imple part), 

o 
1 0 

m+ ! 

1 0 

Matrix ofw: 

E , .. ' '1 
-1 

m+ ! 

(2) Eigenvalue: ° (zero), 
Height: m, even, 
Jordan-Chavelley decomposition: A = N (no semis
imple part), 

r ~ 0 

1 

m+! 

1 0 
---~-

o 
1 0 

m+! 

1 0 

Matrix of w: 

1 

-1 

m+! 

-1 

-1 

1 

m+l 

-1 

J. Math. Phys., Vol. 23, No. 12, December 1982 

o 
1 0 

0 

(3) Eigenvalues: if3, - if3 (f3 > 0, real), 
Height: m, odd, 
Jordan-Chavelley decomposition: A = N + S, 

N 

1 0 
--------- -----"-------

o 
1 0 

Matrix of w: 

-1 
E 

-1 

1 0 

--1 

m+! 

+ --------

6 

m+ ! 

m+! 

-1 
m+ ! 

(4) Eigenvalues: if3, - if3 (f3 > 0, real), 
Height: m, even, 

s 

-6 
-B 

Jordan-Chavelley decomposition: A = N + S 

N 

0 

m+! 

1 0 + 
B 

1 0 

m+ ! 

1 0 

Matrix of w: 

-1 m+ ! 

-1 

-1 m+! 

-1 

(5) Eigenvalues: a, - a (a> 0, real), 
Height: m (odd or even), 

S 

-6 

-8 

Jordan-Chavelley decomposition: A = N + S, 

Huseyin Kocak 
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N s 
o Q 

1 0 m+1 

s = 

1 0 + a 

o -0 

1 0 
m+1 

1 0 

Matrix of w: 

-1 

2(m + I) 

-1 

(6) Eigenvalues: a + i{3, a - i{3, - a - i{3, 
- a + i!3(a>O,{3>O), 
Height: m (odd or even), 

-0 

Jordan-Chavelley decomposition: A = N + S, 

o 
1 0 

1 0 

1 0 

1 0 

o 
1 0 

1 0 

1 0 

-0 

m+1 

m+1 

m+1 

1 m + I 

1 0 

o -6 
a -6 

-B m+1 

Q 

_0 

-0 

-B m + I 
-B 

- B 

B o 

o 

Matrix of w: 

-) 

2(m + I) 

-1 

-1 21m + I) 

-) 

It is evident from the previous list that an indecompos
able type is determined by three invariants (m.A.,E) where m 
is the height, A is an eigenvalue, and E is ± 1. Since from 
Theorem 3.1 every type can be uniquely written as the sum of 
indecomposable types, the unordered sequence ((mi.A.i>Ei)) 
is a complete set of invariants for the conjugacy class of 
A E sp(n,R) and we say that A is of type ((mi.A.i>Ei))' In prac
tice, however, one usually deals with a specific Hamiltonian 
and faces the problem of conjugating it to a normal form 
given in List I. Burgoyne and Cushman6 devised a construc
tive algorithm to resolve this question. 

IV. COMPLETE INTEGRABILITY 

This section contains a brief account of the notion of 
complete integrability in Hamiltonian mechanics adapted to 
our purposes. For a general discussion of this topic in a glo
bal and more geometric setting the interested reader is re
ferred to the Refs. 1 and 2. 

The Poisson bracket (H,F) of two real-valued differen
tiable functions on (V,w), a symplectic real vector space of 
dimension 2n, is another such function given by 

(H,F) =dH·XF • 

Let FJ ... ,Fk beftrst integrals of the motion of the Hamil
tonian H, that is I H,Fi ) = 0 for all 1 <.J<k. The set of real
valued differentiable functions FJ, ... ,Fk on (V,w) is said to be 
in involution if I F"Fj) = 0 for all i,j, 1 <J,j<k 

The set of functions FJ, ... ,Fk is said to befunctionally 
independent if the set of critical points of the function 
F = FJ X· .. XFk ; in other words the set where the rank of dF 
is strictly less than k, has measure zero. 

A Hamiltonian function H or the associated vector field 
X H on (V,w) is called completely integrable or just integrable 
if there exists n = ~ (dimension of V) functionally indepen
dent first integrals of the motion of H which are in involu
tion. 

m + I V. WILLIAMSON'S THEOREM 

a 

-0 

-0 
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m+1 

Theorem 5.1: Any real-valued homogeneous quadratic 
Hamiltonian function on a symplectic vector space (V,w), or 
equivalently the associated real linear time-independent Ha
miltonian differential equations, is completely integrable 
with quadratic functions. 5 

Before we embark on the proof of the theorem above we 
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present the specialization of the con.cepts o~ involution and 
functional independence to quadratic functIOns. 

Under the Poisson bracket the set of quadratic func
tions on (V,w), Q (V,lIt), becomes a Lie algebra. The map 

Q(V,lIt) _sp(n,lIt): H -XH 

is a Lie algebra isomorphism. Therefore, we have 

{H,F jr-+[XH,xP) , 

where H,F E Q (V,lIt) and the square brackets on the right are 
Lie brackets, or the commutator, insp(n,R). In particular, we 
have the following lemma.9 

Lemma 5.2: If H,F E Q (V,R), then [H,F I = 0 if and 
only if [XH,xF] = O. 

Because of Lemma 5.2 to show that X H E sp(n,R) has n 
quadratic first integrals in involution it suffices to ~x~ibit an 
n-dimensional abelian subalgebra of sp(n,lIt) contammg X H' 

The following notation will be used to describe the abelian 
subalgebras. Let Tm, mT, um, and VmbeofsizemXm, 
square, lower triangular matrices with entries lying on a line 
parallel to the main diagonal having the same value. 

The entries of mT are the same as those of T m except 
that starting with the diagonal the entries on every other line 
parallel to the main diagonal have opposite sign from those 
ofTm. 

The entries of U mare 0 on every other line parallel to 
the diagonal starting with the (zero) diagonal. 

The entries of vm are 0 on every other line parallel to 
the diagonal starting with the (zero) subdiagonal. 

Lower case latin letters will be arbitrary real numbers 
and in each case they will be assumed to be unrelated even if 
we use the same letters. 

For example, if m = 5 then 

b a 

T 5 = c b a 

c b a 
e d c b 

-a 
b -a 

5T= -c 

d 

-e 

o 

b -a 
-c b-a 

d -c b 

U 5 = 0 I 0 

o I 0 
g 0 I 

o h 

V 5 = 0 h 

o 0 h 
j 0 i 0 h 

Suppose that X F, , ... ,x F" form a basis of an abelian su
balgebra of sp(n,lIt). Since (w#) -I is nonsingular, to prove that 
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the corresponding quadratic first integrals F1, ... ,Fn in invo
lution are functionally independent it is enough to show that 
the matrix 

(WIl)-ldF(x) = (XF, (X), .. ·,xF" (xl), 

whereF = FI X··· XFn , has rank n for all x = (x l , ... ,X2n ) E V 
except a set of measure zero in V. 

Proolol Theorem 5.1: Without loss of generality we 
may assume that X H is in normal form. For each indecom
posable type in List I we will exhibit an abelian subalgebra 
containing it, and if X H is a sum of given indecomposable 
types then an abelian subalgebra containing X H is simply the 
direct sum of the abelian subalgebras of the indecomposable 
summands of X H' 

Abelian subalgebras will be described in terms of Tm, 
mT, U m, and V m as given above. Bases of abelian subalgebras 
can be obtained by setting one of the parameters to 1, the 
others to 0 in T m, mT, um, vm and running through all the 
parameters. Routine matrix multiplications show that th~se 
basis elements commute. 10,11 The basis elements are the lm
ear Hamiltonian vector fields in involution and the corre
sponding quadratic first integrals can be obtained from Pro
position 2.1. In the cases (iii) and (iv) below X H will not be one 
of the basis elements just described. Although it is not re
quired in the definition of complete integrability we will 
modify the basis in such a way that X H becomes one of the 
basis elements. 

(i) Suppose thatXH is the indecomposable oftype (1) of 
List I, i.e., nilpotent of height m(odd) or equivalently of size 
(m + I)X(m + 1). An abelian subalgebra containingXH is 
u m + I. Let n = ~(m + 1), It is easy to choose and n X n trian
gular submatrix of (wll) - 1 dF (x) with determinant x~. There
fore, therankof(w#)-ldF(x) isequalton exceptwhenx 1 = 0 
which is a measure zero subset of V. For example, let 
m + 1 = 6, n = 3. Then 

o 
0 

XH =XF , 
0 

0 

0 

0 

0 

a 0 

U m + 1 = 0 a 0 
b 0 a 0 
0 b 0 a 0 
c 0 b 0 a 0 

0 

0 

X F , = 
0 

0 

0 0 0 0 0 
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0 

0 

0 
X F , 

0 

0 

1 0 0 0 0 0 

and 

0 

XI 

(w*,)-ldF(x) = 
X2 (1 ) 
X3 XI 
X4 X2 

X3 XI 

The determinant of the 3 X 3 submatrix consisting of 
the second, fourth, and sixth rows of (1) is equal to xi . Hence 
( 1) has rank 3 unless X I = 0 which is a measure zero subset of 
R6. 

(ii) Suppose thatXH is indecomposable of type (2) or (5) 
in List I, i.e., either nilpotent of even height m or has real 
eigenvalues. Then an abelian subalgebra containing X H is 

(
Tm+ I I J. 

I m+ITJ 

Functional independence is proved as in the case (i) by taking 
n=m+1. 

(iii) Suppose thatXH is indecomposable type (3) or (4) of 
List I, i.e., it has purely imaginary eigenvalues ± if3, f3 ::;60, 
and of height m. Let n = m + 1. Then an abelian subalgebra 
containing X H is 

(un 1_ vnl. 
vn un 7 

Ifwe take X F , = X H , and X F , , .•• ,xF" are obtained by 
setting one parameter in un or V n to 1, all the others to 0 and 
running through all the parameters except the one on the 
diagonal entries of V n

, we get a basis of the abelian subalge
bra above. 

By row operations it is easy to choose an n X n subma
trix of(w*,)-ldF(x) with determinantf3.x:/~ I ,x7/2 ifn is even 
andf3.x~n;:}/2.x\n + 1)/2 ifn is odd. So the rank of(w*,)-ldF(x) 
is equal to n except when X I = 0 and/or xn + I = 0 which is a 
measure zero subset ofR2n

, thus establishing the functional 
independence of the quadratic first integrals described 
above. 

(iv) Suppose that X H is the indecomposable type (6) of 
List I, i.e., it has complex eigenvalues ± a ± if3, a, f3 ::;60, 
and is of height m. Let n = 2(m + 1). Then an abelian subal
gebra containing X H is 
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~
7 

T n 
- 2 

nTI 

toT} 
I 

Tn 
2 I \ 

- nT
2 

Tn 
I 

nTtI 

Ifwe take X H = X F , ,and X F , , .•• ,xF" are obtained by 
setting one parameter in T7 (hence in nTtl or T~ (hence in 
nT2 ) to 1, all the others to 0 and running through all the 
parameters except the one on the diagonal entries of T7 and 
lOTI' we get a basis of the abelian subalgebra above. 

By row operations one can choose an n X n submatrix of 
(wll) - I dF (x) with determinant a(xi + x~ + I )". Therefore, 
the n quadratic first integrals described by the abelian subal
gebra above are functionally independent except when 
XI=Xn+I=O. 

It appears that the quadratic integrals we have con
structed are useful in the theory of global action-angle co
ordinates oflinear Hamiltonian systems. 12 We will report on 
this in a subsequent paper. 
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We consider single and multiple measurements on a quantum logic (P,S) as well as states and 
propositions conditioned by a measurement. We show that corresponding to any measurement A , 
there is a canonically associated Hilbert space H A • Algebraic and statistical properties of (P,S) 
that are preserved in H A are found. We then study the problem of embedding a quantum logic in 
Hilbert space. 
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1. INTRODUCTION 

According to one interpretation of the quantum logic 
approach, if Y is a physical system, the set of states S of Y 
represents the set of preparation procedures for Y and the 
set of propositions P represents the set of physical yes-no 
experiments for Y. Mathematically P is a O'-orthocomplete 
orthomodular poset and S is a set of countably additive prob
ability measures on p.1 

We define a measurement (or operation2
) to be a maxi

mal orthogonal subset of P. For example, suppose the mea
suring apparatus consists of a finite sequence of n counters 
with mutually disjoint volumes of sensitivity. Then the mea
surement consists of mutually orthogonal yes-no experi
ments a l ,a2, ... ,an ,b [the ith counter clicks (a;), no counter 
clicks (b I]. Or suppose the output of the measuring apparatus 
is a dial reading. A corresponding measurement would be a 
partition of the scale on the dial face. In any case, the result 
of a measurement consists of a set of mutually exclusive al
ternatives one of which always holds. 

The physical system Y can be thought of as a black box 
whose structure we seek to determine. We can prepare the 
box in various states and we may then subject the box to 
various measurements vii. By repeating preparations of Y 
in the state aES each followed by a performance of the mea
surement ! a; J E.J(, we obtain a probability distribution 
! a(a;)]. These probability distributions give the only infor
mation about Y available to us. The corresponding se
quences ! a(a;) 1 / 2] generate a Hilbert space which will playa 
central role in our study. 

In this article we shall consider single and multiple 
measurements. We shall also study states and propositions 
conditioned by a measurement. We observe that correspond
ing to any measurement A, there is a canonically associated 
Hilbert space HA . We shall study to what extent the algebra
ic and statistical properties of (P,S ) are preserved in 
! H A :A cdj. Finally we consider the problem of embedding 
a quantum logic in Hilbert space. 

a'This author wishes to thank the University of Denver for the hospitality 
extended to him during a quarter's visit during which this paper was be
gun. 

2. MEASUREMENTS 

In the sequel P will denote a O'-orthocomplete orthomo
dular poset. From now on we shall make the physically plau
sible assumption that P is separable, that is, every orthogonal 
set of elements of Pis at most countable. Recall that a subset 
M of P is a Boolean subO'-algebra of P in case (i) M, with the 
ordering the orthocomplementation induced from P, is a 
Boolean O'-algebra and (ii) the countable joins in M function 
as joins in P. We say that a set A C P is compatible if A is 
contained in a Boolean subO'-algebra of P, and in this case we 
denote the Boolean subO'-algebra generated by A by 3iJ(A ). 
We say thatA,BCPare compatible (written A-B) ifAuB is 
compatible; and, if I a ]-1 b ] we write a_b. 

A measurement (or operation) onPis a maximal ortho
gonal set in P \ ! 0]. We denote the set of all measurements on 
P by JI = JI(P). Note that JI(P) is a covering of P \ 10 j. 
For a general treatment of such structures and their relation 
to orthomodular posets see Ref. 3. For A,Bc4 we say that B 
is a refinement of A and write A <B if for every aEA there 
exists a subsetB I CBsuch thata = VB!. WecallAc4 atom
ic if every aEA is an atom of P. The following two lemmas 
summarize some useful properties of measurements. The 
proof of the first lemma is a routine verification which we 
leave to the reader. 

Lemma 1: (1) An orthogonal set A C P \ 101 is in JI if 
and only if VA = 1. 

aEA. 
(2) For each aEP \ ! 0 1 there exists an Ac4 such that 

(3) If Ac4, then A is compatible. 
(4) If A <B, then a_b for every aEA, bER. 
(5) alb if and only if there is an Ac4 with a,bEA. 
(6) a~b if and only if there is anAc4 with a,bE3iJ(A). 
Lemma 2: (1) (vii,,.;.) is an atomistic poset with least 

element 11] and atoms! a,a' J, a #0, 1. 
(2) A is a maximal element of (JI, <) if and only if A is 

atomic. 
(3) For A,Bc4,A_B if and only if there exists a Cc4 

such that A,B<C. 
(4) P is an atomic Boolean 0' -algebra if and only if (JI , <) 

contains a largest element. 
Proof (1) It is clear that <; is reflexive and transitive on 

JI. To show antisymmetry assume thatA,Bc4 withA<B 
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and B <A. Let aEA. Then there exists an element bEB and an 
alEA with a1<b<a. If a#a l , then alai' hence a l = 0 which 
is a contradiction. Thus A b,B and by symmetry Bb,A so 
A = B. The other statements are straightforward. 

(2) AssumeAE.A" is maximal. If aEA is not an atom then 
there exists a,bEP such that 0 < b < a. Since a = bu(a 1\ b '), 
(A \. [a J )u[ b,a 1\ b 'J isa proper refinement of A contradicting 
the maximality of A. Thus A is atomic. The converse is clear. 

(3) If A,B<C thenA,Bb, .%'(C) soA+-+B. Conversely, if 
A +-+B, then C = [a 1\ b:aEA, bEB J \. [0 J E.A" and A,B < c. 

(4) If P is an atomic Boolean u-algebra, then the set of 
atoms of P is the largest measurement in P. Conversely, as
sume~ has a largest elementA. Then by (2)A is atomic. For 
aEP \. [ 0, 1), [a,a' J <A so P is atomic. Moreover if, 
a,bEP \. [0,1 J then [a,a' I, [b,b') <A so, by (3), a+-+b. HenceP 
is a Boolean u-algebra. 0 

For aEP and S a set of states (or u-additive probability 
measures) on Pwe define as = [aES la(a) = 1 J. Throughout 
this section we assume that P admits a strong set of states S, 
that is, for a,bEP, a<b whenever as b,bs . We then call the 
pair (P,S) a strong quantum logic. For AE.A", define the Hil
bert space 

'~'A = {f:A-+cl ~ If(aW< oo} 
with inner product (1, g) = LaEA f(a)g(a). For aES, let 
a A E'W'A be the function aA (a) = a(a)II2, aEA. Notice that 
a A is a unit vector in 'W'A since IlaA 112 = LaEA ala) = 1. We 
call a A the state a conditioned by the measurement A. Let 
P (eW' A ) be the lattice of all orthogonal projections of JY' A • 

We frequently identify an orthogonal projection with the 
closed subspace it projects onto. For aEP, define aA EP(JY'A ) 

to be the closed span sp [a A laEas ). We call aA the proposi
tion a conditioned by the measurement A. Define the maps 
J(A ):S-+eW'A and K(A ):P-+P(eW'A) by J(A )a = a A and 
K (A )a = a A • The next lemma states that the range of J (A ) 
generates JY'A and that a state aES, respectively a proposi
tion aEP, is uniquely determined by the maps J (A la, AE.A", 
respectively, K (A la, AE.At. 

Lemma 3: (1) JY'A = sp[aA laES J. 
(2) For a, (JES, a = (J if and only if a A = (J A for all 

AE.A". 
(3) Fora,bEP,a = bifandonlyifaA = bA forallAE.A". 
Proof: (1) Fix AE.A". For aEA, define ea E.W' A by ea (b ) 

= Dab (the Kronecker delta). It is clear that [ea laEA J is an 
orthonormal basis for JY'A' Moreover, since S is strong, for 
each aEA there exists an a*ES such that a*(a) = 1. Hence 
a* A = ea so that [ea :aEA J b, [aA :AE.A" J. The result fol
lows. 

(2) SupposeaA =(JA for every AE.A". Let bEP \. [0,1] 
and let B = [b,b '1E.~. Then alb )1/2 = aB(b) = (JB(b) 
= (J(b )1/2, so a(b) = (J(b); hence a = (J. 

(3) Suppose ae = be for every CE.A". Let 
Ao = [a,a' J E.A". Then 

sp[ea ] = sp[aA.,IaEasJ 

= aA" = bA" = sp[aAJaEbsJ. 

Hence, aEbs implies a Ao ESp [eo J which implies a A" = ea so 
aEas . Thus bS b,as and therefore b<a. By symmetry a<b, 
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so a = b. 0 
For aEP, aES, AE.A" we define the probability of a in the 

state a conditioned by the measurement A to be 
a A (aA) = (aA a A ,aA ) = (K (A )aJ(A )a,J(A )a). In general, 
a A (aA )#a(a) (see Sec. 4). This is to be expected since a single 
measurement on a physical system would not in general de
termine the statistics of the entire system. Also, in general, 
K (A ) does not preserve all the algebraic properties of P. 
Again, one would not expect a single measurement to deter
mine the complete internal structure of P. The following re
sult shows that K (A ) preserves the order on P and that both 
J (A ) and K (A ) preserve the structure and statistics of.%' (A ). 

Theorem 4: (1) For a,bEP andAE.A", a<b implies 
aA <bA • 

(2)K (A) isan isomorphism on .%'(A ) andaA (aA) = ala) 
for every aES and aE.%' (A ). 

Proof: (1) If a<b then as b,bs so that [aA laEas J 
b, faA laEbS

] and aA <bA· 
(2)ForeachaEA,K (A )a = sp[ eo J sincea(a) = 1 implies 

a A = ea' Let bE.%' (A ). Then there exists a setBkA such that 
b = VB. Since K (A ) preserves order and a <b for all aEB we 
have K (A )a<K (A )b and hence VOEBK (A )a<K (A lb. Let 

t/JEK (A )b = sp [aA laEbs J. If a(b) = 1 then ala) = 0 for 

each aEA \.B soaA E sp[ eo laEB j and t/JEVaEBK (A )a. Hence 
K (A )b = VaEB K (A )a. It follows thatK (A ) is an isomorphism 
from dJ (A ) to the Boolean u-algebra generated by 
[sp[eo jlaEA j. To show that aA (aA) = a(a)foraES,aE.%'(A) 
let bE.U)} (A ) with b = VB, B b,A. For aEA and aES we have 

a A (a A) = (sp ea (a(b )1/2)bEA ,(alb )1/2)bEA) = ala). 

Hence 
a A (b A) = aA (VoEBK(A )a) = I a A (K(A )a) 

OEB 
= I ala) = a(VB ) = alb ). 0 

OEB 
Corollary 5: (1) If A,BE.A" and A+-+B, then there exists a 

refinement C~A,B such that ae(ae ) = ala) for all aES and 
aeg(AuB). 

(2) If A is atomic and a+-+A, then a A (aA) = ala) for all 
aES. 

Proof: (1) Let Cbe the refinement in the proof of Lemma 
(2), part (3). Then .%'(C) = .%'(AuB) and the result follows 
from Theorem 4. 

(2) Let B = [a,a' J. The result follows from (1) since A 
has no proper refinement. 0 

Letf: ~ -+Co We say thatf has a limit AEC and write 
limf(A ) = A ifforany e> o there exists anA (e)E.A" such that 
I fiB ) - A I < e whenever B-;.A (e). The next corollary shows 
that statistics is preserved in the limit. 

Corollary 6: For every aEP, aES we have ala) 
= lim a A (aA ). 

For a, (JES, the transition probability TA (a, (J) of a and 
(J given A is defined by 

TA (a, (J )II2 = I a(a)I/Z(J (a)I/Z = (aA, (JA ). 
oEA 

The transition probability T (a, (J) is defined4 as 
T (a, (J ) = infAE..4 T A (a, (J). It is shown in Ref. 5 that T (a, (J) 
possesses the usual properties of a transition probability and 
reduces to the standard form if P is a Hilbert space logic. 
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Corollary 7: For any a, f3ES, T(a, f3) = lim TA (a, f3). 
Proof Given E> 0, by definition there exists an AE..-R 

such that ITA (a,f3) - T(a,f3)1 <E.NowletBE..-RwithB;;>A. 
If aEA, then there exists a;EB, i = 1,2, .. ·, such that a = Va;. 
By Schwarz's inequality we have 

L a(a;)l/lf3 (a;)l/l< [L ala;) r2[ L f3 (a;) r2 
= a(a)l/lf3(a)I/2. 

Hence T(a, f3 )<TB(a, f3)<TA (a, f3) and 
ITB(a,f3) - T(a,f3)1 <E. 0 

There is a close relationship between measurements and 
observables.6 Let x be an observable with countable spec
trum o1x) = !A; Ii = 1,2, .. · I. Then corresponding to x we 
have a measurement X(!A; J)i = 1,2, .... Conversely, if 
! a; Ii = 1,2, .. · I E..-R and! A; Ii = 1,2, .. · I ~ R, then there exists 
an observable x with o1x) = !A; Ii = 1,2, ... I and 
x(! A; J) = ao i = 1,2, .. · . In general, if x is an arbitrary obser
vable, then there exists a sequence of observables x; with 
finite spectra such that for any state a for which the expecta
tion Ea (x) exists, we have lim Ea (x;) = Ea (x). 7 Moreover, if 
m<n then the measurements corresponding to Xn is a refine
ment of the measurement corresponding to X m • In this way 
an arbitrary observable can be associated with a sequence of 
measurements each being a refinement of the previous ones. 

We close this section with a brief consideration of multi
ple measurements. There are three important types of multi
ple measurements: sequential measurements, simultaneous 
measurements and independent measurements. If 
AI, ... ,AnE..-R(P), then a sequential measurement given by 
K (An)K (An _ I ) ... K (A d would first apply K (A I)' then on the 
resulting system K (Al) would be applied and so forth. In 
general, there appears to be no reasonable mathematical way 
to define this if A 1, ... ,An are measurements on the original 
quantum logic (P,S). Physically, this is because the first mea
surement may drastically change the original system so that 
A2 no longer applies. We can define a sequential measure
ment if AIE..-R(P), A1E..-R[P(HA, )],. .. by the expression 
K(An) .. ·K(A I)· 

In case P is a lattice, if A 1" .. ,An are compatible, then 
there exists a common refinement B;;>A;, i = 1,2, ... ,n. One 
can then consider the measurement B as a simultaneous 
measurement of A p ... ,An. If the A;'s are not compatible, 
there appears to be no mathematical or physical sense for 
their simultaneous measurement. The next result shows that 
if A <B, then in a certain sense J (A )J (B) = J (A ) and 
K (A )K (B) = K (A ). If A <B then, by Theorem 4, 
A = K (B )A is a measurement on P (H B) which is isomorphic 
toA. 

Lemma 8: If A <B then J (A )J (B )a = J (A )a and 
K (A )K (B )a = K (A )a for every aES and aEP. 

Proof Since A <B, we have A ~ /JiJ (B ) and by Theorem 4 
aB(aB) = ala) for all aEA. Hence 

J(A )J(B)a = (aB(aB)I/2)aEA = (a(a)l/l)aEA =J(A la. 
Also, for any aEP, 

2383 

K(A )K(B)a = sp!J(A )J(B)a:aEasl 

= sp! J (A )a:aEas I 
=K(A)a. 
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We now consider independent multiple measurements. 
LetAI, ... ,AnE..-R. An independent measurement ofAI, ... ,An 
may be physically thought of as follows: Prepare a state a, 
make the measurement A I' reprepare the state a, make the 
measurement A l , ... , reprepare the state a, make the mea
surement An' The result would be an n-tuple of vectors 
(aA, ,aA, , ... ,aA"). Motivated by this, we define the map 
J (AJ>' .. ,An ):S-HA, ® ••• ® H A" by 

J(AI" .. ,An)a = J(Ada ® ... ®J(An)a = aA, ® ... ® aA" 

and themapK(AJ, ... ,An):P-P(HA, ® ... ®HA.! by 

-- sl K(AI, ... ,An)a = sp!J(AI, .. ·,An)a:aEa 

= sp!aA, ® ... ®aA":aEasl· 

The maps J (A 1, ... ,An)' K (A 1" .. ,An) correspond to a condi
tioning by the independent measurements AI, ... ,An. Notice 
that 
[J(AI, .. ·,An la][K(A 1,· .. ,An )a] 

= aA, (aA, )aA2 (aA, )".aA " (aA" ) 

which is the correct statistics for independent measure
ments. The proof of the next lemma follows easily from 
Theorem 4. 

Lemma 9: LetK=K(AI, ... ,An). 
(1) KO = 0, K 1 = 1 and a<b implies Ka<Kb. 
(2) If a=j:.b and a,bEAj for somejE!I,2, ... ,n I then 

KalKb. 

3. HILBERT SPACE EMBEDDINGS 

We say that P is embeddable in Hilbert space if Pis 
isomorphic to a sub-ortho-modular poset of P(H) for some 
Hilbert space H. An example is given in Ref. 8 of a finite 
strong quantum logic (P,S) for which P is not embeddable in 
Hilbert space. One might ask if there are stronger conditions 
that can be placed on S which forces P to be embeddable in 
Hilbert space. One possible such condition is the Jauch
Piron condition.9 A state a on P is a Jauch-Piron state if 
ala) = alb ) = 1 implies a(c) = 1 for some c<a,b; note that 
this reduces to the usual definition 10 when Pis a lattice. It has 
been conjectured that if (P,S ) is a quantum logic in which S is 
a strong set of Jauch-Piron states, then P is embeddable in 
Hilbert space. That this conjecture is false can be seen by 
combining the example cited above and the following Corol
lary 12. Another possible such condition is the following. 

Call two states a andf3 of P mutually singular and write 
a#f3ifa(c) = f3 (c') = 1 forsomecEP. This relation of mutual 
singularity has been studied in Ref. 11 in the context of the 
Jordan-Hahn decomposition of signed states. Now let S be 
any set of states on P. Write a1sb in case as X bS ~ #, i.e., 
a #f3 whenever aEas and f3Ebs . Clearly, 1 ~ 1s. Call S ul
trastrong in case 1s ~ l. 

Remark 10: (1) If Sis ultrastrong then S is strong. 
(2) Ultrastrong (like strong) is "ascendingly heredi

tary," i.e., if SI ~Sl and SI is ultrastrong then so is S2' 
Proof (1) Assume S is ultrastrong and as ~ bS

• If aEas 

andf3E(b ')S thena(b) = f3 (b ') = 1. Hencea1s b' soa1b' and 
a<b. Hence S is strong. 

(2) This follows immediately from the fact SI ~Sl im
plies 1s, ~1s, . 

We give an example in the next section which shows 
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that strong need not imply ultrastrong. An order determin
ing set of dispersion-free states S on Pis ultrastrong. Indeed, 
suppose alsb. If aEas then a(b) = 0 since otherwise 
aEas nbs implying a #a which is impossible. Hence 
alb ') = 1 which implies a<,b ' or alb. In particular any (I
class 12 or (I-algebra of subsets of a set admits an ultrastrong 
set of states. Also, for any Hilbert space logic P (H), the set 
S (H ) of all pure states is ultrastrong. To see this, let a,bEP (H ) 
with alsb. If a or b equals 0 we are finished. Otherwise, let ¢l 
and l/J be unit vectors with ¢lEa and l/JEb. Then the corre
sponding pure states a"" ai/' satisfy a",Eas and aI/JEbs . 
HencethereexistseEP(H ) such thata",(c) = ai/'(c') = 1. This 
implies that ¢lEe and l/JEe' so #l/J. Hence alb. 0 

Theorem 11: If P is atomic and every atom aEP admi ts a 
Jauch-Piron state fla with flu (a) = 1, then P admits an ul
trastrong set S of Jauch-Piron states. 

Proof Let A be the atoms of Pand let So = I fla laEA 1 be 
a set of Jauch-Piron states indexed by A and satisfying 
flu (a) = 1. For each bEP \! 0 llet Ab be a maximal ortho
gonal set of atoms under b. Since P is separable Ab is count
able so we may writeA b = ! a p a2,··j and, since Pis (I-ortho
complete, b = VA b . For eEP define 

{
~ I fla, (c) if A is finite with n elements, 
n a,EA h 

flA, (c) = 00 1 
" () if A is infinite. i~1 2i fla, e 

Then fl A, is a state on P. 
We claim that, for any bEP \ l 0 1, fl A" (e) = 1 if and only 

ifb<,e. For, ifflA, (e) = 1 then, for each aiEAb ,fla, (c) = 1 and 
hence there exists d, EPwith d i <,ai and di <,e andfla, (di ) = 1. 
Now d i #0 and a,EA imply d i = a, so that ai <,e for each i. 
Hence b = VAb <,e, The converse is clear. 

Let S = !flA" IbEP \! 0 ll· If flA" (cd = flA" (e2) = 1 then 
b<,e l , b<,e2 andflA" (b) = 1 so eachflA" is a Jauch-Piron 
state. To see that Sis ultrastrong on Passume that alsb, We 
may assume that a,b # O. Then, in particular, fl A" #fl A, so 
there exists eEP with flA" (c) = flA" (e') = 1. Hence a<,e and 
b<,e' so that alb. 0 

Corollary 12: Every finitePwhich admits a strong set of 
states also admits an ultrastrong set of Jauch-Piron states. 

Proof Let S (P) denote the set of all countably additive 
states onPand let Sbe any strong set of states onP. For each 
atom a of P as(P) is a nonempty polytope and therefore has 
finitely many extreme points fll' fl2'"'' fln' The state 
fla: = (1/n)~7~ I fli satisfies the following: 

fla (b) = 1 if and only if a<,b. 

For, if fla (b) = 1 then fli (b) = 1 for each i. Hence 
ext(aS(P) )~bS(P) and, since as(P) is the convex hull of 
ext(aS(P)) and bS(P) is convex, iffollows that aSIP ) ~bS(P) so 
that as = as(P) rS~bS(P) rS = bS. SinceSisstrong,a<,b. The 
converse is easy. As in the proof of the preceding theoremfla 
is a Jauch-Piron state so that the hypotheses of that theorem 
are satisfied and the assertion follows. 0 

Corollary 13: If (P,S ) is a strong quantum logic in which 
P is a finite lattice, then P admits a convex and ultrastrong set 
of Jauch-Piron states. 

Proof Review of the foregoing result and Remark 10, if 

2384 J. Math, Phys., Vol. 23, No, 12, December 1982 

P is a lattice then the set of Jauch-Piron states is a convex 
subset of S (P). 0 

We note in passing that this result fails for finite ortho
modular posets. The smallest orthomodular poset which is 
not a lattice, J I8 the 18-element orthomodular poset due to 
M. F. Janowitz,13 provides a counterexample. In this poset 
the convex combination of Jauch-Piron states may not be 
J auch-Piron. 

We now use our previous work to prove a weak embed
ding theorem for a certain type of quantum logic. We say 
that P is measurement finite if there exists a finite collection 
of measurements A p ... ,An such that alb implies a,bESiJ (Aj) 
for somejE! 1, ... ,n l. Orthomodular lattices L which are 
block-finite in the sense that there are only finitely many 
maximal Boolean sub-algebras were studied in Ref. 14. An 
immediate corollary of the main result of Ref. 15 is that an 
orthomodular lattice L is block finite if and only if it is mea
surement finite. The corresponding result for posets is still 
open. 

We say that (P,S) is weakly embeddable in a Hilbert 
space H if there exist injective maps J:S_H and K:P-P (H) 
such that 

(1) KO = 0, K 1 = 1, and a<,b if and only if Ka<,Kb. 
(2) alb if and only if KalKb. 
(3) a#(3 if and only if J a lJ{3. 

(4) Ka = spJ (as). 
Theorem 14: A separable, measurement finite strong 

quantum logic (P,S) is weakly embeddable in a Hilbert space 
if and only if S is ultrastrong. 

Proof Since P is measurement finite, there exists 
A p ... ,An EJI such that alb implies, a,bESiJ(Aj) for some 
jE! 1, ... ,n l. Let J = J (A 1, ... ,An) and K = K (A p ... ,An). It fol
lows from Lemma 9 that K 0 = 0, K 1 = 1, and a<,b implies 
Ka<,Kb.lfalb thena,bESiJ(Aj) forsomejsoK (Aj )alK (Aj)b 
by Theorem 4. It follows that KalKb. Suppose that KalKb. 
Now there exists anAj such that bER (Aj ). Then b = VB for 
some B ~A j' If aEas , then 

a A, ® .•• ®aA" EKa~Kb~K(Adb® ... ®K(an lb. 

It follows that 

a A, EK (Aj)b = sp! ea :aER 1· 
Hence ala) = 0 for aEAj \B. Therefore 
a(b) = ~aEB ala) = 1. Thus as ~ bS and, since S is strong, 
a <,b. It follows that K is injective and (1) holds. To complete 
the proof of (2) assume KalKb. If aEas and (3Ebs then there 
exists an A j such that J (A j )alJ (A j )(3. Hence 

0= (J(Aj)a,J{Aj)(3) = I a(a)I/2(3(a)II2. 
uSEA, 

LetB = !aEAj:(3(a) = Ol andletb = VB. Sincea(a)(3(a) = 0 
for all aEAj wehavea(b) =(3(b ') = 1. Hencea#(3andalsb. 
Assuming that S is ultrastrong, we conclude that alb. 

To show that J is injective, assume a, (3ES with a #(3. 
Then thereexistbEPsuch thata(b )#(3 (b). Now hESiJ(Aj) for 
somejEll, ... ,m 1 so a(a) #(3 (a) for some aEAj . Hence J (Aj)a 
#J(Aj)(3 and Ja#J(3. To prove (3) assume a #(3. Then 
ate) = (3 (e') = 1 for some eEP. Again eESiJ (Aj) for some Aj 
ande = VB forsomeB~Aj' Hence (3 (a) = o for all aER and 
ala) = 0 for all aEAj \B. Thus a(a)/3 (a) = 0 for all aEAj and 
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J (Aj )alJ(Aj )p. It follows that JalJp. Conversely assume 
JalJp. Then J (Aj )alJ (Aj)P for some Aj • As in the previous 
paragraph a#p. Condition (4) follows by definition. 

Conversely, assume (P,S) is weakly embeddable in a 
Hilbert space and assume als b. Let aEas and pEbs . Then 
a #p, so JalJp. Hence, 

Ka = spJ(aS)l spJ(bS) = Kb. 

It follows that alb and S is ultrastrong. 0 
Corollary 15: If (P,S ) is a finite strong quantum logic, 

then (P,S (P)) is weakly embeddable in a Hilbert space. 
Proof Since S is strong, P admits an ultrastrong set of 

states by Corollary 12. Hence, by Remark 10 part (2) S (P) is 
ultrastrong. 0 

The example (Po,So) 16 cited earlier of a strong quantum 
logic not embeddable in Hilbert space yields an example, 
namely (P(»S (Po))' of a strong quantum logic weakly embed
dable in a Hilbert space but not embeddable in a Hilbert 
space. 

4. EXAMPLES 

We first give an example of a quantum logic (P,S) in 
which P, given in Fig. 1, is a finite orthomodular lattice and S 
is a strong set of pure (extremal) states which is not ultras
trong. Simpler examples can be constructed in which the 
states are not pure. In our notations (see Ref. 17), the vertices 
represent atoms of P and the straight line segments group 
these atoms into (3 element) maximal orthogonal sets. Table 
I lists a set S of22 states and the values that these states attain 
on each atom. One can check 18 that each state in S is pure 
and that S is strong on P. However S is not ultrastrong since 
alsk while a'l-k. 

We now present some examples of measurement condi
tioning maps on quantum logics. Let P be a separable Boo
lean CT-algebra of subsets of a set X and let S be the set of 
Dirac measures on P. That is, every state in S has the form 
ax ,xEX, where ax (a) = 1 ifxEa and ax (a) = OifxEta for each 
ainP. LetA~er(p). ThenJ(A lax = ea , where a is the unique 
element of A containing x. It follows that 

K (A )b = "i'-p! ea :anb #tP,aEA j. 

Hence, [J (A lax ][K (A )b] = ax (b) for all xEX, bEP. 
Let(P (H ),S (H)) bethe Hilbertianlogicin whichP (H lis 

the lattice of all closed subs paces of a separable Hilbert space 
Hand S (H) is the set of all pure states on P (H). Let 
! ei:i = 1,2,. .. j be an orthonormal basis for H. Then 
A = ! sp ei:i = 1,2,. .. j is a measurement. If a", is a pure state 
corresponding to the unit vector tPEiJ, then 

FIG. I. An orthomodular lattice. 
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TABLE I. Strong but not ultrastrong states. 

a b c d e f 9 h i j k P q r s t u v 

1 1 0 0 1 0 1 0 1 0 0 
1 1 

0 1 1 
0 1 

2" 2" ~ ~ 2" 
2 1 

0 1 1 
0 1 0 2" 2" 2" 2" 

1 
1 2" 0 0 0 1 0 1 0 1 0 0 

3 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 I 0 1 0 1 
4 0 1 0 1 0 1 0 1 0 I 1 0 0 1 0 1 0 1 0 0 

5 1 0 0 0 1 0 0 1 0 0 1 1 
0 1 0 1 

0 1 
2" 2" 2" 2" 2" 

) 
0 

) 
0 

) 
0 1 ) 

2" 2" 2" 2" 2" 0 1 0 0 0 1 0 0 ) 0 0 

) 1 0 1 0 0 1 0 0 0 1 1 
0 1 1 

0 1 
2" 2" 2" 2" 2" 

i 
0 1 1 0 1 1 1 2" 1: 1: 2" 2" 0 0 0 1 0 0 1 0 0 0 

9 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 

10 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 

11 0 0 ) 0 0 1 0 1 0 1 
) 1 

0 
1 1 

0 1 
1: ~ "2 2" 2" 

12 1 
0 1 1 

0 
1 1 1 Z ,- 1: ~ 1: 0 0 0 0 0 1 0 1 0 1 

13 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 

14 0 1 0 1 0 1 o 1 o 1 o 0 1 o 0 0 1 o 0 1 

15 0 1 0 1 0 1 

16 t o l 
2 o t 0 

17 0 0 1 0 0 1 

18 0 1 0 1 0 

0 0 

1 0 2" 
0 0 

0 1 

1 0 
1 

0 2" 
1 

0 0 1 2" 
1 0 0 1 

0 1 0 0 

1 
0 1 1 

0 1 
2" "2 2 "2 
0 1 0 1 0 0 1 0 

0 1 0 1 0 1 0 1 

1 0 C 1 0 Q 1 0 

19 0 1 0 0 1 0 C 0 1 0 0 1 0 1 C 1 J 1 0 1 

20 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 

21 0 0 1 0 0 1 0 1 0 ) 0 1 0 1 0 0 1 

22 0 0 1 0 0 1 o 1 0 0 'J 1 Co 

J(A )a", = (I(tP,ei>l:i= 1,2,,")E/2• 

For aEP (H) we have 

K (A )a = sp! (I (tP,ei > I:i = 1,2,. .. ):tPEa j. 

o 0 

r} 1 

In particular, K (A )(sp ei ) = sp D;, where DiU) = Dij' 
i,j = 1,2, .. · . If a is one-dimensional and ifJEa with II¢II = 1, 
then 

[J(A )a", ][K(A )a] = [I 1 (¢,e; > (e;,tP >1 r-
In particular, if (¢,e; >, (eiotP >;,,0 for each i = 1,2,.··, then 

[J(A )a",][K (A )a] = 1 (¢,tP > 12 = a",(a). 

Finally, let P be the six element orthomodular lattice, 
i.e.,P = [0, l,a,a',b,b'j is the horizontal sum of two copies of 
22

, and let S be the set of all states on P. Then JI (P) contains 
two nontrivial measurements, A = [a,a' j and B = [b,b' j. 
The Hilbert spaces HA and HB both are (? Let e1 = (1,0) 
e2 = (0,1) be the natural orthonormal basis for (;2. Then for 
every aES we have 

J(A)a = a(a)1I2e1 + (1 - a(aW/2e2 

and 

J(B)a = alb )1/2e1 + (1 - alb ))1/2e2. 

Now K (A )a = sp e1,K (A )a' = sp(e2),K (A )b = K (A )b' = (;2 

andK (B)b = sp e1,K (B)b' = sp e2,K (B)a = K (B )a' = (;2. 

HenceaA (aA) = ala), aA (a~) = a(a'),aA (bA) = aA (b ~) = 1 
for every aES with similar equations holding for a B' Also 
HA ®HB = (;2®(;2, 

J(A,B)a =J(A )a®J(B)a 

= a(a)1I2a(b )1/2e1 ® e1 + a(a)I/2[1- alb W12e1 ® e2 
+ [I - a(a)]1/2a(b )1/2e2 ® e

1 

+ [1 - a(aW/2[1 - alb )] 1I2e2 ® e2 ' 
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K(A,B)a = sp{J(A,B )a:a(a) = 1 J 

= sp{e l ® [alb )1/2el + (1 - alb W12e2]:a(a) = 1 J 

= sp e l ®C2 

=K(A )a®K(B)a. 

Similarly K (A,B la' = sp e2 ® c2
, K (A,B)b = c2 ® sp el , and 

K (A,B)b' = C2 ® sp e2• Moreover, if Pe, denotes the projec
tion onto sp e l , we have 

[J(A,B )a][K(A,B )a] 

= (Pe , ®IJ(A )a®J(B)a,J(A )a®J(B)a) 

= (a(a) 1/2el ®J(B)a,J(A )a®J(B)a) 

=a(a)I12(e p J(A )a) (J(B)a,J(B)a) =a(a). 

In a similar way, the statistics is preserved for a',b,b ',0, and 
1. This example can be generalized to any finite horizontal 
sum of separable Boolean u-algebras. 
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The general form of the observables measured simultaneously with some class of potentials is 
given. 

PACS numbers: 03.65.Bz 

1. INTRODUCTION AND NOTATIONS 

In quantum mechanics, two observables a and q can be 
measured simultaneously in an experiment if and only if 
their corresponding operators A and Q commute, i.e., 
AQ - QA = 0. 1 Let q be a potential field in the interval [a,b ]. 
Its corresponding operator Q is a multiplication operator 
acting in the space L 2[a,b ] by the formula (see Ref. 1) 

(Qf)(x) = q(x)f(x) 'V fEL 2[a,b]. 

Let q(x) be a continuous function defined on [a,b]. We 
say that q is an n-piecewise strictly monotonic function if 
there exists a subdivision of the interval [a,b] by the points 

a=xO <x\<x2<",<xn =b, 

such that q(x) is strictly monotonic in each of the intervals 
(Xi ,Xi + 1 ), iE\ 0, 1,2, ... ,n - 1 J. 

In the present paper we study the general form of linear 
bounded operators corresponding to observables which can 
be simultaneously measured with some special types of the 
potential q. 

2. STRICTLY MONOTONIC POTENTIALS 

We first begin by considering the simple case when the 
potential q(x) is a strictly monotonic continuous function in 
the interval [a,b], that is to say q is a I-piecewise strictly 
monotonic function. 2 

Since A commutes with Q, it commutes with all powers 
Qk, k = 1,2, ... , i.e., 

Aqkf=qkAf for all k. 

Takingf(x) = 1 and putting A 1 = q:> (x), we get 

(Aq k)(X) = q:> (x)q k(X) for all k, 

i.e., the operator A is a multiplication operator by the func
tion q:>(x) on the set 

S = (l,q,q2, ... ,q \ ... J. 
From the linearity of A, it follows that A is a multiplica

tion operator on the set of all linear combinations of elements 
of S. This last set coincides with the algebra a generated by 
( 1 ,q J . The strict monotonicity of q(x) guarantees that a sepa
rates the points of [a,b] which means, by the Stone-Weier
strass theorem, 3 that the uniform closure of a coincides with 
the set of all continuous functions C [a,b] defined on [a,b ]. 
The set C [a,b], in turn, isdenseinL2[a,b]. Hence the closure 
of a (with respect to the convergence in the mean) coincides 
withL2[a,b]. Since A is bounded, it is a multiplication opera
tor on the whole space L 2 [a,b ], i.e., we have proved the 

following. 
Theorem 1: If q(x) is a strictly monotonic continuous 

potential, then the only observables a that can be measured 
simultaneously with q are those with corresponding opera
tors having the form 

(Af)(x) = q:> (x)f(x) 

[i.e., a is a potential defined by the functions q:>(x)]. 

3. TWO-PIECEWISE STRICTLY MONOTONIC 
POTENTIALS 

Assume that q(x) is a two-piecewise strictly monotonic 
continuous function. For definiteness, we shall assume that 
there exists x IE(a,b ) such that q is strictly monotonic decreas
ing in (a,x l ) and strictly monotonic increasing in (xl,b). As
sume also that q(x I) = O. To satisfy these conditions we may, 
if necessary, multiply by ( - 1) or add a suitable constant. 
Moreover, we assume that q(a) <q(b) (see Fig. 1). Now, it is 
clear that there exists cE(a,b] such that q(a) = q(c) and for 
each xE[a,c] there exists xE[a,c] such that q(x) = q(x). For 
xE(c,b ], we take x = x. 

Definition: We say thatfEL2[a,b] is a q-wise function if 

fIx) = fIX) 'VxE[a,b ], 

and anti-q-wise if 

fIx) = - fIX) 'VxE[a,b] 

(we see that anti-q-wise functions are equal to zero for all 
xE(c,b ]). 

It is clear that each functionf EL2 [a,b ] can be represent
ed in a unique manner as a sum of two functions; one of these 
is q-wise and the other is anti-q-wise. In fact, put 

g(x) = ~(f(x) + f(x)}, h (x) = ~(f(x) - f(i))· 

We see that g(x) is q-wise, h (x) is anti-q-wise, and 
fIx) = g(x) + h (x). 

The uniqueness of this representation follows from: If 
g(x) + h (x) = 0 then, substituting x in place of x, we get 
g(x) - h (x) = O. Adding the last two equalities and subtract
ing them, we get g(x) = () and h (x) = O. 

This means that the space L 2[a,b ] can be represented as 
the direct sum of the two subs paces M and N,4 

L 2 [a,b] = M $N, 

where M is the subspace of all q-wise functions and N the 
subspace of all anti-q-wise functions. 

Now, consider the continuous function 

r(x) = { - (q(xW/2, xE[a,x l ) 

(q(x)) 1/2, xE[x"b]. 
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FIG. I. 
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The function r(x) is strictly monotonic increasing in the in
terval [a,b]. Consequently, the linear manifold a generated 
by the sequence 

S = ! 1,r(x),r(x), ... ,r k(x), ... J 

is dense in L 2[a,b ]. 
a can be written in the form 

a = malm, 
where m is the linear manifold generated by the sequence Se 
of all elements with even powers in S (i.e., q-wise functions); 

Se = p,r,r4,oo.J = p,q,q2,oo.J, 

and m the linear manifold generated by the subsequence So 
of all elements with odd powers in S (i.e., anti-q-wise 
functions); 

So = !r,r,r,oo.J = !r,rq,rq2,oo.J. 

It is easy to verify that m and m are dense in M and N, 
respectively. 

On the linear manifold m and hence on the subspace M, 
the operator A acts as a multiplication operator by the func
tion q 1 (x) = (A 1 )(x). This follows from the fact that A is a 

2388 J. Math. Phys., Vol. 23, No. 12, December 1982 

multiplication operator on the generating set Se . 

Let 

On the other hand, we have 

Ark + 1 = Aqkr = qkAr = (Ar/r).rk + I. 

q2(X) = (Ar)(x) . 
r(x) 

We see that A acts on So and hence on m and N as a multipli
cation operator by the function q2(X). 

Finally, iffElda,b] and we put 

f=g+h, gEM and hEN, 

then 

(Af)(x) = (Ag)(x) + (Ah )(x) 

= ql(x)g(x) + q2(x)h (x) 

fIx) + fIX) fIx) - fIX) 
= ql 2 + q2 2 

= !(ql(x) + q2(x))f(x) + !(ql(x) - q2(x))f(X)· 

Putting 

Ii (x) = !(ql(x) + q2(X)), 

,u(x) = !(ql(x) - q2(X)), 

we get the following. 
Theorem 2: If the observable a can be measured simul

taneously with a potential defined by a 2-piecewise strictly 
monotonic continuous function, then its corresponding op
erator acts by the formula 

(Af)(x) = Ii (x)f(x) + ,u(x)f(X). 

Open question: Related to the above problem, it would 
be interesting to consider the case when the potential q(x) is 
an n-piecewise strictly monotonic function for n > 2. 

'P. A. M. Dirac, TheprinciplesoJquantum mechanics (Oxford U. P., Ox
ford, 1944). 

2A. H. Nasr, "On operators commuting with a multiplication operator," 
3rd Mathematics Conference, Zagazig University, Egypt, 1978 
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3M. A. Naimark, Normed rings (Noordhoff, Groningen, The Netherlands, 
1960). 

4W. Rudin, Functional analysis (McGraw-Hill. New York. 1973). 
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By using the notion of conditional mean values and assuming that the classical relationship 
between momentum and energy remains valid, it is shown that both the Schrodinger and Klein
Gordon equations suggest a particular joint distribution expression for quantum mechanics, 
namely the Margenau and Hill distribution. 

P ACS numbers: 03.65.Bz 

I. INTRODUCTION 

A number of people have considered the question of a 
joint distribution for position and momentum in quantum 
mechanics. I-II For an ensemble of particles, such a distribu
tion would provide the probability P (x,p;t ) dx dp that any 
particular particle in the ensemble lies within the position 
range x to x + dx and the momentum range p to p + dp at 
time t. IZ If the ensemble is described by the wave function 
t/J(x;t), the joint distribution is required to satisfy the equa
tions 

J
+'" 

_ '" P (x,p;t ) dp = I t/J(x;t W, 
( 1) 

L+oo"'P(X,P;t)dX= 1¢>(p;tW, 

where ¢> (p;t ) is the momentum wave function obtained by 
taking the Fourier transform of t/J(x;t ). 

The quantities x and p are the position value and the 
momentum value that an individual particle would display if 
a position measurement or a momentum measurement, re
specti vel y, were performed on it. Weare remaining noncom
mittal on whether these are the actual position and momen
tum the particle has before measurement and, in fact, on 
whether a particle has any position or momentum before 
measurement. Thus, the joint distribution refers to the val
ues for x and p that would be found upon measurement, not 
necessarily to the values (if any) existing before measurement 
(and definitely not to the values found by a position measure
ment followed by a momentum measurement, or by a mo
mentum measurement followed by a position measurement). 

Various possible expressions satisfying Eqs. (1) have 
been found. 1.3-5 The simplest of these are listed below. 

Wigner: 

P(x,p;t) = (1121T) L+",oo e - i7 Pt/J*(X - !lir;t )t/J(x + !w;t) dr 

= 1 exp [!i~]['/'*(x-t)A.(p.t)eiPXIIi] 
(21T1l)I/Z 2i JxJp If' ,'I', , 

Margenau and Hill: 

P (x,p;t ) = (1I21T)Re [ t/J(x;t ) L +00 00 e - iTPt/J*(X - lir;t ) dr] 

1 Re ['/'*(x- t )Ao ( p' t )eiPXIIi] (21T1l)I/z 'I' ,'I', , 

Mehta (normal ordering): 

1 [ Ii (J
Z 

JZ )) P(x,p;t)=-exp - - - +-
21T 4 Jx2 Jp2 

X L+",oo e - iTPt/J*(X - !lir;t )t/J(x + !m;t) dr 

1 [Ii (a2 az 
)) = (21T1l)1/2 exp -"4 ax2 + Jp2 

X exp -:--- [t/J*(x;t)¢> (p;t )eiPXIIi]. [Ii JZ ) 
21 JxJp 

In addition, Eqs. (1) are satisfied by the following simple 
expression: 

P (x,p;t ) = I t/J(x;t )¢> (p;t W· 
The first three of these possibilities suffer from the defect 
that they are not positive definite and hence cannot be true 
probability distributions. 13 

In the following sections we will investigate whether the 
mathematical formalism of quantum mechanics points us 
towards any particular joint distribution expression. 

II. CONDITIONAL MEAN VALUES SUGGESTED BY THE 
SCHRODINGER EQUATION 

In nonrelativistic classical mechanics, the momentum p 
and energy E of a particle are related by 14 

2 

L=E 
2m ' 

where m is the mass of the particle. If the particle comes 
under the influence of an electromagnetic field, described by 
a scalar potential V(r,t) and a vector potential A(r,t ), therela
tionship becomes 

1 ( e)Z - p- -A =E-eV, 
2m c 

(2) 

where e is the electric charge of the particle and c is the speed 
oflight. [In the case ofEq. (2), p and E represent the general
ized momentum and energy of the particle.] Expanding the 
bracket in (2) we obtain 

1 (z e2 
2 e ) - p +-A -2-A·p =E-eV. 

2m c2 c 
(3) 

In considering joint distributions for quantum mechan
ics, we assume that there is a momentum value and an energy 
value associated with each particle, these being what would 
be found by a measurement of momentum or energy, respec
tively. It is reasonable to propose that the classical relation-
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ship (3) will remain valid also for these quantum-mechanical 
momentum and energy values. 

Let us consider an ensemble of particles with a range of 
different momenta and energies. Ifwe take an average over 
the momentum and energy values for a particular position r 
at time t, the mean values of the quantities in (3) will satisfy 
the equation 

2~ ( p2)r.1 + ;: A 2 - 2~A'(P)r.,) = (E )r., - eV, 

(4) 

where ( ) r,l denotes the conditional mean value for a given 
position r at time t. 

Now, the probability density P (r;t ) for our ensemble will 
satisfy the equation of continuity 

V.{P(r;t)(V)r,}+ ~P(r;t)=O. . at (5) 

Using the relationship 

1 e 
V= -(p- -A), 

m c 

Eq. (5) may be expressed as 

v.{ P(r;t) ~ (P)r., - ~A)} + :t P(r;t) = O. (6) 

We now wish to find equations in conventional quan
tum mechanics which are similar in form to (4) and (6), with 
the aim of discovering possible expressions in terms of t/J(r;t ) 
for the various conditional mean values. The quantum-me
chanical equation analogous to (2) is the Schrodinger equa
tion: 

1 (f! e)2 ( . a ) - ---;-V - -A t/J= If!- - eV t/J. 
2m I c at (7) 

By dividing (7) through by t/J and separating it into real and 
imaginary parts one obtains the following two equations: 

2~ (Re[~(~vrt/J] + ;:A2-2~A.Re[~(~V)t/J]) 
= Re[ ~ (iii :Jt/J] - eV, (8) 

2~ (Im[ ~ (~vrt/J] + f!V· ~A - 2~A.Im[ ~( ~V)t/J]) 
= Im[ ~ (if! :Jt/J J. (9) 

Multiplying (9) by - 21t/J12/f! one then obtains (after some 
manipulation) 

V'{1t/J12 ~(Re[ ~(~V)t/J] - ~A)} + :t1t/J1
2

=0. 

(10) 

We now wish to postulate that Eqs. (8) and (10) are equi
valent to Eqs. (4) and (6), respectively. 15 Under this assump
tion, comparison of (4) and (8) suggests the following rela
tionships: 

(P)r., =Re[~(~V)t/J], 

(p2)r" =Re[~(~vrt/J], (11) 
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(E )r,1 = Re[ ~ (if! :Jt/J]. 

Similarly, comparing (6) and (10) we obtain 

P(r;t) = 1t/J12, 

(P)r" =Re[~(~ V)t/J]. 

( 12) 

Thus, examining (11) and (12), we see that the Schrodinger 
equation suggests the general form 

(A n)rl = Re[_I_ A nt/J(r;t)], 
, t/J(r,t) 

(13) 

where A is any observable and A is its corresponding opera
tor. In Sec. III we show that the relativistic counterparts of 
(2) and (7) also lead us to (13). 

III. CONDITIONAL MEAN VALUES SUGGESTED BY THE 
KLEIN-GORDON EQUATION 

In Sec. II we have seen that the Schr6dinger equation 
suggests a general expression for the conditional mean value 
at a given position of any observable quantity. It will now be 
shown that the Klein-Gordon equation also points to the 
same expression. 

In classical relativistic mechanics, the relationship 
between the generalized momentum P and energy E of a 
particle under the influence ofascalar potential V (r, t) anda 
vector potential A(r,t ) is 

1 
(p - (e/c)Af + m6c2 = 2 (E - eV)2, 

c 

i.e., 

2 e2 
2 e 2 2 P + -A -2-A.p+moc 

c2 c 

= ~(E2+e2V2-2eVE), (14) 
c-

where mo is the rest mass of the particle. Hence, for an en
semble of particles, the mean values of momentum and ener
gy for a particular position r at time t will satisfy 

2 

(P2) +!!..- A 2 - 2:: A.(p) + m6 c2 
r,1 c2 C r,l 

= ~(E2)r,' +e2V 2-2eV(E)r,,). 
c 

(15) 

The probability density P (r;t ) for our ensemble will sa
tisfy the relativistic equation of continuity, which may be 
written in the form 16 

a" [P(r,t )(1I")r"l = 0, (16) 

where a summation over I-l = 0, 1, 2, 3 is assumed and where 
the vector operator a" and the four-velocity 11" are given by 

a =(~~,v) 
" c at 

and 

1I"=(c~,~) 
dr dr 

(r being proper time). Using the relationship 
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11'= _1_[~(E_eV) , P- ~A], 
mo c c 

Eq. (16) may be expressed as 

v.{ P(r,t) ~o ( (P)r" - ~ A)} 
+ ~i. {p(r,t)_I_(E)r" -ev)} =0. 

c at moc 
(17) 

Now, the Klein-Gordon equation for a particle in an electro
magnetic field, obtainable from (14) by the usual operator 
substitutions, has the form 

( 
f! e)2 2 2.1. 1 ('.K. a V)2.1. -:- V - - A I/J + moc '/' = 2' ITI- - e '/'. 
ICC at 

By dividing through by I/J and separating into real and imagi
nary parts, we obtain 

Re[ ~ (~vr I/J] + ;: A 2 - 2 ~A'Re[ ~ (~V )I/J] + m~c2 = :2( Re[ ~ (if! :J
2

I/J] + e
2
V2 - 2eVRe[ ~ (if! :JI/JD (18) 

and 

Im[ ~(~vrI/J] +f!V.~A-2~A'Im[ ~ (~ V)I/J] = :2 (Im[~(if! :J
2

I/J] -f! :/V -2eVIm[~(if! :/)]). (19) 

Multiplying (19) by - I I/JI 2/fzmo then gives (after some manipulation) 

V'{1I/J12 ~o(Re[~(~V)I/J] - ~A)} + + :t {1I/J12 m10e (Re[~(if! :JI/J] -ev)} =0. (20) 

We now postulate that Eqs. (18) and (20) are equivalent 
to Eqs. (15) and (17), respectively. Under this assumption, 
comparison of (15) and (18) suggests the following relation
ships: 

(P)r" =Re[~(~V)I/J], 

(P2),., =Re[~(~VrI/J], 

(E)r.1 =Re[~ (if! :JI/J] , 

(£2) = Re[~ (if!i.)2I/J]. r.1 I/J at 

Similarly, comparing (17) and (20) we obtain 

P(r,t) = 1I/J12, 

(P) •. , =Re[~(~V)I/J], 

(E ) •. , = Re[ ~ (if! :JI/J l 

(21) 

(22) 

The equations in (21) and (22) are in agreement with the gen
eral expression (13), found in Sec. II, for conditional mean 
values. 

IV. THE JOINT DISTRIBUTION 

Relationship (13) will now be used to derive ajoint dis
tribution expression for position and momentum. For the 
one-dimensional case of position x and momentum p, (13) 
yields 

[ 1 (f! a)n ] (pn) x.1 = Re I/J(x;t) i ax I/J(x;t) 

= ~[_1_ (~~)nI/J(X;t) + _1_ (if! ~)nI/J*(X;t)]. 
2 I/J(x;t) I ax I/J*(x;t) ax 

(23) 
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I 
This expression is sufficient to determine uniquely the form 
of P (x,p;t). We proceed by considering the mean value of the 
quantity eiTP for a given position x: 

(eiTP)X.'= L+oooo eiTPP(plx;t) dp. 

This expression shows that (elrp
) x.t is the Fourier transform 

of P ( p Ix;t ) and so we may write 

1 f+oo . . 
P(plx;t) = -2 e - 'TP(e'TP)X" dr. 

1T -00 

Using the general relationship 

P (x,p;t) = P (p Ix;t )P (x;t ) 

= P(plx;t)II/J(x;tW, 

we have, therefore, 

P (x,p;t) = -1-1I/J(x;t Wf + 00 e - iTP(e iTP ) x,ldr. (24) 
21T - 00 

Now, the conditional mean value of eiTP can be ex
pressed also in the form 

Hence, on combining (23) and (25), we have 

(eiTP) x,l = I (ir) n ~ [_1_ (~~)n I/J(x;t) 
n n! 2 I/J(x;t) I ax 

+ _1_ (if! ~)nI/J*(X;t)] 
I/J*(x;t) ax 

= _1_ I (f!rt .!:..... I/J(x;t) 
2I/J(x;t) n n! axn 

+ 1 I ( - f!rt .!:..... I/J*(x;t ). 
2I/J*(x;t) n n! axn 
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Recognizing the two summations as Taylor expansions, we 
obtain 

( 
. 1 1 

e17P ) Xl = -- ¢(x + fzr;! ) + ¢*(x - fzr;! ), 
. 2¢(x;! ) 2¢*(x;t) 

and inserting this into (24) yields 

I f+ oc 
P (x,p;t) = - l/J*(x;t) e- iTP¢(X + fzr;t) dr 

417 C~ 

+ -41 ¢(x;t if + oc e - iTP¢*(X - fzr;t ) dr. 
17 . oc 

By replacing the integration variable r by - r, the first inte
gral may be rewritten as 

1~",~ e - iTP¢(X + fzr;t) dr = 1+00= ei~p¢(x - fzr;t) dr. 

Hence we have 

1 [ I+oo. ] p (x,P;!) = - Re ¢(x;!) e - ITP¢*(X - fzr;! ) dr . 
217 - 00 

This may be recognized as the Margenau and Hill joint dis
tribution (see Sec. I). 

The above reasoning constitutes an independent deriva
tion of the Margenau and Hill distribution, which was pro
posed by Margenau and Hill on the basis of other consider
ations. 

v. DISCUSSION 

We have found that the Schrodinger and Klein-Gor
don equations suggest a particular joint distribution for 
quantum mechanics. However, this distribution function is 
not positive definite and there is no physical interpretation 
for negative probabilities. We are therefore led to doubt the 
assumptions which have been made in the derivation, such 
as that the observable momentum and energy values in 
quantum mechanics continue (as the forms of the Schro
dinger and Klein-Gordon equations suggest) to satisfy the 
relationships of classical mechanics, or even that the joint 
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distribution at any time is completely determined by the pre
vailing form of the wavefunction. 
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An impact-parameter representation that is valid at all angles and all energy has been obtained for 
systems with arbitrary spins. In contrast to the spinless case, this representation gives rise to 
generalized profile functions that are distributions even in the physical region. This proves 
kinematical equivalence between partial wave representation and impact parameter 
representation for the case of arbitrary spin systems. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

Generally two-particle scattering processes are ana
lyzed in terms of phase-shifts using a partial wave represen
tation for the amplitude. This procedure is quite satisfactory 
whenever the number of partial waves involved is small, 
which is the case for low energy scattering processes. At 
higher energies, however, the number of partial waves need
ed for such an analysis becomes so large that no reasonable 
estimate of the phase-shifts can be made. Therefore, approxi
mation schemes must be used. One of the popular schemes is 
an eikonal approximation 1 where the scattering amplitude is 
written2 

f(s,t) = i'" dB BJo(B -v=t )F (s,B ). (1.1) 

The usual derivation ofEq. (1.1)1.3 is based on restrictions of 
small angles and high energies where the summation over 
partial waves is replaced by an integration over an impact 
parameter "B " that is related to the orbital angular momen
tum by the relation 2kB = 21 + 1. These restrictions on the 
validity of expression (1.1) are the source of two important 
defects. 

First, there is a limit on the spin effects that may be 
considered in the formalism because there is no relationship 
between the classical parameter B and the spin similar to 
2kB = 21 + 1. Therefore, only very limited forms l

•
4 of the 

interactions involving spins have been considered within the 
formalism. For instance, the spin effect so far considered in 
the scattering of two spin ~ particles (say nucleon-nucleon 
scattering) in the eikonal approximation are L·S and o,l·~ 
types only, whereas the effects of the tensor force involving 
space-spin coupling of the form (o,l·f)(~·f) and Majorana 
exchange forces have been arbitrarily ignored. The second 
defect is related to writing the inverse transform of Eq. (1.1) 
which is not allowed because of the restricted validity of the 
right hand side. This becomes a serious drawback in the 
analysis of the scattering data where the interaction is not 
known. As an example, the inverse of Eq. (1.1) is needed for 
expressing the scattering of two composite objects in terms 
of their constituents. 

This paper is mainly concerned with the removal of 
both these drawbacks and the writing of a generalized for
malism that is valid at all angles, all energies, and incorpo
rates the general spin. Many attempts have been made to 
generalize the validity of the expression (1.1).5 Most of these 

partially successful attempts were based on the exact 
relationship 

PI (cos 8) = i'" d{3Jo({3y)J2/+1({3), (1.2) 

between Legendre functions and Bessel functions for phys
ical values of scattering angle cos 8 = 1 - 2y2. The impact 
parameter representation obtained by replacing the 
PI(cos 8) in the partial wave representation by (1.2), howev
er, was not unique. 6 Recently, Islam7 has obtained an exact 
and unique impact parameter representation or Fourier
Bessel (FB) representation using the Watson-Sommerfeld 
transform of the elastic scattering amplitude for two spinless 
particles. This representation is valid for all physical ener
gies and scattering angles, thus removing the second defect. 

Generalizing expression (1.2) to incorporate spin into 
the formalism is not a trivial matter. A first attempt to gener
alize (1.2) has been made by Kamal8 for the pion-nucleon 
scattering by differentiating expression (1.2) with respect to y 

to obtain an expression for P )(cos 8). But the analogous 
integral for P'f'(cos 8) thus obtained does not exist because 
it blows up at infinity. In other words, differentiation of 
expression (1.2) is not allowed beyond the first order, yet that 
is precisely what one needs for scattering involving general 
spin. However, Kamal's8 impact parameter representation 
suffers from nonuniqueness. Another attempt to incorporate 
spins has been made by Luming and Predazzi.9 They have 
obtained an FB representation for the helicity amplitUde 
which is valid at all angles and energies. But again it is non
unique. 

The author lO has obtained a unique impact parameter 
representation for the nucleon-nucleon scattering following 
the arguments of the Refs. 7 and 9. The scattering represen
tation takes account of spin, isospin, and the Pauli exclusion 
principle in a most general fashion allowed by symmetries 
[see Ref. 10, Eqs. (37)-(42)]. Although the representation ob
tained in Ref. lOis valid at all angles, all energies and is 
unique, it still has a restriction on the sum of he Ii cities in the 
initial and final states. To illustrate the restriction, consider 
the double helicity flip amplitude for isospin I given in terms 
of the partial wave expansion 

E<fJi(k,z) 

= ~ L (2j + 1){[h 2i U+,s)81,1 - h t U+,s)81.o ]P/ 
J 

+ [h 22 U _,s)81•0 - h 1- U,s)81,1 ]P j - }d ~ 1.1 (8). 
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The impact parameter representation for the amplitude 
tP ~ (k,z) is then obtained by replacing the rotation function of 
the first kind d j_ 1,1 by 

d j_I,1 (8) = + Sa"" dP [J2( I" sin 8/2) 

+ 1"2 sin 8/2 Jo(P cos 8/2)] J2;+ I (P') 
2jU + 1) 

in the above expression, But the integral expression for 
d j_ l,l is not a convergent one, To overcome this difficulty, a 
demand was made on the partial wave amplitudes to supply 
corresponding convergent factors, This restriction persists 
even though the uniqueness was achieved by defining the FB 
transform of d j_ 1,1 in the unphysical region, This difficulty 
is discussed in detail for a general case in Sec, II and ulti
mately removed by defining the Fourier-Bessel transform as 
a distribution in Sec, III, Then the resulting unique FB re
presentation has its inverse transform defined, Finally, Sec, 
IY summarizes some of the important implications of this 
improved representation, 

II. FOURIER-BESSEL AMPLITUDE FOR PHYSICAL 
ANGLES 
A. Preliminaries 

When spin is to be incorporated explicitly in expression 
(1,1), it is advantageous to work with a helicity representa
tion of the scattering amplitude because the helicity ampli
tudes have well-known kinematical singularities. 11-13 This 
characteristic allows one to define reduced amplitudes that 
are free of kinematical singularities and at the same time 
satisfy the Mandelstam representation. Furthermore, as will 
become clear in the present and the following sections, the 
kinematical singularities also help one to write the impact 
parameter. Therefore, the present discussion begins with the 
helicity representation for the scattering amplitude with the 
partial wave expansion 

IA. /l (s,t ) = ! (2j + 1 if A, /l U,s)d i, /l (z), (2.1) 
j=Amall. 

which converges in the Lehman ellipse in the complex z 
plane. Here, A and,u are the differences of helicities of parti
cles in the initial and final states, and the notation followed is 
the same as that given in Ref. 11. The functions d {/l (z) are 
the reduced rotation functions of the first kind 11.12 and are 
defined for z within the circle Iz - 11 < 2 by 

( 
1 - Z )a/2( 1 + Z)b /2 

d i, /l (z) = sign(A, ,u)tP A, /l U,a) -2 - --2-

2FI(Amax -j,j+Amax + 1;1 +a;(I-z)l2) 
X , 

F(1 + a) 
(2.2) 

where 

a = 1,.1, - ,u I, b = 1,.1, +,u I, 

Amax = Max·!IA 1,1,u1) = ~(a + b), 

Amin = Min·(IA 1,1,u1) = !Ib - ai, 

. [rU+Amax + l)ru+ l-Amax +a)]1/2 
tPA,/l(],a)= r('-A +1)r('+I+A -a) , } max ] max 
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and 

. {I forA+,u>O 
slgn(A,,u) = (_)A -/l for ,.1,- ,u<.0. 

For convenience (A ± ,u»0 is assumed throughout the pa
per. The results obtained below are quite general and the 
"sign" factor takes care of the other domain of A and,u val
ues, 11,12 The function 2FI appearing in the expression (2.2) is 
a hypergeometric function, The properties of d {/l (z), e.g" 
analyticity, etc., are discussed in great detail in Refs, 11 and 
12 and I will assume all of these properties here without 
further discussion. 

To derive the impact parameter representation, one can 
directly start from expression (2.1) and follow the procedure 
of Ref. 9, but the FB amplitude derived in this fashion is 
quite arbitrary because the behavior of the scattering ampli
tude in the whole unphysical momentum transfer region is 
not specified, This arbitrariness can be removed by applying 
the Watson-Sommerfeld transform to continue analytically 
the amplitude in the unphysical region. I I, 14 To write the 
Watson-Sommerfeld transform, one must rewrite expres
sion (2.1) in terms of signatured amplitudes l2

,14 so that con
ditions of Carlson's theorem are satisfied. Thus rewriting 
(2.1) in terms of signatured amplitudes yields 

lA, /l (s,t ) = ! (2j + 1) (J tiL U,s)d t /l U,z) 
j=Amux 

+ I A~ /l U,s)d i - /l U,z) ], (2.3) 

where 

d I./lU,z) =! [d {/lIz) + 0'( - )Am 
.. - v d~, -/l( - z)). (2.4) 

In Eqs. (2.3) and (2.4) the parameter 0' takes the values ± I, 
and parameter v is equal to 0 or ! depending on whether the 
value ofj is an integer or half-odd integer, respectively. Note 
also that the rotation function d l/l U,z) vanishes for 
j - v = odd/even because of the symmetry properties of 
d i, /l (z). Thus, the scattering amplitudes of definite signature 
are defined by 

II./l(s,t) = ! (2j+ 1)1I./lU,s)dI./lU,z). (2,5) 
j = Am •• 

At this point the partial wave series (2.5) can be cast as a 
. I' hI' I 12 14 contour mtegra m t e comp ex] pane . 

(7 - 1 f ., (7' d A, - /l U, - z) 
IA.ll(S,t) = -, d](2] + 1)!A,/l(f,S) . [ (. l )]' 

21 c sm 1T j - /\'max 
(2.6) 

where contour c encloses the positive realj axis in the clock
wise direction beyondj>Amax· Here the function I I. /l U,s) is 
the analytically continued partial wave amplitUde, and the 
uniqueness of the continuation follows from Carlson's 
theorem. 12.14 

B. Impact parameter amplitude 

The impact parameter amplitude in the physical region 
Iz - 11 < 2 (orO <y < 1) is derived by collapsing the contour c 
on the real axis. In this situation (2.6) reduces to 
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where 

(j - Amax) ± = j - Amax ± iE. 

For the physical region (Iz - 11 < 2), the distribution 

D (j,z) = - (2j + l)d:' -I'(j, - z) 

1''' t -A' JI',(ct)Jv,(pt) 

reduces to the form 

D (j,z) = 21Ti f (2n + l)d :'1' (j,z)8( [j - Amax ] - n). (2.9) 
n=O 

Now to express (2.9) as an FB transform, the rotation 
functions d ;( I' (z) need to be written in terms of Bessel's func
tion in exactly the same way as is done for Legendre function 
[see expression (1.2)]. This result can be achieved by starting 
with expression (2.2) for the rotation function and using the 
Weber-Schafheitlin integral 

= 
cl"r((j.L/ + v/ -A / + 1)/2) 2FI((f-l' + v/ -A / + 1)12,(f-l' -A / - v/ + 1)/2;1 +f-l';c2/ p2) 

(2.10) 
2A'pl"-A'+ Ir((v' -Il' +A / + 1)12) r(1 +f-l/) 

given by equation (29) in Sec. 7.74 ofHTF 215 page 51. The 
expression (2.10) is valid for Re( f-l/ + v/ - A / + 1) > 0, 
ReA /> 1 andO>c>p. 

These restrictions are satisfied by replacing the hyper
geometric function in (2.2) using 

2F I(Amax -j;j+Amax + 1;1 +a; 1 ~z) 

=C;Z)-b2FI(j-f-l+ 1,-j-f-l;1+a, I~Z) 
and then making the following identifications: 

A'=A +f-l, v'=2j+l, c=C~zy12 =y, 

P = 1, and f-l/ = A - f-l. 

Thus expression (2.2) becomes 

di. I' (z) 

_. (' ),,1. (. )2b(l+z)-bI2 r (-A max +j+l) - sign /I., f-l 'I' A I' j,a --
. 2 r (Amax + j + 1) 

X f" d/3/3 -b Ja (/3y)J2)+ 1(/3). (2.11) 

But notice the kinematical singularities 
[( 1 + z)l2] - b 12 [( 1 - z)l2] 0/2 appearing in expression 
(2.11) are contrary to the kinematical singularities appearing 
in the starting expression (2.2), viz. 
[( 1 + z)l2] b /2 [( 1 - z)l2] 012. Thus, the expression (2.11) is 
not yet suitable for deriving the impact parameter represen
tation. The remedy for this defect is to identify 

A / = - b, v/ = 2j + 1, c = y, 

p = 1, and f-l/ = A - f-l 

in Eq. (2.10). Substituting this result into expression (2.2) 
yields 

d i.1'(z) 

=sign(A,f-l)¢A'I'(j,a)2- b (1 +Z)b12r(j-Amax + 1) 
2 r(j + Amax + 1) 
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(2.12) 

Now expression (2.12) has the right kinematical factors, viz. 
[( 1 + z)/2] bl2 [( 1 - z)l2 ]0/2, but it is valid for Re b < 1. This 
restriction (Re b < 1) is the one that causes the problem when 
one writes the impact parameter representation for double 
helicity flip amplitude ¢ ! (k,z) in the nucleon-nucleon scat
tering, as mentioned in the last paragraph of Sec. I. This 
restriction will be removed later on. 

Expression (2.12) has also been used by Luming and 
Predazzi9 to derive the impact parameter; in this instance the 
restriction Re b < 1 was relaxed by requiring the profile 
functions r (f3,s) to supply the appropriate convergence fac
tors. Luming and Predazzi, however, obtained two equiv
alent forms of the FB representation for the same helicity 
amplitude because they did not use the signatured ampli
tudes. In contrast, the formulation worked out below yields 
only one FB representation for the helicity amplitude 
fA. I' (s,t ) in the physical region. 

If the restriction Re b < 1 in the expression (2.12) is re
laxed, the integrand blows up as /3~ 00 and representation 
(2.12) does not exist. However, if the singularity of /3 = 00 is 
treated as a distribution (generalized function), 16 the integral 
in (2.12) which reproduces the rotation function d i.1' (z) of 
the first kind can be defined. This result is achieved by re
placing /3 b in the integral by the distribution 

X e - /3' 1111 + DI/3 2) + lAma> + b + 2, (2.13) 

where Hankel's expression for r (Z)17 is used in obtaining the 
result. 

That /3 b+ is an appropriate distribution for this purpose 
can be shown by evaluating the integral 
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(2.14a) 

The steps in the evaluation of(2.14) are presented in Appen
dix A. The final result is 

1= r(~ + Amax + 1) 2b ( 1 - z)a12 
r(] -Amax + 1) 2 
x2FI(Amax -j,j+Amax + 1;1 +a;(I-z)l2). (2.14b) 

r(I +a) 

At this point if expression (2. 14b) is substituted for the inte
gral in expression (2.12), the latter expression readily reduces 
to (2.2). This proves that (2.13) is an appropriate distribution. 

Next substituting (2.13) in the expression (2.12) yields 

d {/..{z) 

(1 +Z)
b12r(j'-A + 1) 

',1. ),,1, (')2 - b max = slgn( ,f.l 'I'A.I' j,a -2- r(j + Amax + 1) 

(2.15) 

The limit 0-0 in (2.15) must be taken after evaluating the 
FB integration. Now expression (2.15) is valid for all values 
of b, and the integral converges because of the Gaussian fac
tor in the distribution. 

At this point the rotation function d .{ I' (z) of first kind 
has been expressed in terms of Bessel's function Ja ( {3y) for 
the purpose of deriving the impact parameter representa
tion. But one needs the signatured combination of the rota
tion functions to derive the required result from expressions 
(2.7) and (2.9). This combination may be written down from 
(2.4) using expression (2.15) as 

1 reo [( 1 + Z)b/2 . d :'1' (Z) = '2 Jo d{3 -2 - Ja ({3y)!» A.I' (];a,b; {3) 

A _ u( 1 - z )a12 .] + u( -) max -2- Jb({3x)!» A._J-L(];b,a;!3) , 

(2.16) 

where 

!» A.I' (j;a,b; {3) = sign(A, f.l)¢ A.I' (j,a)2 - b 
r( '-,1. 1) 

X j max + {3 b J. ( {3 ). (2.17) 
r(j + Amax + 1) + 2}+ I 

Now substituting expression (2.16) into expression (2.9) 
and interchanging summation and integration yields 

reo {I [(1 +Z)b/2 D (j,z) = 21Ti Jo d{3 '2 -2- Ja( {3y)GA.1' (j;a,b; {3) 

A _ u( 1 - Z )a/2 .] } +u( -) m.. -2- Jb({3a)GA._ 1
,(];b,a;{3) 

(2.18) 

and 

G A.I' (j;a,b; {3 ) 

= ! (2n + I)!» A.I' (j;a,b, {3 )o( [j - Amax ] - n). 
n=O 

(2.19) 

Finally, expressions (2.18) and (2.19), when used in (2.7), 
yield the impact parameter representation for the signatured 
helicity amplitude 
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1 reo [( 1 + Z)b12 
! :'I'(s,t) = '2 Jo d{3 -2- Ja({3y)lr :'I'(a,b;s, {3) 

+ u( - )Ama
• - u( 1 ~ Z y/2 Jb ({3x) Ir :. _I' (b,a;s, {3)]. 

(2.20) 

where the profile function is given by 

Ir :'1'(a,b;s,{3) 

= ! (2j+ 1)!:'I'(j,s)!»A'I'(j;a,b,{3). (2.21) 
j~Am .. 

The identification of variable {3 = 2kB, where B is a usual 
classical impact parameter, provides the required 
represen tation. 

Expression (2.20) shows the explicit symmetry for for
ward and backward scattering; this last feature was missed 
by Luming and Predazzi9 and caused them to arrive at two 
different FB representations. Note also that unlike the spin
less situation, the representation for the physical angles in 
the present case is a distribution that cannot be avoided if the 
extra restriction on the profile function as mentioned above 
is to be relaxed. 

Finally, expression (2.20) with the profile function 
(2.21) is non unique. The source of this nonuniqueness is the 
interchange of integration over j appearing in (2.7) and the 
infinite summation in (2.18), performed while obtaining ex
pressions (2.20) and (2.21). This non uniqueness is now dis
cussed and removed. 

III. UNIQUENESS OF THE REPRESENTATION 

The representation of the profile function given by ex
pression (2.21) is not unique. This non uniqueness arises from 
not specifying the amplitude for the unphysical regions of 
angles. This cause can be seen by adding to expression (2.21), 
a term H :'1' (a,s, {3), defined below 

H:'I'(a,s,{3)={3 i oo 
dy'y'Ja({3y')F:'1' (s,y'), (3.1) 

where F :'1' (s, y') is completely arbitrary. Then the equations 

1 roo [(I+Z)bl2 !:'I'(s,t) = '2 Jo d{3 -2- Ja({3y)r :'1'(a,b;s,{3) 

with 

+ u( - )Ama
• - "( 1 ~ Z y12

Jb ({3x)r :. _I' (b,a;s, {3 )], 

(3.2) 

r :'1' (a,b;s, {3) = I r :'1' (a,b;s, {3) + H :'1' (a,s, {3), (3.3) 

will still reproduce the same scattering amplitude in the 
physical region, since by construction for y < 1 

f" d{3 {3Ja ({3y) i oo 
dy' y'Ja ({3 y')F :'1' (s, y') 

= i oo 
dy' o( Y - y')F :'1' (s, y') = O. (3.4) 

Thus, the origin of the non uniqueness lies in not specifying 
the scattering amplitude!:, I' (s,t ) as a function of angle in the 
unphysical region Iz - 1[ > 2. In other words, similar argu-
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ments hold here as in the spin less case. 7 Therefore, the same 
procedure as was followed in the spinless case by Islam 7 is 
justified here; namely the Watson-Sommerfeld transforma
tion can be applied to continue analytically the!: I" (s,t) in 
the unphysical region by specifying H : I" (a,s, {3 ). 

In following this procedure, note that in expression (2.6) 
the scattering angle appears only in the rotation function 

d;{, I" ( - z). This rotation function can be analytically de
fined for Iz - 11 > 2 using I 1.12 

d J () _ tan 1T(j - Amax) [J () _ - J - I ()] 
A. I" Z - eA. I" z e - A. - I" Z , 

1T 
(3.5) 

where the rotation function of the second kind are defined by 

eJ (z)=~si n(A ).1. (.)(l-z)-a12(l+Z)-b12(Z-l)-J-I+Am .. 
A. I" 2 g , '" Of' A. I" j 2 2 2 

2 FlU - Amax + I,) - Amax + a + 1;2} + 2;2/(1 - z)) 
X ' (3.6) 

r(2} + 2) 

and 

tPA.I"(j) = [r(j+Amax + l)r(j-Amax + l)r(j+Amin + l)r(j-Amin + 1)]1/2. (3.7) 

The rotation function of the second kind can again be expressed in terms of Bessel's function using the Weber-Schafheitlin 
integral (2.10) and identifying",' = 2} + 1,p =y, c = 1, A' = - b, v' = - a. The result is 

(1+ )
b12 ( )J-Am .. r(j'-A +1)iOO 

J . /l. 2 - I - b . Z - 1T max d bJ 
eA./l(z)=slgn( ,"') ifJ).'/l{j,a) -2- . ('-,1, )r(' A 1) 'f3{3 a({3y).J2J+1({3)· 

sm 1T j max j + max + 0 

(3.8) 

A similar expression could also have been derived by 
using the parameters ",' = 2} + 1, p = y, c = 1, /l. ' = b, 
v' = a in (2.10). The representation thus obtained would 
have been valid for all} and b, but the kinematical factors 
appearing in d i./l (z) would not be 2 - b 12( 1 + zt 12( I - zt12. 
Given this situation, I have preferred the choice as represent
ed by expression (3.8), even though the validity domain is 
restricted to Re b < 1 and Re(2} + U max + 2) > O. 

If the restriction Re b < 1 is to be removed, steps similar 
to those used in deriving expression (2.15) must be followed. 
This result can be achieved by smoothing the singularity at 
{3 = 00, i.e., {3 b is replaced by the distribution {3 b+ as defined 
in expression (2.13). The result obtained is 

ei.,,(z) 

. (l+z)b12 (_)J-Amax 

= slgn(A, ",)2 - 1- bifJA./, (j,a) __ . . 1T 
2 sm [ 1T{j - Am.x ) ] 

r(j - Am., + 1) roo b 
X r( '+/l. + l)Jo d{3{3 + Ja({3y).JaJ+ d{3)· (3.9) 

j m.x 0 

The correctness of this procedure is proved in later part of 
Appendix A. 

The restriction Re(2} + U max + 2) > 0 is always satis
fied in the case of d'l" (z). If expression (3.9) is used to define 
FB representation for e =~:-/lI(Z), one restriction on the valid
ity still remains, viz. Re(Umax - 2}) > O. This final restric
tion can be relaxed again by replacing {3 b+ J _ 2J _ I (f3 ) by the 
distribution 

L1(J,b,f3)=lim{3bJ_2_1({3)[r(AmaX -i) ,+ dA 
8-->0 ~ -21Ti Joo A2 

X( -A )Ama.-Je-P'/IA+<5l{32J+2-2Ama.] . (3.10) 

The proof that (3.10) is the right distribution to give the func
tion e =~:-~ /l (z) is presented in Appendix B. Finally, one 
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should note that the distribution defined by expression (3.10) 
"smooths" the power singularity both at the origin and at 
infinity. 

At this stage the procedure for writing down the analo
gous expressions for the signatured combinations d : I" (j,z), 
and e: /l (j,z) is straightforward. The expressions are 

1[. A v· ] e; .. (J,z) = - ei .. (z)+cr(_)ma.- ei_ .. (-z) 
w 2'~ . ~ 

(3.11) 

= ~ i
oo 

d{3 [U( - )Am .. -VC ;zy12 

XJa ({3y)gA./l (j;a,b; {3)] 

(
1 - Z)Q12 _. + -2 - Jb ( {3X)gA./l (j;a,b; {3), (3.12) 

where 

g (j"a b'{3) - 1T ulr (j"a b· {3) A. /l '" - 2' (. ~ ) = A./l ", . sIn 1T j - A. max 
(3.13) 

For e':. A. -/l ( - ) - 1,z), the {3 b+ J _ 2J _ I (f3 ) factorin 
g _ A. - I" ( - ) - 1 ;a,b, {3 ) must be replaced by the distribu
tion L1 (j,b, {3) as defined in the Eq. (3.10). This result then for 
Iz-ll>212 

IT tan 1T(j - Amax) [IT' Ea • ] 
dA./l = eA./l{j,z)-e_ A._I"(-j-l,z) 

1T 

+ ( 1 ~ zt12Jb ( {3x)WA. _/lU;b,a; {3)], 

where 
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WA." U;a,b; (3 ) 

_. (' )'" (. )2- b r(-2j)r(2j+ 1) - sIgn /1", I-l 'I' A." J,a . . 
r(Amax -J)r(j + Amax + 1) 

X [( - )2Amax{3 b+ J2j + I ((3) +.1 U,b, (3)]. (3.16) 

Substituting expression (3.15) into (2.6), the impact param
eter representation for the scattering amplitude in the un
physical region Iz - 11 > 2 becomes 

!;:',,(s,t) 

= + 1"" d{3 [at - )Ama>-v( 1 ;zr
12

Ja({3Y)H ;:',,(a,b;s,{3) 

+ C ~zrI2Jb({3X)H ;:._,,(b,a;s,{3)], 

where the profile function is given by 

H ;:." (a,b;s, (3) 

(3.17) 

= -.1 f. dj (2j+ 1V;:'"U,s) .WA.,,(.j;a,b,{3) . (3.18) 
21 Yo sm[ 17'(j - Amax)] 

In other words, the profile function for the unphysical region 
appears as a contour integral instead of a summation. 

Thus specifying the impact parameter in the whole z 
region leads to a unique impact parameter representation 
given by expression (3.2), where (3.3) is replaced by 

r ;:',,(a,b;s,{3) = Ir ;:',,(a,b;s,{3) + H ;:',,(a,b;s,{3). (3.19) 

It should be noted here that the two terms appearing on 
the right-hand side of expression (3.19) produce zero and 
nonzero contribution to the integral appearing in (3.2) for 
different domains of the angles. That is, the function H ;:." 
yields zero while Ir;:." yields the scattering amplitude!;:'" 
for Y < 1; however, the opposite happens for Y > 1: H ;:." 
gives the scattering amplitude and Ir;:." produces a null 
result. These results can be checked by substituting the ex
pressions (A6) and (B3) for ei,,, (z) and e =~:-~'" respectively, 
in the expression (3.5). Thus the profile function given by 
(3.19) is unique. This uniqueness then automatically guaran
tees the inverse transform of expression (3.2) because ampli
tude (3.2) is now defined in the unphysical region with the 
help of analytic continuation via the Watson-Sommerfeld 
transform. 

IV. CONCLUDING REMARKS 

The new result in this paper is that, in contrast to the 
spinless case, the profile function (2.21) in general has to be a 
distribution even in the physical region, since it is of the form 

Ir ;:',,(a,b;s,{3)a:{3b+ f (2j + IV;:'" U,S).T2j + I ((3). 
j= Am •• 

However, if the partial wave amplitude!;:'" U,s) is such that 
the infinite sum falls off rapidly, then the distribution char-

acter of Ir;:." can be ignored. Physically, the high energy 
experiments do show that the profile functions generally be
haves as exp( - constant{3 2), consequently providing the re
quired convergent factors. 

Further, there has been no approximation made in the 
derivation. Therefore, this impact parameter representation 
is valid at all angles (physical as well as unphysical) and at all 
energies involving arbitrary spins. Further, the derivation 
shows a close relationship to the Regge formalism because 
here the Watson-Sommerfeld transform of signatured am
plitudes has been used as is done in the discussion of Reggei
zation. Thus, the profile functions can be calculated from the 
knowledge of Regge poles, which will be presented in the 
case of 17' - N system in a future paper. 

Finally, this impact parameter formalism being a kine
matical description of the scattering process in the same 
sense as partial wave analysis is, it may be used to analyze the 
experimental data with simpler parametrization of the few 
profile functions instead of a large number of parameters 
required in the phase-shift analysis at high energies. As an 
example, consider nucleon-nucleon scattering where five 
helicity amplitudes (for notation see Ref. 10) 

E(ifl~ -ifl~)= I(2j+1j[h o+U+,s)Pt 81.1 
j 

+ h 0- U-,s)P j 81.0 ]d 60(8), 

E(iflf +ifl~)= I(2j+1)[hljU+,s)Pt81.1 
j 

+ h II U_,s)P j 81.0 ]d 60(8), 

E(ifl~) 

= + I (2j + 1)( [h 2i U+,s)81.1 + h t U+,s)81.0 ]P/ 
J 

+ [h 1- U _,s)81.1 + h 22 U _,s)81.0 ]P j- Jd II (8), (4.1) 

E(ifl~) 

= + I (2j + l){[h 2i U+,s)81.1 - h t U+,s)81.0 ]P/ 
J 

+ [h 22 U,s)81.0 - h 1- U_,s)81.1 ] Pj-}d j_I.1 (8), 

and 

1 
m(ifl ~) = 2 I (2j + l)[h 12 U_,s)8I,1 P j-

J 

+ h Ii U +,s)81.0 P / ]d (0(8), 

for an isotopic spin I require hoU,s), hi U,s), h22U,S), and 
hdj,s) complex partial wave functions for each value ofj. 
The number of values ofj required to represent the scattering 
data faithfully then increases with energy. This makes the 
job of phenomenological analysis of the data quite formida
ble. However, if the same helicity amplitudes are expressed 
in impact parameter representation (see Ref. 10) 

E [ifl f (k,z) - ifl ~(k,z)] = - ik i oo 

BdB [Jo(B~) + ( - )/+ IJo(B[=-u)]r~(B,s), 

E [iflf(k,z) + ifl~(k,z)] = - ik 100 

BdB [Jo(B~) + (- )/+ IJo(B[=-u)]rfl (B,s), 
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E¢~(k,z) = -2
ik 1''' BdB! [(cos 28/2)J0(BI=!)8A.0 + (- )MJ2(BF/i)8A.2 ] [Ar~28M,I + Ar~8M,I+ 1] j, 

E¢~(k,z) = -2
ik 1''' BdB! [J2(BI=!)8A.2 + (- )M(sin28/2)J0(BF/i)8A.0 ] [Ar~28M,I - Ar~8M,I+ 1] j, 

m¢~(k,z) = ~ BdB! [(COS 8 12)Jl(BI=!) - (- )I(sin 8/2)Jl(Bv=-uJ]r~2(B,s)J, 'k i'" 
2 0 

with corresponding profile functions given by 

r~ =r~.N +rtN, for N=0,11,12, 

Ar~ = Ar~.N + Ar~.N, for N = 1,22, 

rJ,N =r/N8I.1 +rj~8I.O, for N=O,l1, 

rJ,N =rj~8I.l +r jj,8I.O, for N= 12, 

ArJ,N = Ar jj,(8N.22 8I.1 + 8N.18I.0) + Ar j~(8N.228I,0 + 8N.18I.1) 

and for Izl < I, 

r I±N(k,B) = 2ik " (2j + l)h ~ (j,s) J2j+ d[3), for N = 0,11, . 7 [3 

r I~N(k,B) = - 2ik I (2j + 1)[j(j + 1)] -1/2h ~ (j,S)J2j+ 1 ([3), for N = 12, 
j 

Arl~N(k,B)= i~~(2j+1)h~(j'S{[j(j~+1)]1/28A'0+ ;8A.2)J2j+l([3), for n=22,l, 

for Izl > I, 
k f (2v+ l)h~(v,s)i1J(v,[3) 

r 2±N(k,B) = - dv , for N = 0,11, 
, 2 (sin 1TV)(COS 1TV) 

rlN(k,B)= -k[3 i. dv (2v+ 1) h~(v,s)i1J(v.f3), for N= 12, 
. 2 J [v(v+ 1)]1/2 (sin1Tv)[cos1T(v-1)] 

± _ 1 f (2v+1)h~(v,s)i1J(v[3) [ [32 ~ A~] 
Ar2N(k,B)- - dv uAo +'KJA2 , 

. 8k [sin 1T(V - l)][cos 1T(V - 1)] v(v + 1)' . 

i1J(v, [3) =.1 (v, [3) _[3-1J2v + 1([3), 

(4.2) 

(4.3a) 

(4.3b) 

the number of profile functions remain the same throughout the energy region. Consequently, the number of parameter 
required for phenomenological analysis remain comparatively small. 

APPENDIX A 

The integral I defined in the expression (2.14) is evaluated for y < 1 here. 
l.y< 1: 

I=lim r( -j-~max) [+ d~ (-A )-j-Am •• roo d[3e- fl '/IA +{j)[32+b+2j+2Am" Ja ([3y)J2j+ 1([3). 
.5->0 - 2m 00 A Jo 

Using expression (2) in Sec. 7.2.1 ofHTF2,I5 (AI) becomes 

(All 

I = lim f (- r(y/2t+
2n 

r( - j - ~max) [+ d~( _ A) -j-Am •• roo d[3 e-fl'/IA + (j)[32+ 2n + 2j +4AmaxJ2j + 1 ([3) . 
.5->On~or(l+n)r(l+n+a) -2m 00 A Jo 

(A2) 

The integral over the [3 variable can be evaluated by applying Eq. (14) in Sec. 8.6 of TIT2. 18 This process reduces expression 
(A2) to 

1=(-) f (_r(y/2)a+2n r(2j+2+Umax +n) 2-2j-2 F(-j-Amax) 

n~O r(l + n)r(l + n + a) r(2j + 2) 21Ti 

x[+ dA (-A )-j-Am .. ( -A )2+2j+2Am •• +ne-1I4A F (- n - U ·2'.j·+ 2· l A) 
00 A 2 1 1 max"4 ' 

(A3) 

where the lim 8~ has been also taken. Now writing the confluent hypergeometric function in terms of Kummer's series and 
substituting t = p, the expression (A3) yields 
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1=2byU! (-)y" r(2)+Umax +2+n) 

n=O F(1 + n)F(l + n + a) r(2) + 2) 

X ! r(m-Umax -n) F(2)+2) 1 (_)m+nF(-)-A max ) ,+ dt(_tY+Am •• +m+ne-t. 

m=O r(-2Am•x -n) F(m+2)+2) r(l+m) (-)21Ti L 
(A4) 

The integral over t variable can be evaluated using Hankel's representation for r(z)17 and the result is 

b ~ y2n r(2)+Umax +2+n) 
1= 2 y u L 

n=O r(l + n)F(l + n + a) r(2) + 2) 
r ( - ) - Am.x) . . 

X. 2Fl(-n-2Amax,j+Am.x+n+1;2j+2;1), 
F( - j - Am.x - n) 

(AS) 

where the summation over m gives the hypergeometric function. Now using expression (46) in Sec. 2.S ofHTFI,I5 (AS) 
reduces to 

b r(j+Am.x + 1) 2F Mmax -),) + Amax + 1;1 +a;(l-z/2)) 
1=2~ . 

r(j -Amax + 1) F(1 + a) 
(A6) 

In deriving expressions (A6), Eqs. (3) and (4) in Sec. 1.2 ofHTF1 15 has also been used. This is the desired result quoted earlier in 
equation (2.1 S). 

2.y> 1: 
In the present case (A 1.1) is rewritten substituting [3 y = x' as 

I = lim j max dA ( _ A ) - ) - Am •• y - 3 - 2) - lAm •• -- b F(-'-A )[+ 
t; .0 ( - )21Ti OC A 2 

X soc d I - x"/1,1y' + bl 112), U ma• + b + 21J (')J ('I ) 
X e X a X 2) + I X y. 

o 
(A7) 

Again integration over x' is performed using Eq. (14) in Sec. S.6 ofTIT2, 16 which yields 

oc (_ )nylAm .. - b 2 - 2) - 2 - a - 2n 

I = n~o F(1 + n)F(n + 2) + 2) 

X . max _ ( _ A ) - J- Am"(A )2J +- lAm •• +- 2 + n 
F( - ) - A ) [+ dA ' , 

2m oc A 2 

X e - 1/4AY'1 F I ( - 2) - Amax - 1 - (b - a)/2 - n; 1 + a;Ay2/4), (AS) 

where lim £'j.....,.,() has also been taken after evaluating the integral. Following the similar procedure as followed in going from 
(A3) to (AS), expression (AS) becomes 

1=2by-2-2J -b 00 y-2n r(2)+Umax +2+n) 

n~o r(l + n)r(n + 2) + 2) r(l + a) 
. 2 F I ( - 2) - U max - 1 + a - n,) + Amax + n + 1;1 + a;l) 

X r ( - j - Amax) r ( _ . _ 1 _) . 
] Am.x n 

(A9) 

Finally, following similar steps as used in going from (AS) to (A6), yields 

b 2 2
' b r(j+Amax + 1) 2 F l(j+A max + l;)+Amax -a+ 1;2)+2;2/(1-z)) 

1=2y- - j- • 

r( -) - Am.x + a) r(2) + 2) 
(A 10) 

Now substituting the expression (A 10) for the integral in expression (3.9) reduces the latter to the expression (3.6), which 
shows that the distribution defined in the expression (2.13) is the proper one for both y~ 1. 

APPENDIX B 

Here the proof that the distribution (3.10) is appropriate in writing the FB representation for the rotation function 
e = ~:-~ I' (z) of the second kind will be presented. Again here the integral 

11 = i oc 

d[3[3bJu ([3y)J_2)_I([3), (B1) 

is replaced by 

The steps in evaluating the integral in Eq. (B2) are the same as discussed in Appendix A. Therefore, the details are not 
presented. The final results are 
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l.y< 1: 

II = r(Amax -j) 2b a2FI(Amax -j,j + Amax + 1;1 +a;(I-z)/2) 
. y . 

r( - Amax - J) r(1 + a) 
(B3) 

2.y> 1: 

II = r(Amax - j) 2b 2j-b 2 FI(Amax - j, - j + Amax - a; - 2j;2/(1 - z)) 
r (j - Amax + a + 1) Y r ( - 2j) . 

(B4) 

Substituting (B4) into the expression 

. ~(~. y -~m., )] roo df3 Ja (fJy)A. (y,b, f3), 
sm 1T ] - max Jo 

yields 

. . 1 . ( 1 - z ) - a/2( 1 + z ) - b /2 
e=~:-_\,(Z) = sIgn( - A, -11)""2 if; -A. -1"( - ] - 1) -2- --2-

X (Z-I)j+AmBX2FI(-j-Amax,-j-Amax +a;-2j,2/(I-z)) 

2 F(-2j) 
(B5) 

as required. 
Further, the y < 1 result is used in proving the uniqueness of the representation in the end of Sec. 3. 
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A semiclassical method of evaluating a path integral for the central potential problem is 
presented. The Langer transformation r = eX, when applied properly to a radial path integral, 
brings abollt an appropriate range of integration and the desired angular momentum modification 
(l (/ + 1 ))1/2 II ---..(/ + 1/2)11. The resultant path integral becomes assessable by semiclassical 
calculations. The method is seen to work for obtaining the exact energy spectra of the isotropic 
harmonic oscillator and the hydrogen atom bound states. 

PACS numbers: 03.65.Sq 

I. INTRODUCTION 

It is a curious fact that the Coulomb problem which in a 
sense symbolizes the success of quantum mechanics has gen
erally been resistant to an exact treatment with the Feynman 
path integral technique. Some progress has been made, 
nonetheless. Gutzwiller' is the first who has obtained the 
correct energy levels of the hydrogen atom by evaluating 
semiclassically the path integral for the Coulomb potential. 
Goovaerts and Devreese, 2 on the other hand, have per
formed an exact summation of a modified perturbation ex
pansion to determine the s-like energy spectrum for the hy
drogen atom. A recent paper by Duru and Kleinert3 

attempts to reduce the Coulomb path integral into a Gaus
sian form by means of a nonlinear canonical transformation 
without assuring the canonical in variance of the integral. 

Finding a path integral solution for the Coulomb prob
lem is certainly important, but facilitating a general proce
dure for the path integral treatment of any spherically sym
metric potential would be more desirable. At the present 
stage of development, the path integral technique is imprac
tical not only for the Coulomb problem but also for the cen
tral potential problem in general. The only central potential 
for which the path integration has been carried out without 
approximation is of the form 4

,5 V(r) = ar + br- 2. In this 
regard, in the present paper, we focus our attention on the 
semiclassical approximation of the path integral for a spheri
cally symmetric potential. The bound-state energy calcula
tion of the hydrogen atom will be an application. 

In the central potential problem, the range of the radial 
coordinate variable r is semi-infinite, whereas the usual 
WKB method is applied under the condition that the wave 
function vanishes at ± 00. Furthermore, in the WKB treat
ment of the radial Schrodinger equation, correct expressions 
for the energy spectra such as the Bohr formula for the hy
drogen atom can be obtained only after making the angular 
momentum replacement [/ (/ + 1)] 1/211---..(1 + ~)II. Langer6 
has shown that the angular momentum modification comes 
about when the change of variables r = eX is made which 
maps the semi-infinite range (0,00) of r to the infinite range 
( - 00, 00) of x. Presumably it is the difficulty in implement-

al Present address: Division of Mathematics and Science, University of Min
nesota, Morris, Morris, MN 56267. 

ing this modification in a path integral that led Gutzwiller' 
to state that the separation of variables has an adverse effect 
on the phase integral approximation. Thus he carries out the 
calculation in momentum space where the orbits in the Cou
lomb potential are simply circles. 

As we shall see, the separation of the propagator into 
radial and angular parts need not be deterimental to the 
semi-classical treatment of potentials with spherical symme
try. Indeed, the propagator for a spherically symmetric po
tential can be expressed in spherical polar coordinates as 4,7 

oc , 

K(r",r;r) = L L Kk",r';r) 
'~Om~ -, 

x Y;"·(8",tp")Y;"(8',tp '), (1.1) 

where the I-wave propagator is given as a path integral 

K,(r",r';r) = ~ioo .fj;r(t )exp{.!.-i7L,(r,r) dt} (1.2) 
r roll 0 

with 

L,(r,r) = ~mf - l(l + IW12mr - V(r). (1.3) 

To find a semiclassical approximation of the radial propaga
tor (1.2), the standard procedureR may be applied. However, 
if we apply it directly to (1.2), we immediately encounter 
serious difficulties. 

Suppose we expand the action S = S L, dt in (1.2) about 
the stationary solutionr(t )bysettingr(t) = r(t) + p(t )where 
p(O) = p(r) = 0, Then we get 

K,(r",r';r) = (r'r")-I exp{ ~sc}f ~p(t)exp{~2s}. (1.4) 

The major contribution is expected to come from the classi
cal action SC defined along the classical trajectory r = r(t). 
The first shortcoming we can foresee is that the classical 
action having the Lagrangian (1.3) in its integrand will yield 
only an incorrect 1 (I + I )-dependent expression of the energy 
spectrum. The second problem is the range of integration 
over pin (1.4) which is neither infinite nor semi-infinite. 
Since the range of r is semi-infinite, the variable p describing 
the deviation from the classical trajectory varies from - r 
to infinity. Therefore, the path integration in (1.4) cannot be 
completed even though the measure is Gaussian. If either 
infinite or semi-infinite range is chosen for approximating 
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the real integration range, then important quantum correc
tions would be lost. In fact, in order to use the shifting formu
las of Gel'fand and Yaglom9 properly, the range of the inte
gration variable has to be infinite. 

For these reasons, we propose to apply the Langer 
transformation r = aeX (a = 1: a unit oflength) to the radial 
path integral (1.2) before making the semiclassical approxi
mation. However, it is important that the transformation is 
applied in each short time integral. The Langer transforma
tion, if used formally in the Lagrangian (1.3) and the finite 
time path integral (1.2), will alter the physical content of the 
propagator, and will not serve for our purpose. After trans
forming the variable in a short time integral, we make the 
midpoint expansion lO and retain terms up to order (..1X)4. 
The fourth-order term gives rise to an angular momentum 
correction which results in the Langer modification. Section 
II demonstrates this path integral formulation of the Langer 
modification. In Sec. III, Langer's wave equation is derived 
from the Hamiltonian path integral in the Langer variables. 
To show how the semiclassical method may be implemented 
for the Langer-modified propagator, in Sec. IV, we evaluate 
the bound-state energy spectrum for a central potential. In 
particular, for the isotropic harmonic oscillator and the hy
drogen atom, we obtain the exact energy spectra. 

II. DERIVATION OF THE LANGER MODIFICATION 

The radial propagator (1.2) may be written more explic
itlyas 

K (r" r"r) = lim _1_(~)II2N 
I " N-~", r'r" 2rrifl€ 

xi'" Ntf (drj )exp{~ IS(rj,rj _ 1 ;e)}, 
o j=1 fzj=l 

when S (rj ,rj _ I ;e) is the radial action for a short time 
e = rlN given by 

S(rj,rj _ 1 ;e) = (m/2e)(rj - rj _ I )2 - eU(rj) 

with 

(2.1) 

(2.2) 

U(rj) = /(1 + lW/(2mrj rj _ l ) + V(rj ). (2.3) 

Now we make the change of variable by the Langer 
transformation 

rj = exj 

for all}. As has been pointed out by McLaughlin and Schul
man, 10 (..1q)2 of any generalized coordinate variable q be
haves like e in a short time integral. Thus, expanding rj and 
rj _ I about the midpoint Xj = !(xj + Xj _ I ) retaining terms 
up to order e, i.e., 

rj = /i( 1 + ¥1Xj + M..1Xj)2 + is(..1Xj)3 + ... ), 
rj _ I = /l( 1 - ¥1Xj + A(..1Xj)2 - is(..1Xj)3 + ... ), (2.4) 

we express (2.2) in terms of x as 

S(xj,Xj _ I :e) = (m/2e)/Xi[(..1Xj)2 + 12 (..1xYl - eU(exi). 
(2.5) 

Correspondingly, the measure in (2.1) transforms into 

N-I N-I N 
L (drj ) = exp [ - !(x' + x") J L (dxj) L (e>'j), 

j=1 j=1 j=1 
(2.6) 
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where x' = Xo and x" = XN . The radial path integral (2.1) 
then becomes 

K, (ex" ,ex' ;7) 

= li~~e:pl - ~(x' + x")) f: ",X((dXj)J11(m/XJI2rrifze) 1/2 

xexp{~ IS(xj,xj_l;e)}. (2.7) 
fz j= I 

Thus the Langer transformation of the radial path integral 
(2.1) has been completed. Evidently, the semi-infinite range 
of integration in (2.1) is converted into the infinite range of 
(2.7). However, the propagator given in the form (2.7) is not 
yet very useful because it contains the (..1Xj)4 term in the 
action (2.5). The presence of the non-Gaussian factor makes 
it difficult to implement semiclassical calculations on (2.7). If 
we completely discard the undesirable term, then there will 
be no Langer modification on the angular momentum. In 
fact, we have no justification for discarding the term. If we 
expect that (..1Xj)2 _ e, we have to consider the (..1Xj)4 term as 
the same in the order of magnitude as the potential term. Its 
effect cannot simply be ignored. Assuming (..1Xj)2 - e, there
fore, we attempt to replace the (..1Xj)4 term by an equivalent 
potential term. 10.1 I 

First we notice that for e l 
/2 small thejth integral in (2.7) 

can be approximated by 

f dxje
X
, exp{ ~ S (Xj,Xj _ I ;e)} 

= f dxje
xJ exp{~~e2XI '(..1XY} 

where 

X {I + -.!~4l<J(..1Xj)4 + Q(..1Xj )}, 

24fl€ 
(2.8) 

Q(..1xj ) = (im/2fze)iXl - '(e""xl - 1)(..1x)2 _ eU(/I). 
J (2.9) 

which is assumed to be at most of order e1l2. If 
..1Xj = lij - 2xj _ I is of order e l 

/2, we may use in (2.8) 

e3XJ(..1xj)4/€;:::::e3XJ '(..1Xj)4/€ (2.10) 

since the contributions from terms higher than e can be ne
glected in the path integral calculation. Now utilizing the 
identity, 

S: ooe-
ax

' X4 dx = ~-2f: 00 e- ax' dx, (2.11) 

we transform the (..1Xj)4 term in (2.8) into a potential correc
tion, 

(2.12) 

Here again we have ignored the terms of order higher than e 
which stem from the factor exp( - 3..1x/2). As a result, we 
obtain 

f dxje
xJ 

exp { ~ S (xj,Xj _ I ;e)} 

fd 
x {im 2x A)'} = xje J exp 2i.: J '("-IXj-

X{1 - e..1~ + QJ. (2.13) 

Exponentiating the last factor in (2.13), we observe that the 
short time action (2.5) is equivalent for small e to a new 
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action, 

S(Xj,Xj _ I ;€) = (mI2€)iX,(..1xY - EtT(eXl ), (2.14) 

where 

(2.15) 

With the help of(2.3), (2.4), and (2.12), the modified effective 
potential becomes 

U(ij)=(/+!f~212mrjrj_1 + V(ij), (2.16) 

where ij = (r/j _ I )1/2. As is expected, the (..1Xj)4 term has 
turned out to be of order € and has brought precisely the 
Langer modification I (l + lW-(l + hl2~2. Thus, replacing 
the action S by the equivalent action S, we can rewrite the 
propagator (2.7) as 

K[(eX" ,eX';r) = K[(x" ,x';r) exp{ - 3(x' + x")l2}, (2.17) 

where 

K[(x" ,x';r) = J: '" g; x exp{ ~ f [[(x,x) dt } (2.18) 

with 
N-I N 

fjJJx = II (dxj) II (miXlI2rri~)1/2 (2.19) 
j ~ I j~ I 

and 

[[(x,x) = !me2Xx2 - [(l + !f~2/2mle-2x - V(eX). 
(2.20) 

In this way, we have achieved the change in the range of 
integration and the Langer modification, both of which are 
desirable for semiclassical calculations. It must be remarked 
that the formal application of the Langer transformation to 
the effective radial Lagrangian (1.3) does not yield the modi
fied Lagrangian (2.20). The Langer modification in (2.20) 
results only from the conversion of the (..1Xj)4 term appearing 
in the short time integral into a correction term in the effec
tive potential. 

III. DERIVATION OF LANGER'S EQUATION 

In establishing the path integral formulation of the 
Langer modification, it may be worthwhile to show that the 
integral equation having the modified propagator (2.18) as 
the kernel, 

¢[(x,t + €) = J K[(x,x';€)¢tlx',t )dx', 

leads to Langer's equation./) 

a-
im2x at tP[(x,t) 

(3.1) 

[ 
~2 a

2 
(I + !)2~2 + e2XV(eX)]¢[(X,t). (3.2) 

= - 2m ax2 + 2m 

To this end, we make use of the Fourier transformation 
formula 

J: 00 dk exp{ixk - ak 2} = (rrla) I 12 exp( - x2/2a) (3.3) 

to express (2.18) in the Hamiltonian form 
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(3.4) 

where 

iij = (1I2m)e - 2xp7 + [(l + ~)2~2 12m 1 e- 2x, + V (eX,). 
(3.5) 

In the short time limit, the propagator (3.4) takes the form, 

K[(x" ,X';€) = 2~ J dp e(i/fJIP(x" - x'i 

X{I- 2~~e-X"-Xp2- ~~(/+!)2 

X e - x" - x' ~ V(eII/2I1x" + X'I)} 

=O(X"-X'){I- f- 2X
' 

x[ _ ~ a2 

2m ax,2 

+ (I ~~2~2 + e2x'V(eX
')]). 

Substitution of (3.8) into (3.1) straightforwardly yields 
Langer's equation (3.2). 

The radial Schrodinger wave function 

tP[(r,t) = R[(r)exp{iEt 1M 
satisfies 

(3.6) 

tP[(r",t + €) = J K[(r" ,r';€)tP[(r',t)r'2 dr', (3.7) 

where K[(r" ,r';€) is the radial propagator given by (1.2). 
We can easily show via (2.4) and (2.17) that 

tP[(x,t) = t/t[(ex,t )exp(3x12). (3.8) 

It is also interesting to note that ii playing a role of the 
effective Hamiltonian in (3.4) is indeed related to the effec
tive radial Lagrangian (2.20) as 

ii = xp - L[ (3.9) 

with 

(3.10) 

IV. SEMICLASSICAL DETERMINATION OF ENERGY 
SPECTRUM 

The very reason why we have formulated the Langer 
modification in the path integral is to prepare the radial path 
integral (2.1) for evaluation by semiclassical methods. In the 
following, we wish to show how the semiclassical method 
will work on the radial propagator after the Langer transfor
mation, particularly, in determining the bound-state energy 
spectrum for a central potential. 

To find the semiclassical approximation for the propa
gator K[(x",x';r) expressed in terms of the Langer variable, 
we first expand the effective action 
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(4.1) 

with the effective Lagrangian (2.20) about the stationary so
lution q(t) by setting 

x(t) = q(t) + fzI/2Tj(t), (4.2) 

where Tj(O) = Tj(r) = O. Retaining terms up to first order in fz, 
we approximate the action (4.1) as 

S = SO + !fz f [L qq ~2 + 2Lqq Tj~ + Lqq Tj2] dt. (4.3) 

Here SO is the "classical" action SIx = q) for which 6S = O. 
The coefficients, L qq , etc., in the integr~nd are the values of 
the second-order derivatives, Lxx = (J2 LIIJxJx), etc., evalu
ated at x = q, and explicitly given by 

Lqq = me2q, (4.4) 

L 2 2q' qq = me q, (4.5) 

L = 2me2qq'2 - 2(1 + 1)2fz2e - 2qlm - V qq '1 qq' (4.6) 

where Vqq = (J2V IJx2)x~q. 

Rigorously speaking, we are not keeping only terms up to 
first order in fz. The centrifugal potential term with the 
Langer modification in SO and Lqq contains fz2. As is in the 
usual WKB treatment for the central potential problem, 12 

we need to retain the centrifugal term in order to character
ize the resultant approximate propagator properly as a par
tial wave propagator. Therefore, we are in a way dealing in 
SO and Lqq with a classical object in a semiclassical effective 
potential, 

iJ(r) = Vir) + (I + ~ffz2/2m? (4.7) 

In this context, the stationary action SO and the trajectory 
described by the stationary solution x = q(t ) are not exactly 
classical but may be treated as classical without any 
ambiguity. 

In the present approximation, the partial propagator 
(2.18) is given by 

KI(x" ,x';r) = fz- 1/2 exp { ~ SO(r)} 

X J 91] exp{!i f [Lqq ~2 + 2Lqq Tj~ + Lqq 1]2] dt }, 

(4.8) 

where 
N-I N 

91] = II (d1]j) II (me2qj/21Ti€) I 12, (4.9) 
j~ I j~ I 

the factor exp{ fzl!2Tjj I being ignored. The remaining path 
integral in (4.7) can be calculated by using the shifting meth
ods of Gal'fand and Yaglom.9 Since the cross term 2Lqq 1]Tj' 
is present in the integrand, the calculation is rather compli
cated. Fortunately, a general prescription has been provided 
by Balachandram et al. '3 to treat path integrals of this type. 
Their work is an extension of the methods of Gel'fand and 
Yaglom to arbitrary time-independent Hamiltonian sys
tems. Essentially, a double shifting of variables is performed 
in order to remove cross terms like that mentioned above. 
Hence, if we follow their prescription, we can reduce (4.8) 
into the form 
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= (21Tifz)-1/2ILqq(r)/Lqq(0)11/4IJ2S0/Jx'Jx" 11/2 

Xexp{(ilfz)SO} (4.10) 

which we have now to evaluate. 
From (4.4), it is evident that 

ILqq(r)ILqq(O)11/4 = exp{!(x" - x')}, (4.11) 

wherex' = q(O) andx" = q(r). As for the last preexponential 
factor of (4.10), we observe that for a classical action S C in 
general the following relation holds: 

J 2Sc J2W J 2 W dE 

Jq(O)Jq(r) JEJq(O) JEJq(r) dr' (4.12) 

where W = Sc + Et. As has been mentioned earlier, So is not 
quite a classical action. Nevertheless we can easily justify the 
use of (4.12) for our semiclassical system. The characteristic 
function defined by WI = SO + E °t satisfies the Hamilton
Jacobi equation for the Hamiltonian (3.9), 

....!.....e - 2q(aWI)2 + iJ(eq) _ EO = 0, (4.13) 
2m Jq 

from which follows 

l
qlll 

WI = p(q)dq 
qlO) 

with 

P = {2me2q [EO - U(eq)]}1I2. 

Therefore, via (3.10) and (4.12), we get 

and 

J2W Jp me2q 1 
JEOaq = JEo = P = 4' 

a2sO 

aq(O)aq(r) 

1 1 dE o 
-----

g(O) g(r) dr 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Substitution of (4.11) and (4.17) into (4.10) yields the semi
classical expression for the partial propagator, 

Kdx" ,x';r) = (21Tifz)-1/2 exp{!(x" - x')} 

X I (g(O)g(r))- I dEo 11/2exp{(ilfz)SO(r)}. (4.18) 
dr 

In particular, for a periodic case where q(O) = q(r) = x, we 
have 

KI(x,x;r) 
= (21Tifz)- 1/2 Ix(r)I-lldEo Idrl l/2 exp{iSO(r)/fz}. (4.19) 

The energy levels for the bound states can be found as 
the poles of the resolvent8 

G/(E) = ~ 1"" dreli/lilETJdX KI(x,x;r). (4.20) 

Assuming that the basic period of motion is T = rln where n 
is the number of traverses of the orbit, we insert (4.19) into 
(4.20) to obtain 

G/(E) 

= .i...(21Tifz)-1/2 f f""dTfdXIX(T)I-'lndEOI,/2e-in1r 
fz n ~ I Jo dT 

Xexp{(ilfz)n[SO(T) +ET]}. (4.21) 
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Here we have used Ix(nT)1 = Ix(T)1 and SO(nT) = nSO(T). 
We have also added the phase factor e - it,. for every complete 
orbit. Following the standard procedure,8.14 we can now 
straightforwardly calculate (4.21). To perform the Tin
tegration, we adopt the stationary phase approximation once 
again. Practically, we approximate the exponential factor in 
(4.21) as 

exp{~n[SO(TE)+ETE+ ~ (~;2°t(T-Td]) 
(4.22) 

bysettingE = - (JSoIJT)E = EO(TE) where TE is the val
ue of Tfor E. Noticing that (J 2SoIJT1 )E = I (dE °ldT)E I, 
and utilizing the relation exp (iat 2)_(i1rla) 1/28 (t), wecanfur
ther rewrite (4.22) in the form 

(21Tih )1/11(dEOldT)I-1/28 (T - TE)exp{in W/(E )/1l}, 
(4.23) 

where W/(E) = SO(Tr;) + ETE. Replacement of the expo
nential factor in (4.21) by (4.23) certainly simplifies the T 
integration, resulting in 

G/(E) = ..!..- ! (- l rfdX Ix(TE)I-1 exp{..!..-nW/(E)}. 
11 n~1 11 

(4.24) 

For x(O) = x(TE), W/(E) is independent ofx. Therefore, thex 
integration in (4.24) is trivial, 

(4.25) 

After summing over n, the resolvent (4.24) takes the usual 
from 

G/(E) = - (illl)TEeli/filwAEI [ 1 + e1i1fi)W/E)] - \ (4.26) 

which has poles for 

W/(E) = (2n, + l)trn, (4.27) 

where n, = 0, 1,2, .. · . 
The energy spectrum E = E (n r,l ) readily follows from 

(4.27) if the integral (4.14) can be evaluated for t = TE • In 
evaluating (4.14) for W/(E), it is more convenient to reex
press the integral in terms of the radial variable r = eq

• 

Namely, 

W/(E) = 2 dr 2m E - + 4 - V(r) , I
r
, {[ (I 1)2112 ]}1/2 

" 2mr2 
(4.28) 

where r l and r2 are turning points. Apparently the condition 
(4.27) for the poles coincides with the WKB quantization 
rule applied to the radial motion. The integral number nr 
corresponds to the radial quantum number. For instance, an 
isotropic oscillator with V(r) = !mw2? has 

WdE) = - 1T{(l + !)Il- E Iw}. (4.29) 

Combining (4.27) and (4.29) immediately yields the exact 
spectrum, 

E = (n + !)Ilw (4.30) 

with n = 2n, + 1+ 1 = 1,2,3, .. ·. Similarly, for the Coulomb 
potential V(r) = - Ze11?, 

W/(E)= -21T{(l+!)Il-!Ze2(2ml-E)1/2}. (4.31) 
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The formula (4.27) leads to the exact expression for the hy
drogen energy levels, 

E = - mZ 2e2/21l2n2, (4.32) 

where n = nr + 1 + 1 = 1,2,3, .. ·. 

V. CONCLUDING REMARKS 

In this paper, establishing the Langer modification for 
radial path integrals, we have demonstrated the utility of 
polar coordinate path integrals in the semiclassical approxi
mation for spherically symmetric potentials. First we have 
performed the Langer transformation in the path integral so 
as to map the semi-infinite range of the radial variable to one 
of infinite range. This mapping is vital in calculating the 
Gaussian type integrals which appear after the semiclassical 
expansion. Furthermore, the transformation, applied in 
each short time integral with the aid ofthe midpoint method, 
gives rise to a correction to the centrifugal potential which is 
necessary for the Langer modification (I (l + 1))1/2_(1 + !). 
This is in contrast to the considerations of McLaughlin I, 
where the same transformation is carried out in the radial 
wave equation prior to writing down its path integral solu
tions. There is a good deal of ambiguity with respect to ca
nonical in variance of path integrals. ln

•
17 Thus our calcula

tion of the Langer transformation may in turn be considered 
as a direct check on the midpoint method 10.11 in implement
ing canonical contact transformations in path integrals. 

The semiclassical calculation of the radial path integral 
with the Langer modification has enabled us to obtain, for 
instance, the exact energy spectra for the three-dimensional 
harmonic oscillator and the hydrogen atom. The present 
semiclassical formulation of the radial path integral should 
be applicable to other central potentials. The same scheme 
can also be incorporated to the S-matrix calcuation. IH This 
will be discussed elsewhere. 

In closing we would like to remark that there is room 
for improvement in the determination of the propagator. 
This concerns the introduction of the sum over all traverses 
of the trajectory in (4.21). The number of traverses n is close
ly related to the winding number which delineates the var
ious inequivalent classes of paths when the configuration 
space is multiply connected. In the study of problems involv
ing periodic constraints, such as the entanglement of poly
mers' and the Aharonov-Bohm effect, 1<1,20 considerations of 
the winding number are important. The sum over n arises 
from the imposition of a periodic constraint so as to include 
paths from all possible equivalence classes. The sum in (4.12) 
may indeed be seen as arising from the topology of paths in 
configuration spaces. 
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Convergence of the T-matrix scheme is established for the potential scattering. 
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1. INTRODUCTION 

Consider the potential scattering problem 

( - V 2 + q(x) - k 2)U = 0 , 

U = Uo + v, k > 0 ,1m q(x) = 0 , (1 ) 

where Uo = exp[ik (n,x)), n is the unit vector, xER3
, and v is 

the outgoing wave. For v the following integral equation is 
well known: 

(1+ T)v=f, Tv= J g(x,y)q(y)vdy, (2) 

g(x,y) = exp(ik Ix - yl)l41Tlx - yl, f= - Tuo · (3) 

Let us assume first that 

q(x) = 0 if Ixl<R. (4) 

This assumption will be removed: only a power fall-off of q(x) 
is actually needed. The T-matrix scheme, which is very po
pular in diffraction theory,' can be described for Eq. (2) as 
follows. Let (ij I, 1 < j < 00, be an orthonormal basis of 
H=L 2(DR), 

{

f, Ixl<R 

DR = {x:lxl<R I, fR = 

0, Ixl >R 

N 

, VN = L cjij, 
j=' 

LN be the linear span of( f', ... '/N j, andPN be the orthopro
jection in H onto LN. Consider the equation 

VN +PNTvN =PNfR . (5) 

The problem is to prove that (5) is solvable for sufficiently 
large Nand vN--v, where v solves (2). 

2. STATEMENT OF THE RESULT 

It is clear that 

IIPNT- TII-o as N--oo (6) 

because T is compact in Hand P N __ 1 strongly in H; 1 is the 
identity, 11·11 denotes the operator norm on H. Suppose for a 
moment that the operator 1 + T:H--H is invertible. Then (6) 
implies that 1 + P NTis invertible for sufficiently large Nand 
IlvN - wll-G as N--oo, where w is the solution of the equa
tion 

w+ Tw=fR. (7) 

Note that if the solution of (7) is known then the solution of 
(2) is known: 

v = wif Ixl<R, v =f- Tw iflxl >R. (8) 

Let us formulate the result. We prove that 1 + T:H--H is 
invertible afterwards. 

Theorem 1: If q(x) satisfies assumptions (1) and (4) then 
the T-matrix scheme (5) converges as N--oo to the solution 
of the scattering problem (1). 

Proof In order to complete the proof we need the fol
lowing lemma. 

Lemma 1: If (1 + T)w = 0 then w = o. 
Indeed, from Lemma 1 and the compactness of Tit 

follows that 1 + T is invertible in H. 
Proof of Lemma 1: If w = - Tw then w is an outgoing 

wave and 

[V2 + k 2 _ q(x))w = 0 in R3 . (9) 

Since 1m q(x) = 0 one concludes that w O. 
Indeed, from the radiation condition for w, 

1· f 1 Jw ·k 12 d 1m ---I w x 
Hoo Ix! = r Jlxl 

= lim ( dS[ 1 Jw 12 + k 21wl 2 
HOO J!X! = r alwl 

·k(- Jw aw)] 0 + / w Jlxl - w Jlxl = , (10) 

and the equality (the bar denotes the complex conjugation) 

1· 1 (- Jw Jw ) d 0 1m w---w-- S= , 
Hoo Ix! = r Jlxl Jlxl 

(11 ) 

it follows that 

lim ( (1~12 + k 21w12) ds = O. (12) 
Hoo J!X! = r Jlxl 

It is a well-known resule that (9) and (12) imply w=o. The 
only point which needs clarification is (11). It is at this point 
one uses the real-valuedness of q. To derive (11) consider (9) 
and 

Multiply (9) by wand (9') by wand subtract. Then apply 
Green's formula and obtain (11). Lemma 1 is proved. 

(9') 

Remark 1: IfIm qi=O then Lemma 1 is not valid: there 
exists qEC ~ such that Eq. (9) has a nontrivial outgoing solu
tion. Example: take w = exp(ikr)/ r if r> 1, r = Ix I. Since 
Iwll r =, = 1> 0 one can define w for r< 1 so that Iwl > 0 if 
r< 1 and WEC"" . For this w one has (V2 + k 2)W = fEC"" . It is 
clear that w satisfies Eq. (9) with 

{

O, Ixl = r> 1, 

q(x) = f(x) , r<I, 
w(x) 

(13) 

and q(X)EC"" . 
The argument which was used in the proof of Lemma 1 
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is borrowed from Ref. 3, p. 328, the example given in Re
mark 1 was used in Ref. 4, p. 170. 

Remark 2: The assumption that q(x) vanishes outside of 
a ball is not important. If I q(x) I .;;;c( 1 + Ix I) - a , a > 2, then the 
operator Tis compact on C (R3

) and the above arguments are 
valid. One can use instead of C (R3

) the weighted space 
L 2(R3,p(x)) with an appropriatep(x). The basis [1; J is now a 
basis of L 2(R3,p(x)). One can also consider the sequence q m of 
the truncated potentials, 

_ {q(X), 
qrn - 0, 

solve the scattering problem by the T-matrix scheme for the 
truncated potential, and prove that the solution Vrn of the 
truncated problem goes to the solution v(x) of the original 
problem as m-+ 00 • 

3. BIBLIOGRAPHICAL REMARKS 

The T-matrix scheme in diffraction theory is described 
in Ref. 1. There was no proof of convergence of this scheme 
and the problem of the mathematical justification of the 
scheme was pointed out by many speakers at the sympo
sium. I This problem was solved in Ref. 5, where some infor
mation on the rate of convergence of the scheme and on the 
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choice of the basis functions was given. The problem of the 
choice of the basis functions is closely related to the Rayleigh 
hypothesis (conjecture) about the convergence of the series in 
outgoing solutions of Helmholtz's equation on the surface of 
the obstacle. This conjecture is known to be false in general, 
and in Ref. 5 a choice of the basis functions is given which 
does not use the Rayleigh conjecture. For these functions the 
corresponding series converges on the boundary and in the 
exterior domain. In this paper the same ideas as in Ref. 5 are 
used for potential scattering. In Ref. 6 the results of Ref. 5 
are strengthened and some numerical results are given. 

IAcoustic, electromagnetic and elastic wave scattering-focus on the T-ma
trix approach, edited by V. Varadan, International Symposium held at 
Ohio State University, June 1979 (Pergamon, New York, 1980). 
2T. Kato, "Growth properties of solutions of the reduced wave equation 
with a variable coefficient," Comm. Pure Appl. Math. 12, 403-425 (1959). 

3 A. G. Ramm, "Spectral properties of the Schriidinger operator in domains 
with infinite boundaries," Mathern. Sbornik 66 (108), N3, 321-343 (1965). 

4B. R. Vainberg, "Principles of radiation, limiting absorption and limiting 
amplitude in the general theory of partial differential equations," Russian 
Math. Surveys 21, 115-194 (1966). 

5 A. G. Ramm, "Convergence of the T-matrix approach to scattering the
ory," J. Math. Phys. 23, 1123 (1982). 

"G. Kristensson, A. G. Ramm, and S. Strom. "Convergence of the T-matrix 
approach in scattering theory II" (unpublished). 
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The r~lation .between the .linkage and the symplectic approaches to conserved quantities 
assocIated wIth the BondI-Metzner-Sachs groups in general relativity is examined. 

PACS numbers: 04.20. - q 

I. INTRODUCTION 

In the framework of general relativity, there are two 
regimes in which one can investigate the properties of isolat
ed gravitating systems: at large space-like distances/rom 
sources and at large null separations. The spatial regime is 
well-suited for investigating the Coulombic properties of the 
gravitational field, while the null regime is geared to the 
study of radiation. At spatial infinity, it is possible to impose 
physically reasonable boundary conditions which yield the 
Poincare group as the group of asymptotic symmetries. As
sociated with these symmetries, there are ten conserved 
quantities, which represent the total energy-momentum and 
angular momentum of the isolated system under considera
tion. I Thus, as far as symmetries and conserved quantities 
are concerned, the overall situation at spatial infinity is rath
er simple; nothing unexpected occurs. At null infinity, on the 
other hand, the presence of gravitational radiation compli
cates matters considerably. First of all, since gravitational 
waves can carry away energy-momentum and angular mo
mentum, one cannot hope to obtain absolutely conserved 
quantities of the type that exist at spatial infinity. Rather, 
one must associate these quantities with cross sections of 
null infinity, .f', and allow for leakage of fluxes between any 
two cross sections. Secondly, in presence of radiation, one 
cannot introduce sufficiently strong boundary conditions 
which can yield the Poincare group as the group of asympto
tic symmetries; one has, instead, the infinite dimensional 
Bondi-Metzner-Sachs2 (BMS) group. Consequently, one is 
led to introduce infinitely many quantities, rather than just 
ten. Since the BMS group has a preferred four-dimensional 
translation subgroup, one can select from these quantities 
the four which represent the energy-momentum of the sys
tem (which is left over after allowing for leakage due to radi
ation prior to the retarded time represented by the given 
cross section). However, since the BMS group admits neither 
a preferred Lorentz subgroup nor a preferred Poincare sub
group, the notion of angular momentum becomes qualitati
vely different from that at spatial infinity, acquiring the so
called supertranslational ambiguities. 

Thus, at null infinity, the problem is to obtain the 
expression for the conserved quantity Qs [C] associated with 

., Alfred P. Sloan Research Fellow. Supported in part by the NSF contract 
PHY 8()"'{)8155 and by the Research and Equipment Fund of Syracuse 
University. 

h, Supported in part by the NSF contract PHY 800823. 

BMS vector field S , evaluated at the cross section C of f. 
QdC] is to depend only on the given gravitational field, the 
BMS generator S and the cross section C. If, in addition, 
there exists a function Fs on f which depends only on the 
gravitational field and and S , such that 
Qs[C] - QdC'] = fJJ.Fsd 3f, where..::i is the three-dimen
sional region of f bounded by C and C', we shall say that 
Qs [C] admits a local flux. Clearly, from a physical view
point, it is desirable that such a local flux exists. 

There exist, in the literature, several approaches to the 
problem of obtaining these conserved quantities.3

-
8 Each ap

proach focuses on a feature of conserved quantities of simple 
systems and generalizes it to the gravitational field at null 
infinity. Unfortunately, different methods lead to distinct 
expressions and none of these is completely satisfactory. 
Thus, even if one adopts the attitude that the BMS group 
must be faced squarely and the so-called supertranslational 
ambiguities must be accepted, one is still left with the prob
lem of obtaining the most useful expression of these BMS 
conserved quantities. Among the known approaches, so far 
only two have been shown to lead to local fluxes. 7

•
s The pur

pose of the paper is to examine the relation between them. 
The first of these two approaches is based on linkage 

integrals3 which are generalizations of the Komar9 integrals, 
available in presence of Killing vectors. The generalization 
consists of using a (suitable extension within space-time of a) 
BMS vector field-, i.e., an asymptotic Killing field-in the 
Komar integral, in place of the Killing field. The resulting 
conserved quantities, L Qs [C], have several interesting pro
perties. First, if S is a BMS translation, L Qs [C] is the corre
sponding component of the Bondi four-momentum evaluat
ed on C; L Qs [C] yields the correct expression in the case of 
translations. Second, L Qs [C] admits a local flux L Fs. 7 Fur
thermore, if the BMS vector field S is the extension to f of 
a Killing field in the physical space-time and if the space
time satisfies the vacuum equations near f, L Fs vanishes 
identically. Finally, if we allow matter near infinity, but re
tain the Killing condition on S , we have L Fs 
= TabS nb atf, with nb the null normaltof. In this case, 

L Fs yields the flux of the conserved quantity, carried away 
by matter. There is, however, what appears to be an impor
tant drawback: already in Minkowski space, L Fs fails to 
vanish if S is a BMS vector field which does not arise from 
an exact Killing field. (In particular if S is a supertransla
tion but nota translation, L Fs fails to vanish.) Consequently, 
even in Minkowski space, the conserved quantities L Qs [C] 
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associated with such BMS vector fields fail to vanish if C is a 
shearing cross section. This failure obscures the physical in
terpretation of L Qs [ C] and of L F 5 . 

The second approach8 is based on symplectic, or, Ha
miltonian methods. Here, one first constructs the phase 
space of radiative modes of the gravitational fields, shows 
that the induced action of the BMS group on this space pre
serves the symplectic structure thereon and computes the 
Hamiltonians generating these canonical transformations. 
Analogous analysis of Maxwell and scalar fields in Min
kowski space suggests the physical interpretation of these 
Hamiltonians: the Hamiltonian densities, H Fs' represent 
fluxes. Thus, in the symplectic approach, fluxes arise as pri
mary quantities and one has to "integrate" them to obtain 
the two-sphere integrals H Qs [C]. Such an integration has 
been carried out in the case when 5' is a BMS supertransla
tion. The general case, however, remains unresolved. In the 
caseofBMStranslations, H Qs[C] = LQs[C);theHamilton
ian framework also yields the Bondi four-momentum. The 
flux H Fs has all the interesting properties of the linkage flux 
L Fs' listed above. Furthermore, unlike L Fs' the Hamilton
ian flux H Fs vanishes identically when the Bondi news van
ishes. (Thus, if 5 is not a BMS translation, H Fs #-L Fs and 
H Qs [C] #- L Qs [C], in general.) In particular, in Minkowski 
space, H Fs = 0 for all BMS vector fields 5' and H Qs [C] = 0 
for all supertranslations sa and for all cross sections C. The 
drawback here is that one has not been able to obtain the 
expression for H Qs [C] for BMS fields sa which are not su
pertranslations. 

In Sec. II we show that, although L Fs and H Fs are not 
related to each other in a simple manner in general, in a large 
number of physically interesting cases, the integrals of these 
fluxes over suitably chosen regions do have a simple relation. 
It turns out that, for BMS translations, ana, L Fan = H Fan, 
while for BMS rotations, 5' , f C (H Fs - ~ L Fs )d 2 S = 0, 
where C is any cross section of f to which 5' is tangential. 
This relative factor of2 between translations and rotations is 
important and complicates the relation between L Fs and 
H Fs for a general BMS generator 5' . In Sec. III, we show 
that, in spite of these complications, L Fs and H Fs both de
fine one-forms (on a suitably constructed space of asympto
tic gravitational fields) whose curls are proportional. Fur
thermore, the curl is precisely the symplectic structure on 
the radiative phase space. This analysis sheds light on the 
structural differences between L Fs and H Fs' The Appendix 
summarizes the conventions used in this paper. 

II. RELATION BETWEEN FLUX EXPRESSIONS L Fs AND 
HFs 

Consider an asymptotically flat space-time (M, gab) and 
let (M;...gab) denote one of its Penrose completions. Thus, 
M = MuF is a manifold with boundary, f, such that the 
following conditions are satisfied: i) On M, gab = n 2gab , 
and, onf,n = 0, Van #-0 and Va Vbn = 0; ii)Therestric
tion to f of the vector field na = va n is complete and the 
manifold of its orbit is diffe~morphic to S 2; and iii) gab satis
fies the vacuum equations Rab = 0 in a neighborhood of f. 
(In Sec. IV, we shall briefly discuss the issue of weakening the 
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last assumption.) 
Fix any vector field 5' on M such that n 2 !:t' sgab van

ishes on f. Then, the restriction to f of 5' yields a BMS 
vector field. Furthermore, on M, 5' satisfies 

(1) 

for some symmetric tensor field Xab' where k is given by 
k = n -15 mnm==n -15 mv mn. The linkage flux, L Fs' asso
ciated with the BMS vector field 5 a on f is constructed 
fromXab: 

LFs ~ 4~ { - Va Vbx
ob + 3VoX

o 

+ ~ V2X + _l_RX} 
4 24 

(2) 

where, xa = n -Ixab nb, X = Xab gab' R is the scalar curva
ture of gab' and ~ stands for "equal, at points of f, to". 
(Here, we have modified the definition in Ref. 7 by a factor of 
(41T)-1 to ensure that L Fs yields precisely the Bondj2 flux in 
the case when 5' is a unit BMS translation. For conventions, 
see Appendix.) It has been shown that L Fs depends only on 
the BMS generator 5' on f and is insensitive to the choice of 
extension of 5 in M satisfying Eq. (1). 

The Hamiltonian flux, H Fs is constructed from quanti
ties defined intrinsically on f. Let qab denote the pull-back 
to f of gab' Let qab be any symmetric tensor field within f, 
satisfying qamqmnqbn = qab' Let Nab denote the news tensor 
field 10 on f, (pull-back to f of Sab ==Rab - i R gab in a 
Bondi conformal frame ll

). Finally, let D denote the torsion
free connection on f, induced by V.12 Then, the Hamilton
ian flux H Fs associated with the BMS generator sa is given 
byl3 

HFs = - (l/161T)(Nad !:t'sDc - Dc!:t' 5] Id 

(3) 

where la is any covector field onf satisfying lana = 1, k (as 
before) is defined on f by !:t' sqob = 2kqob' and where a 
factor of (1/81T) has been introduced in the definition of Ref. 
8 to ensure the correct normalization for the flux of the four
momentum. 

To compare the two expressions, it is convenient to take 
their Lie derivatives wrt n°. Using Eq. (32) of Ref. 7, we 
obtain, in the case of the linkage flux, 

naDo LFs ~ (lI161T)KObXab A (lI161T)Kab 

X([!:t'sDa -Da!:t's JIb + 2IaDbk), (4) 

where we have set, following Geroch'sl2 conventions from 
the Cincinnati lecture notes, Kac ~ - 4n -ICabcdnbnd' We 
now compute!:t' n H Fs' It is easy to verify that 

!:t'nNab = - (lI2)Kab , 

!:t'n(!:t'sDa -Da!:t's)lb 
= - (lIl)!:t',(Sab + nmlpSmPqab) -DaDbk 

+ (!:t' n Ie )qCdDdkqab - l(!:t' n l(a )Db I k , 

and 

!:t' nlcDdk = (!:t' nlc)Ddk, 

where, Sob is the pull-back to f of (Rob - i Rgab ). 14 Hence, 
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using Eq. (3), we obtain: 

2'n HFg 
= (1/321T)[Kab(2'gDa -Da2'g)/b + Nab 2'gSab] 

+ (1/161T) [ Kab laDb k + Nab DaDbk]. (5) 

Since the right sides ofEqs. (4) and (5) involve only those 
quantities which can be defined intrinsically on f, it is now 
easy to compare the two expressions. It is clear that the two 
expressions are quite different for arbitrary BMS generators 
5' .15 We shall therefore divide the analysis into various 
cases. 

A. BMS translations 

Let us begin with the simplest BMS fields. Let 
5' = ana be a BMS translation. Then, k = 0. Furthermore, 

qacqbdNab 2' anScd = - (aI2)qaCqbdNabKcd 

- (aI2)KabNab 

= Kab(2'an Da -Da2'an)lb 

+ (1/2)Kab( apab + 2DaDba), (6) 

wherepab is the unique symmetric tensor field on f satisfy
ing D[a Pbjc ~ 0, na Pab ~ 0, and qab Pab ~!!It, (the "scalar 
curvature" of qab)' Now, ana is a BMS translation if and 
only if2DaDba + a Pab ~ 0. Hence, we have 

2'n HFan = (1/161T)Kab(2' anDa - Da2' an)lb' 

whence, 

2'n(LFan -HFan) =0. 

Thus, we conclude that, for BMS translations, 
L Fan = H Fan + fan where 2' n fan = 0. Since L Fg and 

(7) 

H Fg are both functions on f which involve only the gravita
tional field and the BMS generator 5' under consideration 
and since the dependence on the gravitational field is local, 
2' n fan = ° implies that fan is a function on f which de
pends only on the BMS generator l6

; it is purely "kinemati
cal". Hence, we can evaluate it in any geometry. Let us 
evaluate it in Minkowski space. Since L F and H F both 
vanish in Minkowski space, it follows tha~n fan = O.aThus, 
L Fan = H Fan for all BMS translations ana andforallgravi
tational fields. 

Remark: Since the flux L Fan has been explicitly given 
in Ref. 7 in terms of quantities intrinsic to f, one already 
knew that L Fan = H Fan (~(aI321T)NabNcdqacqbd). One 
also knows that the two-sphere integrals L Qan [C) and 
H Qan [C) agree on any cross section C, being equal to the 
Bondi-Sachs four-momentum integrals. The main reason 
behind the preceding analysis was to illustrate the method 
which, as we show below, is applicable to supertranslations 
and rotations for which expressions involving only those 
fields which are defined intrinsically on f are not available. 

B. BMS supertranslations 

Set 5' = ana, with a on arbitrary function on f satis
fying 2' na ~ 0. Since 2' anqab ~ 0, k continues to be zero. 
Hence, from Eqs. (5) and (6), it follows that 
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2'nHFan = (1/161T)Kab(2' gDa -Da2'g)h 

+ (1/641T)Kab(apab + 2DaDba). (8) 

Thus, we obtain 

2'n(H Fan - LFan) = (1/641T)K ab (apab + 2DaDba) 

= - (1/321T)2' nNab(apab + 2DaDba) 
(9) 

which, in general, fails to vanish. As in the case of BMS 
translations, we can integrate this equation and obtain 

HFan - LFan = - (1/321T)Ncd(apab + 2DaDba) 

Xqacqbd + fan 

for some "kinematical" field fan (satisfying 2' n fan = 0) 
which can depend on the choice of the supertranslation ana, 
but not on the specific gravitational field under considera
tion. 16 To evaluate it, we recall the situation in Minkowski 
space-time, where H Fan vanishes and, in a Bondi conformal 
frame, I I 

Thus, in the general context, in a Bondi conformal frame, the 
difference between the Hamiltonian and the linkage flux is 
given by 

HFan - LFan = - (1/161T)Ncd(Da Dba )qacqbd 

- (1/161T)(D 4a + 2D 2a), (11) 

where we have used the fact that, in a Bondi frame, Pab is 
proportional to qab' The difference arises from two factors: 
there is a contribution from the fact that L Fan fails to vanish 
in Minkowski space, and, in addition, there is a contribution 
due to the presence of radiation. It turns out that, for a large 
class of space-times, the two contributions can cancel each 
other provided the fluxes aJe integrated over suitable regions 
off. Let us suppose that (M, gab) is such that the radiation is 
confined to a compact region of f. Let C denote a shear-free 
cross section in the past of this region, and C', a shear-free 
cross section in the future. Let Li be the part off bounded by 
C and C'. Then, it turns out that the linkageflux ofsupermo
mentum through Li equals the Hamiltonianflux. To see this, 
we first reexpress the news tensor in a convenient way. De
note by DO the restriction of D to the past of C and by D '0, the 
restriction of D to the future of C '. Since the support of radi
ation is contained within Li, DO and D ,0 are "classical vacua" 
in the sense of Ref. 17. Fix a one-form la on f such that 
D ~lb = 0, D[a lbj = ° and lana = 1. Then, Yab 
::: Da lb is the shear of the connectionD (wrtDO), where ::: 

denotes "equal to the trace-free part of'. It is easy to check 
that - 22' n Yab = Nab' Furthermore, it follows from the 
analysis in Ref. 17 that, on C', Yab is given by Yab ::: Da Db/3 
where/3 is the BMS supertranslation relating C to C '. We are 
now ready to prove the result stated above. We have 
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l(H Fan - L Fan)d 3.f = + (1!161T{(..~ nYcd) 

X (WaDba)qaCqbd d 3.f 

- (1!161T{(D 4a + W 2a) d 3.f 

= (1!161T) f [2YcdDaDbaqacqbd JC' 
-f3(D 4a + W 2a)] d 2S 

= (1!161T)L, [2(Dc Ddf3 - (1!2)qmnDmDnf3qcd) 

XDaDbaqacqbd -f3(D 4a + 2D 2a)] d 2S = 0, 

where, in the second step, we have used the facts that 
.Y n (qac qbd DaDba) = 0, Yab = ° on C, and thatf3, satisfying 
.Y nf3 = 0, is the supertranslation joining C and C', and 
where, in the last step, we have carried out integrations by 
part. (Here d 3.f and d 2 S are, respectively, the intrinsic vol
ume elements on .f and C', in the given conformal Bondi 
frame. Incidently, note that f3 is defined only up to an addi
tion of a BMS translation since there is a translational free
dom in the definition of C and C '. However, the ambiguity 
does not affect the above calculation at all.) To understand 
the result intuitively, let us introduce a third cross-section e, 
obtained by time-translating Cinto the future of the support 
of radiation. Let us divide..1 into two regions: Lf bounded by 
C and e, and, ..1 ' bounded by e and C '. Then, the integral 
over Lf has contribution only from the news part (i.e., first 
term) of Eq. (11), while the integral over..1 ' has only the 
Minkowskian contribution [second term in Eq. (11 )], and the 
two contributions exactly cancel one another. 

To summarize, although L Fan::pH Fan' the integral 
over a region of.f bounded by, shear-free cross sections of 
the difference L Fan - H Fan does vanish, (even when the 
cross sections are related to each other by a supertransla
tion.)IS 

Remarks: i) In physically reasonable space-times, one 
expects the radiation to die off at suitable rates as one ap
proaches i+ as well as ,{J along.f + . In such space-times, the 
total flux ofH Fan through all of.f exists and is finite. s What 
is the situation wrt the linkage flux? In Minkowski space, the 
linkage flux is given by Eq. (10) and satisfies .Y n L Fan = 0. 
Hence the total flux across all of.f is not well-defined: If one 
performs the u-integration first, the result is infinite, while, if 
one performs the (O,<jJ )-integration first, the result is zero. 
Equation (11) shows that this state of affairs would continue 
to hold in any physically reasonable space-time. However, 
one can use the result of this subsection to give a prescription 
to define the total linkage flux: to compute this flux, one can 
simply demand that the integration be performed only over 
regions bounded by shear-free cross sections in the distant 
past and distant future. This "regularized" total linkage flux 
vanishes in Minkowski space, and, more generally, equals 
the total Hamiltonian flux. 

ii) Let (M, gab) be radiation free. Then, Nab = 0, whence 
H Fan = O. Equation (11) now implies that the integrated lin
kage flux, S~Fand 2S over any cross ~ection vanishes identi
cally. Now consider the case when (M, gab) is radiation free 
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in a neighborhood within.f of a cross section e. Since Eq. (9) 
implies that 

L - L[(H Fan - L Fan) + (1!321T)(Ncdqacqbd 

X(apab + 2DaDba))]nP€pmndsmn = 0, 

and since the integral over e vanishes, it follows that, for any 
cross section C of .f, 

LLFand 2S = L[H Fan + (1!321T)N ab (apab 

+ 2DaDba)] d 2S, (12) 

C. BMS rotations 

Fix a Bondi conformal frame on .f and consider any 
BMS vector field 5' whose projection to the space of genera
tors of.f yields a nonzero killing field of the two-sphere 
metric induced by qab' Such a BMS generator, 5', will be 
called a rotation and it satisfies, on f, .Y gqab = O. Hence, 
we have, from Eqs. (4) and (5), 

.Y n(HFg - LFIs! = (1!321T)Nab.2" gSab 

= (1!641T).Y s(NabNab ) (13) 

since .2" sqab = 0, and, since Sab - Nab is proportional to 
qab in a Bondi frame. It is straightforward to verify that l2 

NabNab = - 4Dapa 

with 

pa = (1!4)K amlm + (Dmlp)NP[mnal. 

It follows that 

Da Ina(HFs - LFls ) I = - (1!161T).Y sDa pa 

= - (1!161T)Da.2"spa, (14) 

where, in the last step, we have used the fact that Dasa 
= 3k = O. Integrating Eq. (14) over a region of.f bounded 

by any two cross sections C 1 and C2 , one obtains 

f _ f [na(HFs - LFls ) 
Jel JC2 

+ (1!161T).Y spa]€abc dS bc = O. 

If s is tangential to a cross section C of f, 
f c!.2" spa)€abe dS be = O. Let us therefore choose C 1 and C2 

such that 5' is tangential to them. Then, 

f _ f na(HFs - LFls)€abe dS bc = O. (IS) Jel JC2 

Now, let us suppose that there is a cross section e of f, to 
which 5' , is tangential and in the neighborhood of which the 
radiation vanishes. Then, H Fs = 0 on e, and, using Eq. (5.6) 
of the second paper in Ref. 3 and Eq. (IS), it follows l9 that 
S cna(L Fls )€abcdS be = 0, Using e in place of C2 in Eq. (15), we 
now obtain 

f na(HFs - LFls)€abedSbc = O. (16) 
Jc, 
To summarize, if f admits a cross section e to which 

5' is tangential and a neighborhOOd (within f) ofe which is 
radiation free, then the Hamiltonian flux associated with 5' 
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through any cross section of J to which s is tangential 
equals the linkage flux associated with ~s through that 
cross section. 

Remarks: i) The condition that C should exist is not a 
very stringent one: It is satisfied, in particular, if a neighbor
hood of z{) or i+ is radiation free. 

ii) Note that for translations, the Hamiltonian and the 
linkage fluxes agree, whereas for rotations they differ by a 
factor of 2: f d H Ft; - !L Ft;)d 2S = 0. Suppose then that 
H FI; yields some standard units of energy and angular mo
mentum for the choice of translational and rotational gener
ators S = f' and S = ¢a , respectively. Then L Ft; would 
yield these standard units for sa = f' and S = ~¢a (in terms 
of the present definitions). The usual conventions, derived 
from special relativity, are that energy is associated with a 
unit vector f' and that angular momentum is associated with 
a rotational generator ¢a whose orbit parameter has period 
2fT. Reference to the linkage (or Komar) integrals for the 
energy momentum of Kerr space-time, given in the Appen
dix, shows that it is H Ft; which is consistent with the usual 
special relativistic conventions. 

III. SYMPLETIC POTENTIALS FROM L F AND H F 

In this section, we construct an infinite dimensional 
space of asymptotic gravitational fields and show that L F 
and H Fnaturally define one-forms on this space which can 
serve as potentials for the gravitational symplectic structure. 
Since the main purpose of the discussion is only to bring out 
the structural differences between L F and H F, we shall not 
be rigorous wrt functional analysis; a rigorous treatment 
would require substantially more space than is warranted for 
our purpose. 

Fix a four-manifold M with boundary J which is topo
logically S2XR. Fix a functionn on Msuch thatn,;, ° and 
Va n is nowhere zero, where, as before ,;, denotes "equals, 
at points of J, to". Fix a metric gab at points of J, such that 
g abVa nv b n ,;, ° and na ,;, g abV b n is a complete vector 
field on J whose manifold of orbits is diffeomorphic to S 2. 

We shall use the notation of Sec. II to denote various tensor 
fields defined intrinsically on J. M is to be regarded as a 
"small thickening of J" and M = M - J will represent the 
"asymptotic region" of a class of space-times. 

Denote by S the set of vacuum metrics gab' defined on 
M. such that (M, gab = n 2gab ) is a Penrose completion of(M, 
gab) in the sense of Sec. II. Note that gab is required to equal 
the pre-specified metric at points of J. It is easy to check 
(e.g .• using Bondi coordinates) that, given any asymptotical
ly flat space-time (M I, g' ab), one can find its Penrose comple
tion, (M I ,g' ab = n 12,g' ab ). such that there is a diffeomorphism 
from a neighborhood of J' in M I to a neighborhood of J in 
M, which maps n I to nand g' ab to gab for some gab in S. 
Thus, even th,£>u~h we have fixed n on M and gab on J in 
constructing S, S does contain all asymptotically flat phys
ical metrics gab' We shall denote the space ofmetrics 
gab = n 2gab , with gab in S, by S. We assume that S is en
dowed with the structure of an infinite dimensional mani
fold. 

Fix an element gab of S and consider a curve gab (A) 

2414 J. Math. Phys., Vol. 23, No. 12, December 1982 

passing through this gab; gab (0) = gab' Since all elements of 
gab (A ) agree on J, d IdA (gab (A )) ,;, 0. Hence, there exists a 
tensor field Xab on M such that 

~gab(A)1 =nxab · 
dA ..\~O 

By construction, n -txab satisfies the linearized Einstein's 
equation on (M, gab = n - 2gab ). As a consequence, on J, 
Xab satisfies 

2naXa + naVa X ,;, ° . 
(17) 

vaXab - 3Xa - VbX,;, 0, 

where Xa = n - tXab n
b. Here Xab is to be regarded as a tan

gent vector at the point gab of S. A particular class oftangent 
vectors arises from the BMS generators S . Let S be a vec
tor field in M satisfying Eq. (1). Then, 

Xab-n -tHY I; gab - k gab) 

= (n /2)Y I; gab 

defines a tangent vector to S at gab' On (M, gab), the linkage 
flux, ~Ft; = f v L Ft;d 3 J, through a region v of J is a linear 
mapping from the tangent vectors X ab , at a point of S, (aris
ing from BMS generators) to the real numbers. Clearly, the 
mapping admits an obvious extension to all tangent vectors 
X ab , 

~F(x): = 4~ i ( -Va VbX ab + 3vaxa 

+ ~ V 2X + ~X)d3J. 
4 24 

(18) 

This ~F is thus a one-form on S. It will be called the linkage 
one-form. In a similar fashion, we can define the Hamilton
ian one-form;: F : 

Again, if Xab arises via Eq. (1) from a BMS generator S then 
;:F(X) gives the integral over v of the Hamiltonian flux H Fl;' 
We now show that these two one-forms have the same curl 
except for a factor of two. 

We shall use the identity 

Y yFpZP - Y zFp Yp 

= 2YILzvV[ILFvl + Fp(Y yZr, 

which holds for arbitrary vector fields ylL and Z v and arbi
tary one-forms FIL . Fix a point gab of S and consider a two
parameter family of curves gab (y,z) in S such that gab 
(0,0) = gab' The tangent vectors J I Jy and J I Jz are to play 
the role of ylL and ZIL. Thus, Y yZ = 0. Let 
JgabIJyIIO,O) =nYab and JgablJzl 10,0) =nzab . Then we 
have 

[d(;F)].(Y,Z) = ~~F(Z)- ~~F(Y). 
Using the equations 
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~ v V zab 
Jy a b 

::2: YZanQ - (1I2)sP n(YabZ ab ) - (1I2)zab sP n Yab 

+ Va Vb ~zab, 
Jy 

~ V za::2: (1/2)YZ na + V ~za Jy a a a Jy ' 

~ V2Z::2: (1I2)Y sP nZ + V2 JZ, and 
Jy Jy 

~R ::2:2Yana -2sP nY, 
Jy 

which hold at of, the field equations (17) at of, and the fact 
that sP yZ =0, we obtain 

[d (~F)].(Y,Z) 

- (1I81T)1 [yab sP n(Zab - (1I2)Zqab) 

- zabsPn(Yab - (1I2)Yqab)]d 3of (20) 

= : - vw( Y,Z). 

Next, we consider the Hamiltonian one-form. Using the fact 
that (J / Jy)Nab equals the pull-back to of of - sP n (Yab 
- (1I2)Ygab ), one obtains 

[ d (: F) ] .( Y,Z ) 

= - (1I161T)1 yab sP n(Zab - (1I2)Zqab) 

- zab sP n(Yab - (1I2)Yqab)d 3of 

= - (1I2)vw(Y,Z). (21) 

Note that vw( Y,Z ) is precisely the symplectic structure 
associated with the region v of of, used in Ref. 8 (expressed in 
terms of normalizations used here). 

Remarks: (i) The radiative phase space r is constructed 
from connections D on of induced by V.8 Hence, there is a 
natural projection'" from S on to r; whereas r has informa
tion only about the radiative modes associated with gab'S 
has all the information about gab' The two-form vw intro
duced above is the pull-back to S of the natural symplectic 
structure on rv , the subspace of r obtained by restricting 
connectionsDonof tothe region v. Hence, onS, vw is degen
erate, although the natural symplectic tensor on rv is weakly 
nondegenerate. 8 The one-form :! F is also the pull-back to S 
of a one-form on rv; :F refers only to the radiative phase 
space. Hence, the result that :!F is a symplectic potential 
could have been obtained directly on r v ' without any refer
ence to S. Note, incidentally, that:!F is a natural symplectic 
potential on rv: it vanishes identically at all classical vacua 
DO. The reason why we had to construct S is that the linkage 
one-form is not a pull-back to S of anyone-form on rv; ~F 
cannot be projected down to rv unambiguously. This is be
cause ~F has information also about longitudinal modes. To 
see this, let gab be the Minkowski metric and gab (Y), the one
parameter family of Schwarzschild perturbations: 

gab (y)dxadxb = - (1 - (2my/r))du 2 

- 2dudr + r(dO 2 + sin20difJ 2). 
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Then, with [} = 1/ r, we obtain Yab = 2m[} 2(Va u)(V b u) and 
~F(Y) = (1I21T)mfvd

3f #0. (The action of the Hamilton
ian one-form on this Yab is of course zero since Nab vanishes 
identically in Minkowski space.) Thus, the linkage one-form 
probes the asymptotic geometry to a higher order than the 
Hamiltonian one-form; although both are symplectic poten
tials, they contain different information. 

(ii) Since ~F and:!F have the same curl, their difference 
is a closed one-form va. It would be interesting to know if va 
is exact, and, if so, find the function v f on S whose gradient 
gives va. Results of Sec. II show that, already for linearized 
Yab associated with BMS generators, va(Y) has nontrivial 
properties; for example, val Y) vanishes if Yis associated 
with Poincare generators (in which case Yitselfvanishes) but 
not for supertranslations or for a general BMS rotation. 
Therefore v f would have a rich structure if it exists. 

(iii) Note that the fact that a one-form vF has the prop
erty that its curl gives the symplectic structure does not, by 
itself, imply that J (Y) is the Hamiltonian for some canoni
cal transformation associated with Y. But :Fs does have the 
interpretation of the Hamiltonian generating the canonical 
transformation on rv induced by the BMS generator 5a be
cause it satisfies sP y(:Fs ) = Wv (Xs' Y) for all vector fields Y 
on r" induced by the BMS generator Sa. 

IV. DISCUSSION 

From general considerations, one desires that a defini
tion of the BMS conserved quantities, QdC], should have 
the following properties:20 

1. Qd C] should be linear in the BMS vector field 5 a. 

2. The expression of Qs [C] should involve only those 
fields which can be constructed from the knowledge of 5 a, [} 

and gab in an arbitrarily small neighborhood of C. 
3. For the case when 5a is a BMS translation, Qs[C] 

should be the corresponding component of the Bondi four
momentum evaluated at C. 

4. If 5 a is the restriction to of of a Killing field of the 
physical space-time, Qs [C] should be (independent of C and) 
proportional to the Komar integral, Ks: = (1I81T)f C€ab cd(V c 
[} -2Sd )dS ab, associated with Sa. 

5. In Minkowski space, Qs[C] should vanish for all 
BMS vector fields S a and cross sections C. 

6. There should exist a local flux Fs' linear in 5, such 
that, for all C and C " Qs [C] - Qs [C '] = f.:! (Fs 
+ ATabSanb)d3 of for some constantA, independent of 5a, 
where L1 is the volume within of bounded by C and C', and 
Tab = [} - 2Tab , with Tab the physical stress energy tensor.21 

7. Fs should vanish in absence of gravitational radi
ation, i.e., when the Bondi news vanishes. 

How do the linkage and Hamiltonian expressions fare 
with respect to these criteria? The linkages satisfy all proper
ties except 5 and 7. Furthermore, a stronger version of prop
erty 4 is satisfied: If Sa is a Killing field, LQdC] = Ks; the 
proportionality factor is just unity, irrespective of 5 a. The 
failure to satisfy 7 is closely related to this fact. Indeed, from 
arguments given in Ref. 7 it follows that there exists no 
expression whatsoever for Qs [C] which can satisfy properties 
1,6,7 and the stronger version, Q; [C] = Ks' of 4. Thus, the 
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failure of LQr;[C] to conform to requirement 7 is a direct 
consequence of the fact that the linkage integral is a general
ization of the Komar integral. 

In the Hamiltonian approach, so far, one has the 
expression of HQr; [C] only for supertranslations 5 a. This 
expression satisfies all the seven conditions.22 Furthermore, 
for the class of space-times in which matter and gravitational 
radiation, (i.e., Bondi news Nab and *Kabcd nbnd, or, in the 
Newman-Penrose notation, &0, 1/14°,1/13° and 1m ¢2

0
) has sup

port only in the future of some cross section Co of .f + , one 
can trivially extend the definition of HQr; [C] to all BMS gen
erators 5: assign values HQr; [C] for some cross section C in 
the past of Co (with independence ofC following from 6)23 
and define HQr; [C] for an arbitrary cross section C using con
dition 6 and the known flux expressions IfF!;. In the case 
when 5 a is a supertranslation, this procedure yields precisely 
the known expression. In the general case, by construction, 
this HQr;[C] satisfies all properties except 2: it is not clear if 
the expression ofIfQr;[C] obtained here by a simple u-inte
gration of the flux IfF!; can be reexpressed in terms of fields 
defined locally in a neighborhood of C. It is of considerable 
interest to resolve this issue. If one succeeds in obtaining a 
local expression, one would have a satisfactory notion of 
BMS conserved quantities. If, on the other hand, one can 
demonstrate that a local expression cannot exist in general, 
one would have a strong indication that it may be impossible 
to satisfy all the desired conditions. 
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APPENDIX: CONVENTIONS 

Since the relation between linkage and Hamiltonian 
fluxes involve factors of2 in a delicate way, we collect our 
conventions here, for the convenience of the reader. 

1. Space-time fields: 
a) gab has signature - + + + 
b) Curvature tensors are defined via: (1I2R abc dkd 

= V (a Vb Ike' Rab = Ramb m and R = Ra a. 
c) The alternating tensor satisfies EabcdEmnpqg"mgbngcPg"q 

-4! 
2. Fields on.f: 
Our definitions of fields qab' Da, Sa b,Pab' Nab' Kab, 

*K ab, Eabc' E"bc are the same as those of Ref. 12 (and Ref. 8). 
We therefore only recall the relation between these quanti
ties defined intrinsically on .f and space-time fields. 

a) K ab is the pull-back to .f of - 4il - 1 C ambnnm n n . 
b) E"be is the restriction to § of E"bCdnd . 
The symplectic structure il on the radiative phase space 

IS 

il II D I (y,y) = (11817") L (Yub 5t' n red 

- y ) ac bd dsmnp. -Yab nYedq q Emnp 
3. Integrals: 
a) On a metric manifold C, our convention is 
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LEab dS
ab

= Ld
2
S 

= 417", if C is a unit two-sphere. 

On a region v of ,f, the convention is 

ifEabcdsabc = i fd3,f. 

It is because of these conventions that the factors involving 17" 
had to be introduced in the definitions of fluxes. Note that, if 
t a denotes the standard stationary Killing field, and, ¢ a, the 
standard rotational Killing field in Kerr space-time, with the 
present conventions, 

rn = - (1I817")tEabedVetddsab , 

rna = (1I1617")tEab edVe¢ddS ab . 

4. Corrections to relevant formulas in Refs. 7 and 8: 
a) In Ref. 7, Eq. (23) should read (in the notation used in 

that reference): 

F= (1I4)r- 1(V2 
- 2il -lnaVa)H 

+ (1I2)r-lxabXab - (1I4)r- 1X 2 

and, Eq. (25) should read 

F= (l/2)rNabNub' 

Note, however, that Nat. used in the present paper (and in 
Refs. 12 and 8) is - 2 times Nab used in Ref. 7. 

b) In Ref. 8, Eq. (4.12) should read 

H(an) = ~J Nab(aSed + DeDda)qacqbdEmnpdsmnp 
2 f 

and, expression (4.13) should read 

1 f N N ae bd dS mnp 4 a ab cdq q Emnp . 
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that reference. The correct result is 2DlaDb IKe 

= (gela Sb Jd + SelaDb Jd)Kd. 
'5Note, however, that in Minkowski space, .5t' n HF, = .5t' n LF, = 0 for all 

BMS vector fields tao 
'6Here we are using the fact that the gravitational field under consideration 

is arbitrary; functions of lon.f constructed locally (from derivatives of 
the metric gab)' which satisfy .5t' n I ~ 0 for all permissible gab , can depend 
only on those fields on .f which are common to all asymptotically flat 
gravitational fields. Alternatively, the kinematic nature of Ian can be di
rectly established, using the methods of Sec. II, by showing that Ian is 
invariant under perturbations of the metric. 

I7A. Ashtekar, J. Math. Phys. 22, 2885 (1981). 
'8 Although we have worked in a Bondi frame, the final result holds in any 

conformal frame since the linkage as well as the Hamiltonian fluxes are 
conformally invariant. 

'9Let C, be a cross section in this region to which t a is tangential and C2 , a 
nearby cross section in the same region, related, to C, by a BMS time 
translation which commutes with tao Let LI be the region enclosed by C, 
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and C2• Then, f" LF,d 3.f = afe, LF, d 2S by Eq. (15), where the constant 
a denotes the translation relating C, and C2• But by Eq. (5.6) of the second 
paper in Ref. 3, f" LF, d 3.f = O. Hence fe, LF, d 2S = O. 

2°Note that property 4 implies that, if t a is the restriction to.f of a Killing 
field in the physical space-time, F, = O. 

2IHere, we weaken condition (iii) from the definition of asymptotic flatness 
given at the beginning of Sec. II and allow for matter near .f such that the 
stress energy goes to zero to order 4 in the terminology of Ref. 12. 

22From the phase space description of, e.g., Einstein-Maxwell systems (Ap
pendix B, Ref. 17) it follows that, in the Hamiltonian method, fluxes H F, 
due to gravitational radiation and Tabt anb due to matter, just add to give 
the total flux. 

23For instance, set Q,(C) = (1!321T)fe*Kabcdlatbdsed where *Kabcd 
= [} -'Eab mnCmned , where la is any vector field satisfying lana ~ I, and 

where C is a shear-free cut in the stationary region. This then gives the 
correct values for energy and angular momentum in stationary space
times. 
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Functional integration treatment of one-dimensional ionic mixtures 
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The classical one-dimensional jellium with several ionic components is treated exactly by the 
method offunctional integration. It is found that ionic demixion does not occur and that the state 
is crystalline at all temperatures. The period is determined by the greatest common divisor of the 
ionic charges. The structure of low temperature states of some binary mixtures is investigated in 
detail by means of the conditional particle distribution densities. 

PACS numbers: 05.20. - y 

I. INTRODUCTION 

We present in this paper an exact treatment of the statis
tical mechanics of a multicomponent one-dimensional jel
lium by the method offunctional integration. The multicom
ponent jellium model consists of a collection of ions of 
various charges, multiples of a basic charge immersed in a 
background of uniform charge density - p B' 

It has been known for a long time that the one-dimen
sional Coulomb gas of positive and negative point charges 
(without background) can be explicitly solved by the sine
Gordon transformation. 1 The one-dimensional jellium with 
a single type of ion was also rigorously treated in the canoni
cal formalism in Ref. 2, establishing the crystalline nature of 
the state in the thermodynamic limit. Moreover, a transfor
mation analogous to sine-Gordon adapted to the jellium 
(corresponding to a grand-canonical formulation of this sys
tem) has been proposed in various papers3

-
5 but, in this for

malism, it is only recently that the mechanism by which the 
breaking of translation invariance occurs has been made 
mathematically completely precise.6

•
7 

One interest of the functional integration formulation 
of the jellium is that it applies without modification to the 
case where several ionic components are present, allowing, 
thus, the discussion of the possible existence of the pheno
menon of phase separation which may occur in such ionic 
mixtures. 

A characteristic feature of the jellium is that, because of 
the neutrality condition, the total charge density of the ions 
must be identical to that of the background. Therefore, in a 
N-component jellium with given background density - P B' 

only N - 1 ion densities (or N - 1 activities) can be consi
dered as independent quantities. In particular the ionic den
sity of a one-component jellium is fixed: In this case, our 
grand-canonical treatment and the canonical formalism of 
Ref. 2 lead simply to two different mathematical representa
tions of the same state. 

However, the binary ionic jellium presents a richer 
structure since it has one additional parameter, the relative 
proportion of ions, and it serves as a model to study the 
miscibility of ions in a pressure-ionized mixture (Ref. 8, and 
references quoted there). In this system at sufficiently high 
density and low temperature, the electron gas is degenerate 
and forms a uniform neutralizing background for the ions. 
Since the ions are much heavier than the electrons, they can 

be treated classically and the ionic fluid is thus modelled by 
the two component classical jellium. If ion-electron colli
sions are neglected, the free energy of the whole system con
sists of the sum of the ionic and of the electronic contribu
tion, the latter being taken as the ground-state energy of the 
weakly interacting electron gas. Therefore, in these approxi
mations, the discussion of the miscibility problem requires 
essentially the knowledge of the free energy of a classical 
ionic mixture. We obtain here that this ionic contribution to 
the total free energy is an analytic function of the thermo
dynamic parameter, indicating that in one dimension, ions 
are miscible at all temperatures and densities. Although 
such a result may be expected, it deserves a proof because of 
the long range of the Coulomb force. 

Concerning the structure of the state, we show that it is 
always nontrivially periodic in space with period a = ep ii I, e 
being the greatest common divisor of the ionic charges. Fur
thermore, the state is unique in the sense that thermodyna
mic limits with different boundary charges (or boundary 
electric fields) give the same physical state up to translations 
in the fundamental period. This follows from the fact that 
boundary charges can always be exactly screened by means 
of a global transport of the ionic lattice in the background, 
with no additional polarization in the bulk. Thus from a 
static viewpoint, the jellium behaves as a perfect crystalline 
ionic conductor and could be considered as an elementary 
prototype of a solid electrolyte. We remark that the situation 
is very different for the two component Coulomb gas, which 
is known to be an insulator and to have several dielectric 
phases characterized by their internal degree of polariza
tion. 7

•9 

These features can be understood on the basis of the 
following simple electrostatic arguments. The electric field 
E (x) corresponding to a configuration of ions of charge 
e l = e and e2 = 2e, say, has discontinuities 2e i at points 
where charges are located and a slope - 2pB otherwise, 
(p B > 0) (Fig. I). Since the energy is proportional to 
f E2(X) dx, typical configurations in the Gibbs state at low 
temperature are those for which the electric field has the 
smallest possible fluctuations around zero. In particular, in 
the ground state, each ion occupies the center of a segment of 
background oflength eiPii I proportional to its chargeei . By 
Newton's theorem, these neutral entities (i.e., the ions with 
their neutralizing portion of background) do not interact an
ymore and, therefore, the ground-state energy is invariant 
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FIG. I. The electric field E ( x) corresponding to a configuration of ions of 
charge e, = e and e2 = 2e, which has discontinuities 2e, at points where 
charges are located. 

under their permutations. Because of this degeneracy, ions 
oflarge charges have no tendency to segregate from those of 
smaller charges. 

Moreover, this degeneracy implies that in ground state 
configurations a given type of ion can occupy any site of a 
lattice of period a = ep i I. In fact, charges which are even 
multiples of e will be found on the lattice [x = kepi I, kEl J ' 
whereas charges which are odd multiples of e will sit on 
points of the shifted lattice [x = (k + ~) ep iI, kEl J . The ex
pected periodicity of the state is thus a = ep i I. As a result of 
the noncoincident distributions of odd and even ions, the 
neutralization ofthe background in thermal states occurs on 
the scale a, which could be smaller than the neutralizing 
intervals er pi I corresponding to individual ions. 

The absence of ionic separation in one dimension shows 
that the phenomenon has to be attributed to multipolar 
forces which exist in higher dimensions. For instance, we 
can consider in two dimensions the interaction potential 
between neutral squares consisting of ions in the center of 
square shaped portions of background. By a multipolar ex
pansion, one finds that the potential between two such 
squares behaves asymptotically as gr- 8

, where r is the dis
tance between the centers of the squares and g depends on 
the relative orientation of the squares. One finds also that g 
has not a constant sign, and hence the interaction can be 
repulsive as well as attractive at large distances. 10 This indi
cates that ionic demixion (if it occurs in a purely classical 
jellium) has to do with a delicate balance between repulsive 
and attractive parts of the multipolar forces. 

The definition of the system and the statements of re
sults are given in Sec. II. In Sec. III, we express the statistical 
mechanical quantities of the general system (with boundary 
charges) in terms offunctional integrals in the sine-Gordon 
language, and establish various properties of the state in the 
thermodynamic limit. It should be noted that one could use 
as well the equivalent electric field ensemble formalism de
veloped in Refs. 1 and 7, but the sine-Gordon formalism is 
more directly adapted to the calculation of particle correla
tions and distribution functions. Technically, the main dif
ference with the two component Coulomb gas I is that the 
transfer matrix of the jellium is never self-adjoint, and we 
study it as a contractive positivity preserving semigroup. 

Section VI is devoted to the analysis of the state at low 
temperature by means of the conditional distribution func
tions. These quantities, which enter in the DLR equilibrium 
conditions, II give the probability distribution of particles in 
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a local region of the infinite system, given the external con
figuration. In a one-dimensional Coulomb system, they take 
a particularly simple form due to the fact that the charge 
configuration external to a local region determines the elec
tric field acting at the boundary of this region. 7 Therefore, 
the conditional probabilities are of the form of finite Gibbs 
distribution with prescribed electric field at the boundaries, 
and thus explicitly known. The usual distribution functions 
are then recovered by averaging the conditional probabilities 
on the equilibrium electric field distributions. In this way, it 
is possible to exhibit the structure of the low temperature 
state and to see that it is close to the ground state. In particu
lar, in the grand-canonical formalism where densities are not 
fixed and particles can flow in and out of the system, the state 
of an ionic mixture converges as the temperature tends to 
zero to the state of a jellium with a single species of ions, 
those having the smallest charge. In other words, ionic den
sities vanish at low temperatures except that corresponding 
to the smallest charge. This follows from the fact that local 
neutralization of the background is best achieved by small 
charges. We illustrate this behavior in two simple examples 
of binary mixtures. 

Some elements of proofs are given in Appendices A and 
B. A complete and detailed account of all proofs can be 
found in Ref. 10. 

II. GRAND-CANONICAL ENSEMBLES AND STATEMENT 
OF THE RESULTS 

The system consists of N types of point charges 
el,eZ, ... ,eN in the interval [O,L) with a background charge 
density - p B' P B > 0. The charges e r' r = 1, ... ,N, are as
sumed to be distinct multiples of a common charge which is 
taken equal to 1, i.e., erEl\ [OJ. Without further specifica
tion, charges can have both signs with the single restriction 
that at least, one of the species is positively charged (say 
el > 0). Denoting by e the greatest common divisor of the er, 
r = 1, ... ,N, we will have er = Sre (51 > 0), where 5" 

r = 1, ... ,N, is a set of distinct integers with greatest common 
divisor equal to 1. 

The system is submitted to a constant external field D 
[which may be due to boundary charges (q, - q) located in ° 
and L with D = 2q). The charge density, electric field, and 
energy corresponding to a configuration of n particles, Q n 

= [XIO'I, .. ·,XnO'n J, x)E[O,L), O')EI eI' .. eN J, are thus 
N 

c(x; Qn) = I a) b(x - x)) - PB 
)=1 

with total charge 

and 

n 

C(Qn) = I a) -PBL, 
)= I 

N 

E(x; Qn) = I a) sgn(x - x)) 
)= I 

-2PB x +PBL +D, 

x {I, x> 0, 
sgn x = N = _ 1, x < 0, 

Ch. Lugrin and Ph. A. Martin 
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1 1L 1L = - - dx dy e(x; Qn)lx - yl ely; Qn) 
200 

_ D rL 
x e(x; Q n) dx + [ C (Q n) + D PL. (2) 

)0 4 

To each species we associate an activity parameter Zr 

-ze, = (21TmJf3fz2f exp( f3f.Lr)' where mr and f.Lr are the 
masses and chemical potentials of the particles. With H (Q n) 
we construct finite volume grand canonical ensembles for 
which the total charge has a fixed value CER. Since for any 
configuration Q n, ~ 7 ~ 1 U i belongs to e'l.., the condition 
C (Q n) = C implies that such ensembles can only be realized 
in intervals of length of the form 

I C -I I Ca 1 L=(e- )PB = a- -, a=epB , (3) 
e 

where I is a positive integer. 

The ensemble is characterized by its total charge C and 
the external field D, or equivalently by the two numbers E, 

OER which are the boundary values of the electric fields in 0 
andL, 

E = E (0; Q n) = D - C, 
(4) ° = E (L; Q n) = D + c. 

We shall speak of the (0, E)-ensembles when the bound
ary values (4) are specified and the condition (3) fulfilled. 
WritingH (Q nl 0, E) for the energy (2), the partition function 
of the (0, E)-ensemble is 

00 

ZL(O,E)= L L 
n =0 U1"'Un n! 

X1L dx l · .. 1
L 

dXn exp[ -f3H(Q nIO, E)] 

(5) 

with the summation restricted by the constraint 
~;~I u j -LpB =c. 

The one particle density is 

p~.E) (XI7) 
Z 00 Z ···z 

U L L u', u. 
ZL(O,E)n~ou, ... u. n. 

X SaL dx l .. · SoL dXn exp[ - f3H(xuQ nIO, E)] (6) 

with the summation restricted to the configurations such 
that U + ~; ~ 1 uj - P B L = C. The higher order correla
tion functionspr· EI (x1u\> ... ,xnun) are given by similar ex
pressions. 

We remark that if there is only one type ofion, the (0, E)
ensemble is canonical since the sum (5) has only one nonvan
ishing term compatible with the constraint nel - LpB = C. 
In this case, the ° = E = 0 state coincides with that treated in 
Ref. 2. 
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We establish the following facts concerning states ob
tained as thermodynamic limits of (0, E)-ensembles. 

Proposition 1: 
(i)f3p = limL _ oo (l/L) In ZL(O, E) exists and is indepen

dent of E and 0. 
(ii)p = P(ZI'"'' Z" 13) is analytic in each activity Zr and in 

the temperature 13 - 1 in a neighborhood of the positive real 
axis. 

The physical interpretation of (i) is the following. The 
macroscopic average polarization 9 in a neutral state 
(C = 0, 0= D) is found to be from (2) 

9 = lim / J.- rL 
x e(x) dX) 

L- oo \L )0 

= 13 - 1 lim J.-~ In Z L + D 
L-oo L aD 2 

=.ap + D = D. 
aD 2 2 

Therefore (i) shows that 9 equals the boundary charge 
q = D /2. Thus no polarization is created in the bulk and the 
average internal electric field (E) = D - 29 vanishes. The 
point (ii) means that phase segregation does not occur. For 
instance, in a binary mixture, p will essentially depend on a 
single activity parameter w fixing the relative proportion of 
ions (see Remark 2, end of Sec. III). Analyticity in w implies 
that one cannot have two coexisting phases at the same tem
perature with different ionic densities. 

Proposition 2: 
(i) The thermodynamic limitplB. E) of the (0, E)-ensemble 

exists and is spatially periodic of period a = ep B I. Precisely, 
fixing the origin in L /2 and according to the parity of L [i.e., I 
even or odd in (3)], one has 

lim pro EI(x + !:: , u) 
L-oo 2 

= {p( x - ~: ' u), I even, 

p(x - Da -!!.... U) I odd, 
2e 2' , 

where p is the state with ° = E = 0 boundary conditions. 
Moreover pIx + a, u) = pIx, u). The same relations hold for 
the higher order correlation functions. 

(ii) The correlations are analytic in ZI, ... ,zN' 13 in a 
neighborhood of the positive real axis. 

(iii) The correlations have an exponential clustering. 
(iv) Neutrality holds in the period a, 

NIl L er - pIx, er ) dx =PB . 
r~ 1 a 0 

Finally, we have 

(7) 

Proposition 3: Let all charges be positive. For any open 
set of values of 13, the density pIx, u) of ions with charge u 
being an odd multiple of e is not a constant. 

Proposition 3 asserts that the state is never translation 
invariant in the whole temperature range. More informa
tions on the periodic structure of the state will be given in 
Sec. III. 
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The global shift ofthe state by the quantity Da/2e, due 
to the external field, results again from the perfect screening 
of the boundary charge q. This is discussed in more detail in 
Sec. III C. 

III. FUNCTIONAL INTEGRATION 

A. Representation of the state 

Since the functional integration formalism for a Cou
lomb system is well known (see references in the Introduc
tion), we have only to adapt it to our situation, and we shall 
therefore give briefly the main steps. The treatment general
izes that found in Ref. 6 by allowing several types of charges 
and incorporating the general boundary conditions (0, E). 

Using - Ix - yl = min(x,y) + (x + y)/2, the energy 
(2) can be written in the form 

H (Q") = 1L dx SaL dy c(x; Q") min(x, y) c( y; Q") 

1L 02 
- 0 X c(x; Q") dx + - L . 

o 4 
(8) 

One then introduces the Gaussian measure ( - ) e. '1'0 on 
the real random field rp (x) defined by its finite dimensional 
distributions 

Re''I'Jrplx I""'rp" x") 

= Re(rp" -rp"_I'X" -X"_I) 

.. ·Re(rp2 - rpl,X2 - x.J Re(rpl - rpo, XI) , 

where 

1 (. 0 rp2 ) 
Re(rp,x) = (41T.oX)1/2 exp - lrp"2 - 4.ox 

is the fundamental solution of the equation 

[ a (. a 0 )2] - +.0 -1- + - Re(rp, x) =0 
ax arp 2 

(9) 

[one should note that when 0 = 0, ( - )0''1'0 is the Wiener 
measurefortrajectoriesrp (x) with initial conditionrp (0) = rpo, 
H (Q n) is the corresponding covariance]. For general 0, a 
Gaussian integration gives 

( exp i 1L c(x; Q") rp (x) dX) e, '1'0 

= exp[ - .oH(Q")] exp[irpo C(Q")] . (10) 

Since from (3) C (Q") - CEe'l., the fixed total charge 
condition is easily implemented by defining the measure 

( - )e, € = ~ ftTle drpo ( - )e,'I'o exp( - irpoC) , 
21T -tTle 

so 

(exp i (L c(x; Q") rp (x) dX) 
k ~€ 

= {exp[ -.oH(Q"IO, E)], C(Q") = C (11) 
0, C(Q")#C. . 

With (10), all statistical mechanical quantities can be 
expressed as functional integrals with respect to the measure 
( - ) e € and then be computed by means ofthe Feynman
Kac f~rmula.12 One gets from (5) and (6) 
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ZdO,E) 

= (exp [1L 

dx Ct.z' exp [ie, rp (x)] - iPB rp (X)) ] t. E 

= drp ~ drpo Uf(rp, rpo) exp( - irpoC) fOO ftTle 
- 00 21T - tTle 

and 

plJ..E)(X,O') 

= Z" ( exp [i0' rp (x)] 
ZL(O, E) 

(12) 

xexp [ 1L dy Ctl Z, exp[ ie, rp (y)] - iPBrp (y))]t € 

= " drp ~ drpo (U f x 
Z foo ftTle 

ZL (0, E) - 00 21T - tTle -
X exp(iO'<1» U ~) (rp,rpo) exp( - irpoC) . (13) 

U~(rp,rpo) = (exp ro x)(rp,rpo) is the kernel on ,2"2(R, drp) of 
the contractive semigroup generated by 

N 

r e = -.o1p + 0/2)2 + I z, exp(ie,<1» - iPB <1>. (14) 
r= 1 

Here p = - id I drp and <1> is the operator of multiplica
tion by rp in ,2"2(R, drp ). 

One should note two important properties of U~: U~ 
and U~ are unitarily equivalent, 

U~ = exp( - i<1> ~) U~ exp(i<1> ~) . (15) 

Under a translation a in the rp variable U~ transforms 
as 

exp( - iap) U~(ZI, ... ,zN'PB) exp(iap) 

= U~(ZI exp( - iael), ... ,zN exp( - iaeN)) exp(iapB x). 

(16) 

Other properties of U~ are given in Appendix A. 

B. The transfer matrix 

The thermodynamic limit of the grand-canonical en
semble (12) and (13) can be taken by the usual mechanism of 
the transfer matrix. The proper definition of the transfer ma
trix for the jellium is a consequence of the following funda
mental observation: Equation (16) shows that U~ is invar
iant under the discrete subgroup of translations 
1'" = I rp-<p + 21Tnl e, nE.'l. J whenever x is an integer multiple 
of a = ep;; I. Therefore U: is decomposed by the direct inte
gral,2"2(R)=S"' ,2"2([ -1Tle, 1Tle])(Ref.13)andwecan 
define its component U: on ,2"2([ - 1Tle, 1Tle] , drp) by the 
periodized kernel 

U:(rp,rp') = "~~OO U:(rp+ 2:n ,rp'). (17) 

More generally, if A is a 1'"-invariant operator on 
,2"2(R, drp ) we define A to be the corresponding periodized 
operator on ,2"2([ - 1T Ie, 1T Ie], drp). One has in particular13 

Lemma 1a: exp(ie<1» and pare 1'" invariant and p is the 
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operator - i(d /dq; )on,2"2([ - 1T/e, 1T/e] , dq; )withperiod
ic boundary conditions. 

In the case where a 7 invariant A has a kernel on 
,2"2(R, dq;), 

- ') ~ A ( 21Tn ') A (q;, q; = n ~~ 00 q; + -e-' q; , (18) 

periodic in both arguments. We introduce then the Fourier 
representation of ,2"2([ - 1T/e, 1T/e] , dq;) by the vectors 
(q; lu) = (e/21T)1/2 exp(ieuq;), uEZ, and 

(uiA Iv) =...!!....-. dq; dq;' 
J

71'Ie J1Tle 

21T - 1Tle - 1Tle 

X exp( - ieuq; + ievq; ') A (q;, q; ') . (19) 
Finally, we extend the definition (18) (when it is well 

defined) to operators which are not necessarily 7 invariant by 
considering the right-hand side of (18) as a kernel acting on 
,2"2([ - 1T/e, 1T/e] , dq;). We have 

Lemma 1 b: If A is 7 invariant and B is an operator with 
kernel B (q;, q; ') on ,2"2(R, dq; ) (not necessarily 7 invariant), 

then one has AB = AB, A* = (A)*, and A--=t = (A )-1. 
Lemma 2 shows that U ~ has all the usual properties of a 

transfer matrix. We shall write simply UO = U~ and when 
0=0, U~ = U. 

Lemma 2: 
(i) UO is compact and has a unique eigenvector n° with 

positive Fourier coefficients (uln 0). The corresponding ei
genvalue exp(ro) is positive and has the largest modulus of 
the characteristic numbers of Uo. (UO)* has a unique posi
tive eigenvector n ~ with the same eigenvalue. 

We have 

(UO)'=exp(/~)P+R', lEN, 

where P = In O)(n ~I/(n ° In~) is the eigenprojection on 
exp(~) and the spectral radius exp( rf) of R is strictly smaller 
than exp(~). 

(ii) UO(ZI> ... ,zN,/3) is analytic in ZI, ... ,zN and P for 
Rep>O. 

(iii) UO and Uare similar with UO =A -IUA, with 

A = UOa/2e exp(i<1> (0 /2)). In particular, for 0 = 2e, U 2e and 
U are unitarily equivalent with U 2e = exp( - ie<1» U 
X exp(ie<1> ). 

(iv) UO(ZI, ... ,zN) and UO(ZI exp( - iela), ... ,zN 
X exp( - ie Na)) X exp(iae) are unitarily equivalent for any 
aER. 

(v) The charge conjugation er-- - er,PB-- - PB' 
0-- - 0 is represented by CUOC = (U ~ 0)* and cn ° 
= n c~o. 

Before proving the lemma, let us note that the matrix 
elements of U = U ~ ~ 0 have a simple interpretation. If 
L = la, I integer, it follows from (12) and (15) that 

Z'a (0, E) = ...!!....-. J"" dq; J1Tle dq;o 
21T - "" - TTle 

xexp( - i ~ q; + i ~ q;o) (Ua)'(q;, q;o)· 

For the particular boundary condition 0 = 2eu, 
E = 2ev, u,vEZ, we get with the definitions (17) and (19) 

Z/a(2eu,2ev) = (ul(U)/lv). (20) 
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The matrix elements of (U)' are thus partition functions of 
finite system in [O,la] with integer boundary conditions. 

Proof of lemma 2: To prove part (i) of the lemma, it 
suffices to show by theorem P" 14 that (a) U ° is compact, (b) 
(ul UO Iv»O, (c) for any pair (u,v) there exists an integer M 
such that (ul(Uo)/lv»Ofor I>M. 

All these properties are displayed by expanding the 
transfer matrix as a power series in the activities (see Appen
dixA). 

UO = exp( - ie<1» [ f r dXn I
Xn 

dXn ~ I 
n ~ 0 Jo Jo 

with 

... iX, dx I G (a, Xn {tl Zr exp(ier <1») 

···G (X2' xd Ctl Zr exp(ier <1» G (X,O))] , 

G (x, y) = exp - P p1 -'----'-'--[
(x - Yf] 

12 

(21) 

xexp [ -p(p + ~ -PB (x ~ Y)Y (x - y)]. 
(22) 

Since G (x, y) is norm continuous and IIG (x, y)ll.;;; 1 for 
x> y the integrals are defined in the norm Riemann sense and 
the series are norm convergent with 

II UO II.;;; exp(a L~~ I IZr I). 
This implies that U ° is compact since G (x, y) is compact 

on ,2"2([ - 1T/e,1T/e], dq;) for x > y. Moreover exp(ier<1> )Iu) 
= lu + sr) and G (x, y) acts as a multiplication by a positive 

function in Fourier's representation showing that UO pre
serves positivity. Point (c) is easy to check from the following 
property of the matrix (ul UO Iv): 

(u - 1IUOlu»0 for all uEZ; (23a) 

there exists w> 0 such that 

(23b) 

Eq. (23a) arises from the zero order term in (21). 
The contribution of order II;~ I Zaj in (21) to UO lu) is 

proportional to 

where m,>O is the number of values of the (7j equal to e, 
= Sr e. Equation (23b) follows then from the fact that given a 

set of integers SI' S2, ... ,sN with SI > 0 and greatest common 
divisor equal to 1, any positive number v, except of finite 
number of them, can be written as v = L~~ I mr S, - 1, m, 
EN +. By the theorem of Bezout, 15 there exists integers 
tl, ... ,tN such that L~~ I t, s, = 1. Choose 
v>w = L~~ I (t,)2 S,' then v + 1 = SI L~~ I (t,)2 S, 
+ PSI + q withp>O and O.;;;q < S I by the algorithm of Euclid; 

and thus 
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N 

=(t~SI +p+t1q)SI + L ((t,)2S1 +t,q)s, -1, 
,=2 

which is clearly of the desired form since (t,)2> It, I. 
(ii) follows from the fact that G (x, y) is analytic and 

bounded with Re /3 > 0 and the uniform convergence of the 
series (21). 

For (iii), one has from (15) and the semigroup property 
ofUx , 

Equation (16) implies that A = U 8a12e exp(itP (0 /2)) is r 
invariant and thus (ii) follows from Lemma lb. 

Since exp(ietP ) is itself r-invariant, U 2e and U are unitar
ily equivalent. 

(iv) is a consequence of(16) and the fact that exp(iap) is 
r-invariant, aER. 

(v) follows immediately from the definitions. • 
We turn now to the proof of Propositions 1 and 2. 
With the definition (18) the partition function (12) and 

the density (13) read for general values of 0 and E, 

ZL (0, E) 

I

1Tle 
I1Tle e -8 = - dcp dcpo U L (CPICPO) exp( - icpoC) , 

21T - Trle - 1Tle 

(24) 

x (U f 12 _ x exp(iutP) U L2+ x )(cp,CPo) exp( - icpo C) . 

(25) 

In (25), we have shifted the origin from 0 to L /2. 
We choose L ofthe form (4), setting L = 21a - Cafe, 1 

integer. [The thermodynamic limit obtained from an odd 
sequence L = (21 + l)a - Cafe, 1 integer, can be treated in 
the same way.] The operators involved in (24) and (25) are not 
r-invariant for general E and O. But, using the semigroup 
property of Ux and Lemma 1 b, we can write 

- 8 8 8 - 8 2/-
U L = U 21a U _ Cale = (U ) B, (26) 

with B = U~ Cale (B is not r-invariant). 
In the same way, one gets 

Ufl2_x exp(iutP) UL2+X 

= (U 8 )1 U
8
_(x+cal2e) exp(iutP) U~+cal2e (U 8 )1 iJ. 

(27) 

When (26) and (27) are inserted in (24) and (25), one 
obtains in view ofthe asymptotic behavior (i) of the transfer 
matrix 

(28) 
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lim p~. E) (x, u) 
L~oc 

(29) 

The similarity of U8 and Uimplies that r8
) = yis inde

pendent of O. Moreover, inserting n () = A-I nand n ~ 
= A * nc in (29) one has with the definition of A, the relation 
(15), and D = 0 - C, 

A U ()_ Ix + Cal2e) exp( iutP) U ~ + Cal2e A-I 

= U _ Ix - Dal2e) exp(iutP) U x _ Da/2e . 

This shows that 

x U _ (x _ Dal2e) exp(iutP) U x _ Dal2e In) 

(30) 

is independent of 0 and E except for the shift - Da/2e. 
Finally, the unitary equivalence of u 2e and U implies 

limL~oc pte
.
2e

) (x, u) = limL~oo p~.O)(x, u) and therefore with 
(30), one hasp(x, u) =p(x - a, u). 

The arguments can be generalized to the higher order 
correlation functions establishing thus the first parts of Pro
positions 1 and 2. 

Since Uis analytic inzl, ... ,zN and/3 (Re /3> 0), and that 
its maximal eigenvalue exp(y) is simple and positive when 
ZI, ... ,zN and/3 are real and positive, we can conclude by the 
Kato-Rellich theorem 16 that exp(y) is analytic in each argu
ment in a neighborhood of the positive real axis. A similar 
consideration will give the analyticity of the correlation 
functions. As usual, the exponential clustering comes from 
the gap in the spectrum ofthe transfer matrix. The neutrality 
relation is a consequence of the unitary equivalence given in 
part (iv) of Lemma 2. This unitary equivalence implies that 

exp(y(ZI,· .. ,zN)) 
= exp[iae + y(zl exp( - iaed, ... ,zN exp( - iaeN))] 

and hence 

N a L e, z, - y(ZI,· .. ,zN) = e. 
,= 1 az, 

(31) 

By definition of the grand-canonical potential and the 
periodicity of pIx, u) one has 

Zu a . apL 
--y= hmz --
a azu L~oo u azu 

liL lia 

= lim - PL (x, u) dx = - pIx, u) dx . (32) 
L~oo Loa 0 

Thus (31) gives (iii) of Proposition 2. 
ProofofProposition 3: To have the result of Proposition 

3, we show by an explicit calculation that 
(d 2/dx2

) pIx, u)lx = 0> 0 when all charges are positive and u 
is an odd mUltiple of e [(d / dx) pIx, u) Ix = 0 = 0 since the 
state with 0 = E = 0 is invariant under space inversion]. One 
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gets from (30) and by working out the action of the double 
commutator 

d
2 

I -2P(X, u) 
dx x~O 

= za(fle Ifl )-1 (fle I [(exp(iu<P ),r], r) Ifl) 

= (:~~) { 2 r~1 zr er (~ (ulfl )(fle lu + ule + Sr)) 

+ 2: (/3ue2(2u + ule)Z - 2pB)(ulfl )(flc lu + Ule)} . 
uEZ 

(33) 

The first term in (33) is obviously positive. The second 
term is also positive for /3 large enough since (2u + ule)2> 1 
when ule is odd, uEZ. We conclude thatpp(x, u) is not con
stant for /3>/30' Choose Xo such that Pp" (xo, u) - P(3" (0, u) 
#0, then, by Proposition 2 (ii) the holomorphic function 
pp(xo, u) - p(3(O, u) of /3 cannot vanish on an open set of the 
real positive axis. 

Remarks: 
(1) In the proof of Lemma 2, the point (c) is trivial if one 

of the species has its charge equal to e. The given argument is 
needed when all ionic charges differ from e. 

(2) Because of the neutrality (7), the grand canonical 
potential depends on only N - 1 activities in a nontrivial 
way. For instance, if we introduce in a binary mixture e l ,e2 

the two new parameters WI and Wz defined by ZI = wr' 
Zz = wz(zde,le" (31) implies that the grand--canonical poten
tial is necessarily of the form 

/3p = PB In WI - l(w2 ); 

I( w2 ) depends only on W2 and is the Legendre transform of /3p 
with respect to the background charge density; Wz deter
mines the relative ionic proportions. In a one component 
jelli urn /3p = P B In Z - I and I is the canonical free energy 
defined in Ref. 2. 

(3) The proof of Proposition 3 uses in an essential way 
the positivity of all ionic charges. One sees that pIx, u) has a 
local minimum in x = 0 for odd chargt:s: Odd charges will 
not occupy the lattice I ka,kEZ} but the shifted lattice 
I (k + !) a,kEZ}. This point will be discussed in more detail in 
the next section. 

The proof of Proposition 3 cannot be extended in a 
straightforward way to the case where some particles have 
negative charges. At low temperature, one expects that a 
jellium with charges of both signs will consist of an ionic 
crystal with an additional gas of neutral molecules, showing 
therefore a more complicated structure. For instance, low 
energy configurations of a binary jellium with charges e and 
- e will have + e ions neutralizing the background on the 

lattice I (k + ~)a,kEZ), and the other charges will form neu
tral dipoles (e, - e). This class of systems will not be dis
cussed in more detail in the present paper. 

c. The semi-infinite system 

We show here that in the jellium system, boundary 
charges are perfectly screened. For this, we compute the ion
ic densities for the semi-infinite system, fixing now the origin 
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at the position of the left wall. We treat the case where there 
is no excess charge, C = 0, e = E = D is the applied external 
field, and L = la, I integer. Equation (13) gives 

pif.,IJ) (x, u) = Za 
ZL(E,e) 

X(OI(U IJ )' UIJ_xexp(iu<P)U~IO). (34) 

With Lemma 2(i), the limiting density plJ (x, u) is simply 

plJ(x, u) 

= lim pif.' IJ) (x, u) 
L~oo 

(35) 

We remark that, using again the transfer matrix, 
plJ(x, u) converges exponentially fast to its bulk value (30) as 
x~oo. 

Let us now compute the total charge in the interval 
[O,y]. From the identity 

d 
dx (U _xpUx ) 

= U -x (~I Zr er eXP(ier<p)-PB) Ux , (36) 

one gets 
N 

c(x) = 2: er plJ(x, er) - PB 
r= 1 

=(fl~IO)-I! (fl~1 UIJ_xpU~IO) 

and, sinceplO) = O. 

f c(x) dx = (fl ~IO)-I (fl ~I U IJ_y pU~ 10). 

(37) 

(38) 

Settingy, = la + ea/2e, I integer, and letting I~oo, we 
obtain the total charge in the neighborhood of the wall, 

i
Y / 

lim c(x)dx 
1-00 0 

= (flclJlfllJ)-1 (fl IJc I U IJ U IJ IfllJ) - Da/2e P Da/2e 

= (flclfl)-I(flcl exp(i<P ~)pexp( -i<P ~) Ifl) 

(flclplfl) _ ~ = _ D (39) 
(flclfl) 2 2 

The second equality results of the relation between U IJ 

and U given in Lemma 2 (iii), (flc I plfl ) = 0 follows from (iv) 
in Lemma 2 and the fact that P is odd under charge conjuga
tion. Equation (39) is the statement of perfect screening of 
the boundary charge q = D /2. One can see by similar con
siderations that when C #0, the fraction C 12 of the excess 
charge will be located near each boundary. and the state in 
the bulk remains unchanged. 

IV. LOW TEMPERATURE STATES 

In this section. we shall only consider pure ionic sys
tems with all charges el,. ... eN positive and as before 
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a = ep;; I. The state of the infinite system will always corre
spond to the € = () = 0 boundary conditions. 

A. Ground state of the finite system 

For an ordered configuration O<;xI <;x2<;",<;xn <;L the 
finite volume energy (2) (with € = () = 0) can also be written 
as a quadratic form: 

n 

H(QnIOO) =PB I (7) (x) -XJ)2 
)=1 

with 

xJ = I (7; +....L .!!...-. (

)- I (7') 

;= I 2 e 
Thus the static equilibrium positions of the ions are of 

the form k la or (k2 + !) a, when the charges are, respectively, 
even or odd multiples of e, k p k2 being some integers. 

By permutations of the ions, there are 
(ml + ... + mN)!/ml!···mN! different ground state configura
tions, where mr is the number of charges er • 

B. Conditional probabilities and distribution of the 
electric field 

The structure of the state is best understood by means of 
its conditional probabilities, which take a very simple form 
in one-dimensional Coulomb systems. The point is that a 
particle configuration external to an interval [YI' Y2] deter
mines the electric field E(YIl and E(h) atYI andY2. 7 Thus 
conditional probabilities for an ionic distribution Q n in 
[y I' Y2] are specified by the possible boundary values of the 
electric field at Y I and Y2' 

,ul y,.y, ,(Qnl E (Y2)' E (yIl) 

= [(~\ za, )/Z(E(Y2),E(YIl)] 

Xexp[ -/3H(Q nIE(Y2),E(yd)] (41) 

if 

and zero otherwise. 
We note from (2) that in ajellium state with € = () = 0 

conditions, E (x) belongs to 2eZ whenever XEaZ. When the 
interval [YI' h] is a multiple of the period, i.e., YI = 0, 
Y2 = la, I integer, we will have E (0) = 2ev, E (/a) = 2eu with 
u,vEZandby(20),Z(E(/a), E(O)) = (ul(U)'lv).Inthiscase, we 
shall simply write ,u,(Q nlu,v) for the conditional probability 
(41), 

n 

,u,(Qnlu,v) = 0 if I (7/e -I #u - v (42) 
)=1 

and we have the normalization relation 

(43) 
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In particular ,u,(0Iu,v) = 1 ifu = I + v and 
,u(0Iu,v) = 0 otherwise. 

Moreover, it is known 1.7 that the electric field E (x), 
xEaZ, is itself a Markov process with stationary distribution 
(ilc lu)(ulil )I(ilc lil) and joint distribution given by 

P,(u,v) = P(E (/a) = 2eu, E (0) = 2ev) 

(ilc lu)(ul(U)'lv)(vlil) 
= exp( - ria) ,(44) 

(ilclil) 

O<;P, (u,v)<; 1, I P,(u,v) = 1. (45) 
u.VEZ 

The probability densities,u, (Q n) for an ionic configura
tion Q n in [O,la] can then be constructed by averaging the 
conditional probabilities (41) over the electric field distribu
tion 

,u,(Qn) = I P,(u,v),u,(Qnlu,v). (46) 
u,VEZ 

In the low temperature limit, probabilities of electric 
field configurations will be small except those corresponding 
to particle configurations with minimal energy. One expects 
therefore that all P, (u,v) will vanish as /3- 00 except for 
boundary fields E (0) = 2ev, E (fa) = 2eu corresponding to 
ground state configurations. Then, the particle distributions 
,u,(Q n) will essentially be determined by one (or a few) condi
tional probabilities which are explicitly given by (41). One 
has therefore to estimate the joint electric field distribution 
at low temperature: This will be done for the two binary ionic 
jellium with charges el = e, e2 = 2e and el = 2e, e2 = 3e. 

C. The binary ionic mixture e, = e, e2 = 2e 

The lowest energy configurations of particles of charges 
el = e and e2 = 2e in the interval [O,a] is [see (40)] 

(47) 

It consists of a single charge e I in [O,a] with boundary 
fields (E (a), E (0)) = (0,0). Because of the constraint (42), the 
corresponding partition function is simply 

Za(O,O) =ZI [ exp[ -/3H(x, eIIO,O)] dx. (48) 

Any ionic configuration compatible with boundary 
fields (E(a), E(O)) = (2eu,2ev) # (0,0) will have higher energy 
because neutralization of the background will be less effec
tive. We therefore expect that the ratio of the partitions func
tions for the interval [O,a] 

Za(2eu,2ev) _ (uIUlv) 

Za(O,O) - (OIUIO) , 

will vanish as/3-oo if(u,v)#(O,O). 
This fact is the content of the next proposition which is 

proved in Appendix B. 

Proposition 4: 
(i) Define i; = U 1(01 U 10) and let Po be the projector on 

((j?10) = (eI21T)I!2 in 2'2([ - 1Tle, 1Tle], d(j?). Then II i; 112 < 00 

where II . 112 is the Hilbert-Schmidt norm in 2'2([ - 1Tle, 1TI 
e], d(j? ) and 
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IIU - Pollz = 0(_1_), [3-00, E>O. 
[31 --

(ii) IIfl - 10)(0Ifl)1I = 0 (_1_) . 
[31--

(iii) Let 11.= exp(r)/(Ol a 10) be the maximal eigenvalue 
of a. Then 1<11. = 1 + 0 (1/[3z - E), [3-00. 

The same results hold for U· and its eigenvector fle. 
One can then immediately find the low temperature be

havior of the joint distribution of the electric field: 

PI(O,O) = 1 + 0 (_1_), [3-00. [3z -, 

Indeed since 11.;;;.1 and (Ol( U)IIO);;;'I, one gets 

0< 1 - PI(O,O) 

= 1- (Olfl)(fleI O) (OI(U)IIO) 

(flelfle) A I 

=11. 1_ (Olfl)(fl 10) 

(flel fl ) 

(fle Ifl ) - (Olfl )(fle 10) 
=11. / -1+ -------

(fleI O) 

<A 1_ 1 + (fle~fl) IIfle - 10)(0Ifle)lIllfl - 10)(01fl III 

- 0 ([3z1_,) 

by (ii) and (iii) of Proposition 4. 

(49) 

Proposition 5: Letf(Q n) be a continuous function on 
[O,/a], then 

I dQnf(Qn)(fll(Qn) -fll(QnIO,O)) = 0([321_,). (50) 

Proof It follows from the normalization (43) of the con
ditional probabilities that 

iI dQnf(Qn)fll(Qnlu,V)i <llfII~n!. 
Hence, we obtain with (46), (51), and (49) 

I dQn f(Qn) (fll(Qn) - fll(QnIO,O)) 

«I-PI(O,O))II dQnf(Qn)fll(Qnlo,o)1 

+ IU'V~O.OI PI(u,v) II dQnf(Qn)fll(Qnlu,v)i 

<2(1 - PI(O,O)) Ilfll ~ n! = 0 ([3Z1_ ,) . 

(51) 

We see that, at low temperature, the particle distribu
tionfll(Qn) is approximated by the conditional distribution 
fll(Q nIO,O) with vanishing boundary fields. By (40) and (41), 
we havefll(Q n) proportional to exp[ - [3H (Q nIO,O)], show
ing that ions are found with highest probability on ground 
state configurations with essentially Gaussian fluctuations. 
Because of the symmetry under permutations of 
fll(XIO"I, ... ,XnO"n), each lattice site (k + ~)a and ka, kEZ, is 
occupied with equiprobability by ions e l and ez, respectively. 
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However, the density of ions ofthe largest charge van
ishes at low temperature since the background is best 
screened by small charges. (This only occurs in a grand-ca
nonical state where densities are not fixed.) 

The neutrality and the normalization imply 

f p(x,e l ) dx + 2 f p(x, ez) dx = 1 

and with (42), (43) 

fll(QnIO,O) = 0 if Qn#(x, el) 

and 

f fll(x, eIIO,O) dx = 1. 

One has therefore by the positivity of fll and PI 

1;;;. f p(x, Ed dx 

;;;. f fll(x, ed dx 

;;;.PI(O,O) f fll(X, eIIO,O) = PI(O,O) 

showing with (49) that the average densities ofions e l (and ez) 
arepB (and zero) to order O(1/[3z-,). 

The asymptotic form of the pressure can be found from 
part (iii) of Proposition 5, 

1 1 -
[3p = - r= - (In(OIUIO) + InA). 

a a 

From (47) and (48) one finds as [3-00 

Z (1T)I/Zp - I 

(OlaIO) = I B ( [3a)I/Z 
X exp( - [3:~a) [1 + 0 (exp( - ~( [3e Za) liZ)) 1 

(52) 

and thus 

[3p = _1 In (_1T_) 
2a [3e PB 

[3e
Z 

1 ( 1 ) - - + -lnzl+O -- . 
12 a [3z-, 

(53) 

The first two terms in (53) represent exactly the canoni
cal free energy of a one component jellium of charges e I = e, Z 
and there is no contribution top from the charges ez to order 
O(1/[3z-,). 

More generally, it is not hard to show by explicit esti
mations ofthefll(Q nIO,O) thatfll(Q n) converges to the (sym
metrized) distribution corresponding to the ground state of a 
one componentjellium of charge el , 

lim fll(XIO"»,,,, Xn O"n) 
f3-.~ 

_ {sym IT O(Xj - ja + .!!.-.) 
- j~1 2 

o 
and for the densities 

if n = I and 

O"j = el,j = l"'n 

otherwise 
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lim p( x, a) 
tJ--.oo 

_{LD(x-ka+ .!!.-), 
- kEZ 2 

0, 

D. The binary ionic mixture er = 2e, e2 = 3e 

This system presents the new feature that the greatest 
common divisor e of the charges is strictly smaller than both 
of them. Ground state configurations of the mixture e" e2 

differ then from those of a single component with charge e 
. . ' 
10 the follow1Og respect. In the mixture ions e I can occupy 
any lattice site ka, kEl (see Sec. A) whereas in the single 
component system, charges e I are necessarily found on a 
lattice of double period 2a. As in the preceding case, the 
density pIx, e2 ) of the largest ions will vanish at low tempera
ture and as a result, the state will converge to the convex 
superposition of ground state of e l ions on the lattices 2ka 
and (2k + 1 la, kEl. 

As before, we compare partition functions for finite sys
tems in [O,a] and arbitrary boundary fields (E (a), E (0)) with 
those corresponding to the lowest possible energy configura
tions. 

The latter consists of having no particles in [O,a] and 
corresponds to the two possible boundary values (E (a), 
E (0)) = ( - 2e,0) or (0, 2e). The energy e2a/3 and the associ
ate partition functions are simply 

(-IIUIO) = (OIUll) = exp( -/3 e;a). (54) 

We now set U = U /(Ol U 11). 
Notice that the configurations of one e l ion in [O,a] have 

boundary fields (2e,0) or (0, - 2e) and energy 

H(x, e,IO, - 1) = H(a - x,e,II,O) = 2e PB x 2 + e2a/3. 

The associated partition functions are 
(11 UIO) = (01 UI - 1) and we define 

g(/3)=(OIUI-l) 

= ~ (_1T_)112 [_1_ + 0 (exp( _ (2/3e2a)1/2))] . 
2 2epB .J73 

(55) 

One can now formulate the equivalent of Proposition 4. 
Proofs and details can be found in Ref. 10. 

Proposition 6: 
(i) Let N be the operator defined by 

(uiN Iv) = D _ I,u Do.v + Do.u D,.v Then 

~g(/3)<IIU - NI12 = 0 (ltr ). 
(ii) 

1111 - I - 1)( - 1111 !II = II I1c - 11)(1111 )11 = 0 (_1_) . 
/3116 

A (iii) Let A. = exp(y)/(Ol U 11) be the maximal eigenvalue 
ofU. Then 
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(~g(/3W/2<A. = (2g(/3W/2 + O(exp( - ~/3e2a)). 
(IV) One has moreover the more detailed estimates 
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2 (l1c 10)(0111 ) 

(l1cll1) 

~4 (l1cI 1)(1111) ~U2 (l1cI 1)(-III1) 

(l1cll1) (l1cll1) 

8 (l1cl- 1)(1111) 
~- ~1 

A. 2 (l1c 111) -, 
(56) 

where the above equalities hold up to terms O(exp( - i /3e2a)) 
as /3- 00. One should note here that, contrary to the pre
vious case, the eigenprojection P = 111 )(l1c 1/(l1c 111) has no 
limit as /3-00 [in fact, by (ii) (nc 111 )-0, /3-00]. U itself 
converges in the Hilbert-Schmidt norm to the nilpotent op
erator N. 

As a consequence of (iii) one finds that the grand-ca
nonical potential/3p = (1/ a) r is asymptotically that of a sin
gle component jellium with ions el = 2e. Indeed, using (54) 
and (55)/3p is of the form (53) as/3-oo with e replaced by 2e. 
Hence, the density of ions e2 = 3e vanishes as /3- 00 • 

To investigate the structure of the low temperature 
state, we compute from (iv) the joint distribution P2(u,v) of 
the electric field for the interval [0,20]. One finds five types of 
boundary conditions relevant as /3- 00. They are (0,0) and 
sff = 1(1,1),( - 1, - 1),( - 1,1),(1, - 1)1 with 

P2(0,0) =! + 0 (exp( - i/3e2a)), 

P2(u,v) = k + O(exp( - i/3e2a)). 

For instance, Proposition 6 (iv) and (44) give 

P (0,0) = (0111 )(l1c 10) (01(U)210) 
2 (l1c In) A. 2 

= + (OI(~tIO) + 0 (exp( - i/3e2a)); 

(57) 

(58) 

since (Ol( UfIO) = 2(01 U I - 1) = 2g( /3), (57) follows from 
Proposition 6 (iii); (58) is proved in a similar way. 

As a result of (57), (58), and (46), there are five condition
al probabilities which determine the particle distribution in 
[0,20] as/3-oo, 

,u2(Qn) = !,u(QnIO,O) + l L ,u2(Q nlu,v) 
(u.v)E.W' 

+ O(exp( - i/3e2a)) (59) 

(the inequality holds in the weak sense, proof as in Proposi
tion 5). 

According to the constraint (42), these boundary condi
tions allow no particles in [0,20] for ( - 1,1), one ion e I for 
(0,0), ( - 1, - 1), (1,1), and two ionse , for (1, - 1). Thecorre
sponding energies are 

H(01 - 1,1) = j e2a, 

H(x,e,IO,O) = 2epB(x - a)2 + j e2a, 

H(x,e,l - 1, - 1) = H(2a - xlI,l) = 2epB x2 + j e2a, 

H (x" el ; x 2e, ll, - 1) 

= 2epB xi + 2epB(X2 - 20)2 + i e2a. (60) 

One deduces from (60) that the conditional probabilities 
,u2(Q n I u,v) with (U,V)Esff locate particles at the boundaries of 
the interval [0,20], whereas ,u2(Q nIO,O) locates a single ion e, 
ina. 
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Thus /-l2(Q n)~o for Q n #- {0; x, ell and 
/-l2(X, ed~~ /-l2(X, eIIO,O) when x belongs to a neighborhood 
A€ = (E, 20 - E) of a, E> 0. Since /-l2( x, eIIO,O)--5(x - a), 
/3-+00, there will be essentially a probability! to find an ion 
el in a at low temperature. 

In fact, one can prove the following statement for the 
distributions /-lA, (Q n) corresponding to intervals A€ strictly 
smaller than [0,20] (this is to avoid problems with particles at 
the boundaries). 

Proposition 7: 

lim /-l A (Q n) 
{J-.oo ' 

= {!' 5(: -== a~, 
0, n> 1 

and for the densities 

{

I I5(x-ka) 
lim pIx, 0") = 2 kEZ ' 

{J-.oo 
0, 0" = e2 

To demonstrate Proposition 7, one uses the compatibi
lity relations to relate /-l A, (Q n) to the distributions /-l2(Q n) in 
the larger interval [0,20]. The latter are evaluated with the 
help of (59) and the explicit form of the conditional probabili
ties. The neutrality relation (7) and the normalization rela
tion (43) give the conclusion. 10 The proposition establishes 
that the state converges to the convex superposition of the 
ground state of ions e I on the lattice 2ka and (2k + 1 la, kEZ, 
with equal weight ~. 

APPENDIX A 

The semigroup generated by r (J is defined in the follow
ing way. Consider first the contractive semigroup U I(J gener-

(a)u-v=-I: 

I 

no particles in [O,a J 

[see (42)), 

ated by - /3 (p + e /2 f - ip B CPo U! (J is explicitly given by 

[ /3 p2 x
3

] [ ( e P X)2 ] U~(J=exp - 12B exp -/3 p+ 2 + T x 

Xexp[ - iPB cP x], x;>O. (AI) 

Since }; ~ ~ I Z r exp [ ie r cP ] is bounded, U ~ is defined as a 
perturbation of U ~o by the norm convergent series 

U(J = '" LX dxl ... lX
" 'dx ul(J x £.- n X-Xn 

n>O 0 0 

X ( rtl Zr exp(ier CP)) U!~ - Xn I ••• U!~ . (A2) 

We write the series (A2) in terms of 7-invariant opera
tors by replacing everywhere U !(J_ y by 

G (x, y) = exp(ipB cP x) U !(J_ y exp( - iPB cP y) . (A3) 

G (x, y) is 7-invariant and has the form (20). 
The series (19) is then obtained by setting x = a and 

considering all operators acting in .,2"2[[ - 1T/e, 1T/e], dq;]. 

APPENDIX B: PROOF OF PROPOSITION 4 

To show (i), we have to estimate the sum 

II U-Poll~ = I 1 (uIUlv) 12 
(u,v);<,(O,O) (01 U 10) 

We have from (47) and (48) [see (52)] 

(01 U 10)-~ exp( - /3
e2a

) , /3-+00. 
{13 12 

(Bl) 

(B2) 

Notice first that the constraint (42) implies (u I U Iv) = ° 
if u - v<, - 2. We divide the other terms of the sum (B 1) into 
four classes according to the value of the boundary fields at 0 
and a. These classes are 

(b) u-v;>O,u<,-I: configurations with nonpositive 

electric field, 

(c) u - v;>O, v;> 1: configurations with nonnegative 

electric field, 

(d) u - v;>O, u;>O;>v, (u,v)#-(O,O): configurations where the 

electric field changes its sign. 

For Case (a), we have 
(ulUlu + 1) = exp{ -/3e2a[(u + ~)2 + -b] I, which gives 
with (B2) 

In Case (b), one notes that the energy is reduced by 
putting all particles at the left boundary. 

I l(ulUlu + lW 
uEZ 

<,c2 /3 L exp[ - 2{3e2a(a + !fJ 
uEZ 

(B3) 
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From (1), D = e(u + v), and (42) one has 
n 

E(x, Q(n)) = L O"j sgn(x -Xj) - 2pB X 

j~ I 

+ PB a + e(u + v) 
<,E(x, {Xj = 0, O"j J) 

-2 [pBx-e(u+ 1)]<,0. 
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Hence 

= e2a [(u + ~)2 + n] . 
It follows from (5) and (B4) that 

(uIUlv)<exp[ -/3e2a [(u+!)2+n]l 

(2azr x I 
n ~ I(u - ")/2 + II n! 

<exp[ -/3e2a [(u+~)2+n]1 

(B4) 

(B5) 

(2az)I(u - ")/2 + II 
X e2az

• (B6) 
[(u - v)/2 + I]! 

In (B5), [(u - v)/2 + 1] is the integer part of (u - v)l 
2 + 1 and z = max(z I' Z2)' The restriction on the summation 
in (B5) comes from the constraint~; ~ I aJ e = u - v + 1, aj 

= e or 2e, which implies n;;;.[(u - v)/2 + I]. 
With the estimate (B6) and (B2), we find again 

I 1 (uIUlv) 12 
"<u< - I (01 u 10) 

= 0 [ /3 exp ( - /3 e~a)] . (B7) 

The terms of Class (c) and (d) are estimated in a similar 
way, but the contribution of the terms (d) to (Bl) has only 
bound of the form 0(1//3 2 

- E)), €> 0 (see Ref. 10). 

Proof of (i) and (ii). Sincd is the largest eigenvalue ofthe 
compact operator U, one has A = limHoo II Unlilln. 

Thefactthat(OI U 10) = 1 and that all matrix elements of 
U are nonnegative implies II Unll;;;.1 for all n, hence A;;;' 1. 
Moreover, using the eigenvalue equation for fl and assuming 
Ilflll = 1, one gets 

A 211fl- 10)(01fl )11 2 

=A 2 I l(u,flW 
u,",O 

= I (I (ul u I v)(v Ifl ))2 
u,",O " 
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< I I (ul U Iv)2<11 U - Poll~ . 
u,",O " 

Thus (ii) follows from (i) and the fact that A ;;;.1. 
One deduces again from the eigenvalue equation 

O«A - I)(Olfl) 

= I (01 U Iv)(vlfl) 
v,",O 

«I (OIUlvf I (ulfl)2)112 
v,",O u,",O 

<II U - PoI121Ifl-10)(0Ifl )11 = 0 (_1_). /3 2 - £ 

Since by (ii) (Olfl )_1 as/3-oo, this last inequality com
pletes the proof of (iii). 
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On the mean motion and some statistical properties of a quasiperiodic 
observable in a fermion-boson model 
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We study properties of an atomic observable of a fermion-boson model in the region after a long 
time, compared to its initial "collapse" and "revival" times, had elapsed. We determine its mean 
motion which characterizes its mean oscillation. We also determine its average frequency of 
achieving a particular value. Its behavior in the small average boson number limit is shown to be 
particularly interesting. 

PACS numbers: 05.30. - d 

I. INTRODUCTION 

A simple idealized model Hamiltonian which has been 
used as a prototype for studies of fermion-boson interactions 
is 

(1.1) 

where the boson operators at and a create and destroy pho
tons and the fermion operators Crz , Cr +, and Cr _ (Pauli matri
ces) represent a two-state atom or molecule. 1 Hamiltonian 
(1.1) is used, besides in quantum optics,2 in spin-phonon res
onance, and in quantum field theory.3 

Despite its apparent simplicity, the associated dynami
cal problem is essentially non-linear. Recent papers4 have 
reported interesting periodic spontaneous collapses and re
vivals of certain observables in the dynamics of this model 
when the field is initially fully coherent. 

A central role in these studies is played by infinite sums 
of the form 

00 

x(t)= I ak cos(ilkt+8k)· 
k=O 

(1.2) 

For example, the atomic inversion, or the expectation value 
of the atomic excitation energy, is given by4 

wm(t)=m f Pk{~ 
k=O il ~(m) 

+ (1 -~) cos [ildm)t ]} , (1.3) 
il~(m) 

where 

.:i = liJo - liJ, 

il ~(m) =.:i 2 + 4A 2[k + (m + 1)12]. 

(1.4) 

(1.5) 

and where m = - 1 or 1 specifies whether the atom is ini
tially in the lower or upper state. Pk represents the initial 
photon distribution. Equation (1. 3) was derived from solving 
the coupled Heisenberg equations of motion 

iiT _ = liJoa _ - Aaza, 

ia=liJa+Aa_, 

for a" assuming the initial density matrix has the form 

(1.6) 

P = 1m) (m I ® PI' wherepf is the field density matrix. The 

expectation value Wm (t) of az(t) is obtained from 

wm(t)=(az(t) 

oc 

= I (nlp/ln)(m,nlazlm,n). 
n=O 

(1.7) 

The physical quantity Wm (t ) given by Eq. (1.3) has the form 
ofEq. (1.2) with 15k = o. 

For the initial state of the field represented by the initial 
photon distribution Pk, we shall consider coherent, thermal, 
and mixed (coherent and thermal) cases. In this paper, we 
concern ourselves with studying properties of the quasiper
iodic function (1.2) or (1.3) in the region after a long time, 
compared to the initial collapse and revival times, had 
elapsed, namely in the region where the behavior of this 
function appears irregular. We ask what quantities should 
characterize these irregular behaviors. Is there a statistical 
distribution, and is there a meaningful mean frequency of 
oscillation? One of the results which we obtained, as will be 
seen, is that such "mean" angular frequency of oscillation 
can be defined in the irregular region, and when the initial 
state of the field is coherent and represented by a Poissonian 
photon distribution, it is identical to the Rabi frequency nor
mally used for the regularly oscillatory region. 

The mathematical analysis we use in this paper origin
ated with the work of Lagrange, Wintner,5 Weyl,6 and oth
ers in their pioneering study of the perturbed planetary or
bits. Similar analysis has since been applied to molecular 
physics 7 and statistical mechanics. 8 It is hoped that our pre
sent paper will stimulate further applications of these techni
ques for problems in quantum optics. 

II. THE PROBABILITY DENSITY P(x) 

The characteristic function f(a) of x(t) of Eq. (1.2) is 

f(a) = TI~oc(1/T)iT exp[iax(t)] dt. (2.1) 

We assume that.:i 2 in Eq. (1.5) is irrational so that the fre
quencies ilk (the m dependence is often dropped for conve
nience) are linearly independent in the sense that no set of 
integers {m k I except {m k = 0 I can be found to satisfy 
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ImJlk = O. (2.2) 
k 

We can thus use the Kronecker-Weyl theorem9 to replace 
the time average in (2.1) by the corresponding phase average 
and get 

1 i21T i 21T 

f(a) = lim -- ... 
N~ 00 (21T)N 0 0 

00 

= II JO(aka), (2.3) 
k=O 

where Jo(x) is the zeroth-order Bessel function. The prob
ability density P (x) of x(t ) is the Fourier transform of the 
characteristic function f(a) and is therefore given by 

(2.4) 

To proceed in order to obtain simpler expressions for PIx), 
we consider the following two specific cases of photon distri
bution for the Pk of Eq. (1.3): 

(i) For the Poissonian photon distribution,Pk is given by 

Pk = [(ii)k/k!]e- li
• (2.5) 

(ii) For the thermal photon distribution, Pk is given by 

Pk = (1 - e- f3 )e- kf3 = --_ --_ , 1 ( ii )k 
l+n l+n 

(2.6) 

where the mean photon number ii for the respective photon 
distribution is defined by 

(2.7) 

and where /3 in Eq. (2.6) denotes 1!kT. We shall consider a 
mixed Poissonian and thermal photon distribution in Ap
pendix A. 

We shall be interested in the case when the detuning..1 is 
very small, but in order to have the set offrequencies ilk 
completely linearly independent, we shall assume that..1 2 is 
small but finite and irrational (the irrationality condition can 
be relaxed in practice). Putting..1 2=0 and comparing Eqs. 
(1.3) with (1.2), we find that 

a k = Pk, k = 0,1,2,··· for m = + 1, (2.8) 

but that ao = 0, ak = - Pk' k = 1,2,.·· for m = - 1. Since 
the statistical properties of - x(! ) and x(! ) are clearly the 
same, we shall, for definiteness, take 

ao = 0, ak = Pk, k = 1,2"" for m = - 1. (2.9) 

We now proceed with Eq. (2.4). We know that when z is 
small, 

(2.10) 

Since Jo(z) is peaked at z = 0, the product of N Jo(z)'s is even 
more peaked as N - 00. Then 
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Jl JO(aka ) = exp [ ( - ~a2ktoa~) 

- (i4 a 4

k
t oa

1) + ··1 (2.11) 

It is shown in Appendix B that for large ii and I> 1, 

~ a21 = for the Poissonian distribution, (2.12) 

{

(2-11T-1 + 112 /11/2)(ii) - 1+112 

k~O k (1!2/)(ii)-2/+1 

for the thermal distribution. (2.13) 

Thus, if we ignore l:a1, l:a~, etc. in Eq. (2.11) by taking the 
large ii limit, and substitute (2.11) into (2.4), we obtain 

P(X)=(1!1T1/2a) exp( - x 2/~), (2.14) 

where 

(2.15) 

The half-width a defined by (2.15) of the Gaussian form 
(2.14) can be expressed in closed form for both the Poisson· 
ian and the thermal photon distribution (as well as for the 
mixed case, see Appendix A). We find, from Eqs. (2.5), (2.6), 
(2.8), (2.9), and (2.15), that 

1 
e-21i[Io(2ii) -!(1 - m)] 

for the Poissonian distribution, 
~= 

(1 + 2ii)-1 - ~(1 - m)(1 + ii)-2 

for the thermal distribution, 

(2.16) 

(2.17) 

where Io(x) in (2.16) is the modified Bessel function. For large 
ii, the a's are given by 

~'" {(1!41Tii)1/2 for the Poisson distribution, (2.18) 

1!2ii for the thermal distribution. (2.19) 

For ii not too large, in the region 1 < ii < 5, say, we can im
prove the Gaussian approximation (2.14) by including the 
quartic term and the sextic term in the exponential: 

P(X)=; exp[ - (;y -c4(;r 
(2.20) 

where the coefficients C4 , C6, ••• can be obtained from the 
expansion (2.11). The behavior of P (x) in the region 0 < ii < 1 
is more complicated, and it will be briefly discussed in Sec. V. 

III. AVERAGE FREQUENCY 

Beside the probability density P (x), where P (x) dx is a 
measure of the average time spent by the variable x(! ) in the 
regionx.;;;x(t ).;;;x + dx, we may also consider the average fre
quency with which x(! ) of Eq. (1.2) achieves particular value 
q. One defines L (q), the average frequency of x(! ) = q by 

L (q) = lim (1!T)NT(q), 
T~ 00 

(3.1) 

where N T(q) is the number of zeros of 

F(t) = x(t) - q. (3.2) 

Analytic expression for L (q) was first given by Kac lO
: 
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1 fOO fOO [ = 
L (q) = 2ffL _ = _ oc 1J-

2 
cos qa )]0 JO(aka) 

- )Jo JO(ak (a
2 + 1J2f} ~ )1/2)] da d1J. (3.3) 

A simpler derivation of (3.3) was given by Mazur and Mon
trol1. 8 Now 

(3.4) 

We note that, for large n (see Appendix B), 

"a21f} 2m~ 
for the Poissonian distribution, (3.5) 

{

(22m - 11T - I i- 1/2 1/1/2)(n) - I + 1/2(n1/2,,1, )2m 

-f k k - [2m-Ir(m+l)l/m+I](n)2/+I(nI/2,,1,)2m 

for the thermal distribution. (3.6) 

Let us take 

E=n1/2,,1, (3.7) 

to be our "order parameter," which, as can be recognized, is 
the Rabi frequency commonly used in the pure oscillation 
case. Then in (3.4), collecting terms of orders up to E2, i.e., 
summing all terms a~/f} r for / = 1,2,.··, gives 

1 arf} ~ 1J2 
Jo(ada2 + 1J2f}~)l!2) = JO(aka) -

(1!f 4 

Thus, 

IT Jo(ada2 + 1J2f} ~)I/2) 
k~O 

x II JO(aka) + ... 
k ,,<j 

where c? is defined by (2.15) and (J)2 is defined by 
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(3.8) 

(3.9) 

= 
0)2 = I aJf} J. (3.10) 

j=O 

Substituting (3.9) into (3.3) gives 

1 foo , , L (q)~ -2 cos qa e-<ra 14da 
21T - 00 

xfOO 00 1J-2(1 - e-«>',/14) d1J 

~ ~ exp ( - ~), (3.1 I) 

where 

11 = (J)/(7, (3.12) 

(J) and (7 being defined by Eqs. (3.10) and (2.15), respectively. 
We have thus shown that the average frequency with which 
x(t) of Eq. (1.2) achieves particular value q also, to a good 
approximation, has a Gaussian distribution. 

We have found exact closed form expressions for (J)2, 

and they are given by (see Appendices A and B) 

e- 2n ( 4n,,1, 2II(2n) + [2(m + 10 2 + Ll 2] 

X Io(2n) - !( 1 - m )4,,1, 2 J for Poissonian distribution, 

4,,1, 2(~)2 + [2(m + 10 2 + Ll2] 
2n + 1 

(3.13) 

( 
1 ) 4,,1, 2 

X --- -!(1 - m) for thermal 
2n+ 1 (n+ 1)2 

distribution. (3.14) 

For large n, these are approximately given by 

2 {2nI/2,,1,211T1/2 for the Poisson distribution, (3.15) 

(J) ~ A 2 for the thermal distribution. (3.16) 

It follows from the definition of L (q) that the quantity 11 in 
(3.11) is the average angular frequency of x(t) crossing the 
x(t) = 0 axis. From Eqs. (3.13), (3.14), (2.16), (2.17), and 
(3.12),11 can be expressed in closed forms. In particular, for 
large n, we find, using (3.15), (3.16), (2.18), and (2.19) that 

- ~ {2nl!2,,1, for the Poisson ian distribution, (3.17) 
f}_ (2n)1/2,,1, for the thermal distribution. (3.18) 

It will be noted that these are of the form of the Rabi frequen
cy. 

To improve the approximation (3.11) for n not too large, 
say, in the region 1 < n < 5, we may collect and sum terms up 
to E4 in (3.4), and express L (q) in the form 

(3.19) 

where the coefficient d4 is determined by the terms of order 
E4 in (3.4). The behavior of L (q) in the small n region will be 
discussed in Sec. V. 

If x(O) = 1, the inverse of L (I - D ), where D is a small 
number, gives the average recurrence time for x(t) to assume 
its original value to within an uncertainty D. Our approxi
mate expression (3.11) for L (q), however, is only accurate 
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within the fluctuation range - 0' < q < 0'. It is not accurate 
when q is close to unity, and is certainly wrong for q = 1 
since L (1) should be equal to zero. The formula given by 
Slater,7 which is valid for q very close to unity, unfortunate
ly, also cannot be used for our case where the photon distri
bution a k steadily decreases as k increases. Thus we have not 
been able to obtain a good simple expression for the Poincare 
recurrence time for our problem, although one can give nu
merical estimates, for given values of n, A, and {j, byevaluat
ing the double integral in Eq. (3.3) numerically. 

IV. MEAN ANGULAR FREQUENCY 

As is known from the pioneering work of Lagrange, 
Wintner, and Weyl, a central quantity in the study of quasi
periodic functions is the so-called "mean motion" or mean 
angular frequency. This quantity is somewhat different from 
the quantity n, which we found in the preceding section, as 
we shall see. 

Letx(t) ofEq. (1.2) be the real part ofa complex quantity 
z(t) given by 

'" zIt) = L akei(fl.t+li.l. 
k=O 

Let us write Eq. (4.1) as 

z(t) = r(t )ei'P(t l. 

Then 

z'(t) = [r'(t) + ir(t)cp '(t )]ei'P(t i, 

so that 

cp '(t) = Re(z'/iz). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The "mean motion" or the mean angular frequency n is 
defined by 

n = lim (liT) ( cp '(t) dt = E I Re(z'/iz)!. (4.5) 
T_ 00 Jo 

where E denotes the expectation value. Since the set of fre
quencies n k are linearly independent, we can apply the 
Kronecker-Weyl theorem6

•
9 to obtain 

n = lim E I <P (OI,02, ... ,ON)} 
N~ '" 

or 

Let 

zIOn) = anei8n + b, 

with 

(4.10) 

(4.11) 

where' means the exclusion of the nth term. By considering a 
contour integration around a circle of radius an whose center 
is located at b, it is easy to see that Wn can be written as 

1 (21T (21T 

Wn = (21T)N Jo '''Jo F 

(4.12) 

where 

(4.13) 

This, however, is exactly the probability that a random walk
er walking in a two-dimensional space, in a sequence of N 
steps of lengths ao, ai' a2, ... , an _ I' an + I' ... , aN' spans a 
distance less than an' This probability is given by (see Appen
dix C) 

(4.14) 

for an = r and steps oflengths ai' a2, ... , aN' Thus we finally 
find, for x(t) ofEq. (1.2), that the mean motion or the mean 
angular frequency n is given by 

(4.15) 

with 

(4.16) 

where the prime means that the factor Jo(an p) is excluded. 
The formulas (4.15) and (4.16) were first given by Wintner.5 

The integral in Eq. (4.16) can be evaluated approximate
ly in the large Ii case by making the Gaussian approximation 
for the product of Bessel functions of zeroth order as we have 
done previously. We find 

Wn=an ('" JI(an p) exp( - ~p2 i: 'a~) dp Jo 4 k=O 

=~an ('" p exp [ - (~ i: a~ -~a~)p2] dp 
2 Jo 4 k =0 8 

(4.8) I.k' = 0 a~ - !a~ 
(4.17) 

with 

1 (21T (21T 

Wk = (21T)N Jo "")0 

X Re k . dOI ... dON. (
a e

i8
• ) 

I..a.e,8, 
J ) 

(4.9) 

In Eq. (4.9), consider first the integration with respect to On. 
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and hence 

n = i: a~nn 
n=O I.k'=oa~ - ~a~ 

(4.18) 

For large n, we find (see Appendix B) 

n",{2n 1l2A for the Poissonian distribution, (4.19) 
- (1T/2)I/2nl/2A for the thermal distribution. (4.20) 
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We note that these again have the form of the Rabi frequen
cy. 

Comparing this mean angular frequency fl of rotation 
of zit ) of Eq. (4.1) in the complex plane with the average 
angularfrequency n of x(t) ofEq. (1.2) crossing the x(t) = 0 
axis given by Eqs. (3.17) and (3.18), we notice that, for the 
large Ii case, while fl = n for the Poissonian distribution, fl 
is not identical to n for the thermal distribution although 
they are proportional to each other. Indeed we found that 
the constant of proportionality is 

n Ifl = (4/1T)I/2 = 1.128 (4.21) 

for the thermal photon distribution, compared to 1 for the 
Poisson ian photon distribution. 

An important conclusion which we draw from the re
sult of this section is that even in the region where the behav
ior of x(t) appears irregular, the Rabi frequency still charac
terizes the mean angular frequency of oscillations. 

v. P(x), L(x), and fl in the case of small i'i 

In the very small region 0 < Ii < 1, the functions P (x) and 
L (x) are far from being Gaussian. We shall give a brief quali
tative discussion of what they look like and on how they 
gradually become Gaussian-like as Ii increases beyond 1. A 
fuller quantitative account of these studies will be presented 
elsewhere. 

To be more specific, let us consider the Poissonian pho
ton distribution with the atom initially in the upper level 
(m= + 1). 

When Ii = 0, x(t) ofEq. (1.2) is given simply by a single 
oscillation 

x(t) = cos flot 

where 

flo = (4tl. 2 +.J 2)1/2, 

(5.1) 

since from Eq. (2.8) and (2.5), ao = 1 andak = 0 for k;;d.1t is 
clear from the definition of L (q) that the distribution L (q) 
must look like the curve shown in Fig. l(a), namely, 

_ {flohT for Iql < 1, 
L (q) - 0 for Iql > 1, (5.2) 

where the constant value of L (q) for Iql < 1 is obtained from 
2(flol21T), the factor of2 coming from counting the crossings 
ofx(t) = q line from above as well as from below. This result 
can be confirmed by using Kac's formula (3.3) as follows: We 
have for this case ao = 1, and ak = 0 for k> 1, so 

(5.3) 

Liql Llql Llql 

J-ti 
1 

... it I 0<;;-« 1 

m 
-I 0 1 q -I 0 1 q -I 0 1 q 

(a I (b I (c I 

FIG. I. L (q) vs q for different values of n. 
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Using the representations 

Jo(a) = ~ (17 eiu cos IJ dO, (5.4) 
1T )0 

Jo((a2 + []2)1/2) = ~ (17 ei(ucoslJ+/3sinlJl dO, (5.5) 
1T )0 

we can write 

L (q) = - 1/-2 cos qa _ e/a cos IJ 1 f'" f'" 1 117 . 
2~ - '" - '" 1T 0 

X (1 - eiflo'l sin IJ) dO da d1/ 

= - da dO-1 f'" 117 1 f'" 
2~ - '" 0 1T - '" 

X d1/ eiu cos IJ cos qa 

= - da eiu 
cos IJ Iflo sin 0 I dO cos qa, 1 f'" 117 

2~ - '" 0 

(5.6) 
where we have used the formula 

l,u I = ~ f'" 1 - c~s 1/,u d1/. 
1T -'" 7J 

(5.7) 

Since sin 0 remains positive when 0 varies from 0 to 1T, we 
have, 

L (q) = - da cos qa eiu cos IJflo sin 0 dO 1 f'" 117 
2~ - '" ° 
fl f'" fl = _0 da cos qa eiux dx 
2~ - 00 - I 

= _0 da cos qa ---fl f'" 2 sin a 

2~ - '" a 

= {flol1T if Iql < 1, (5.8) 
o iflql>l, 

in agreement with Eq. (5.2). We notice that the result (5.8) 
can be written as 

L (q) = (n 11T) exp( - Iqlan (5.9) 

with 

v = 00, n = flo, 

where a, which from Eq. (2.15) equals 1, still characterizes 
the "half-width" ofthe distribution shown in Fig. l(a). 

As Ii increases, slightly from the value zero, we expect 
L (q) to "round off" slightly near Iql = 1 to have a shape 
shown in Fig. l(b). The form (5.9) may still characterize this 
distribution with a given by (2.16) still characterizes the half
width and with v assuming a large but finite positive value. 
As Ii increases beyond the value 5 say, the shape of the distri
bution quickly becomes Gaussian with v = 2 and (5.9) coin
cides with (3.11) as shown in Fig. l(c). 

For P (x), its shape in the region 0 < Ii < 1 is a little more 
complicated. For a single oscillation offrequency flo in the 
case Ii = 0, we have 

Pix) = - Jo(a)e- IUX da 1 f'" . 
21T - '" 

={o~ (1_~2)1/2 forlxl<l, (5.10) 

for Ixl > 1, 
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P(x) P(x) P(x) P(x) 

~~d;~' 
-1.0 0 1.0 X X X 

(0) (b) (c) (d) 

FIG. 2. PIx) vs x for different values ofn. 

where K (k ) is the complete elliptic integral of the first kind. 
This is shown in Fig. 2(b), where P (x) has logarithmic infini
ties at x = ± (ao - al)' 

Ifn is increased further but still -< 1 so that the "effective 
number" of oscillators now becomes three, i.e., 

Pix) = -1-f'" Jo(aOa)JO(ala')JO(ap)e-iaX da, (5.13) 
21T - '" 

then P (x) can no longer be expressed in closed form. But 
expression such as (5.13) has been studied and numerically 
plotted in lattice dynamics, 11.12 and this is shown qualitative
ly in Fig. 2(c). It has a number of sharp corners (and hence 
not everywhere differentiable) but no longer has infinities, 
and it approaches zero continuously as Ixl approaches 1 
from below. 

As n increases further, we expect the distribution curve 
becoming smoother, and quickly becoming a Gaussian form 
as n> 5, as shown in Fig. 2(d). 

Finally, let us consider n in the case of small n. Ifn = 0, 
we have, of course, n = no. If n is increased slightly from 0 
so that the effective number of oscillators becomes two or 
three with ao,>a I and aO,>a2, we shall show that n is still 
precisely equal to no with n I and n2 contributing nothing to 
n. From Eq. (4.15) and (4.16), we have13 

with 

Wo = aoi'" JI(aop)Jo(a I p)Jo(a2P) dp, 

WI = ali'" Jo(ao p)Jl(a I p)Jo(a2P) dp, 

W2 = a2l'" Jo(aop)Jo(a l p)Jl(a2P) dp. 

(5.14) 

(5.15) 

A theorem of Bailey l4 gives 

i'" Jfl (et sin rp cos <[J )Jv (et cos rp sin <[J )Jp (et ) dt 

2435 

= r B(1 +fl + v + p)l sinflrp cosfl<[J cosvrp sinv<[J 

Xcfl +v+ Ir(fl + 1)r(v + 1)r {~(1 - fl- v +pll 
(5.16) 
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namely, P (x) become infinite at Ixl = 1. This is shown in Fig. 
2(a). As n increases slightly from zero, let us assume that the 
"effective number" of oscillators now becomes two, or 

(5.11) 

This integral can still be evaluated exactly, II and the result is 

(5.12) 

X F W1 + fl + v - p),W + fl + v + p);p + l;sin2 rp] 

XFWI + fl + v - p),~(1 + fl + v + p);v + l;sin2<[J], 

where rp and <[J are positive angles whose sum is acute and 
where F (a,b;e;x) is the Gauss hypergeometric function. Ap
plying (5.16) to (5.15), with ao = e, a l = e sin rp cos <[J, and 
a2 = e cos rp sin <[J, we obtain 

Wo = F(0,1;1;sin2rp )F(0,1;I;sin2<[J) = 1, 

W.= W2 =0 

because r {!(1 - 1 - 0 + Oll = r {!(1 - 0 - 1 + 0) I 
= riO) = 00. (5.17) 

We thus find 

n=no' (5.18) 

This indicates that the expression for n, (4.19) and (4.20), 
which we obtained for large n, may still hold approximately 
for small n if we replace n in (4.19) and (4.20) by 
n + !(1 + m), where m = - 1 or + 1 specifies the initial 
state of the atom. 

VI. SUMMARY 

We have studied the behavior of an observable, the 
atomic inversion of a fermion-boson model (1.1) (the so
called Jaynes-Cummings model in quantum optics) in the 
region after a long time (compared to the initial collapse and 
revival times) had elapsed, namely in the region where the 
behavior of the observable appears irregular. We have consi
dered its probability density P (x), its average frequency L (q) 
and its mean angular frequency (or mean motion) n. We 
have derived simple approximate expressions for these func
tions which are valid for almost all values ofn > 1. To a very 
good approximation, both P (x) and L (x) are found to be 
Gaussian with their half-widths characterized by (T defined 
by Eq. (2.15) and given as functions ofn by Eqs. (2.16) and 
(2.17). We have also found that the mean angular frequency 
of oscillations is characterized by n given by (4.15) which for 
large n is found to be identical with the Rabi frequency of 
oscillation which has been commonly used previously only 
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in the pure oscillation region. Another quantity of interest 
which is contained in L (x) is ii, the average angular frequen
cy of crossing the x(t ) = 0 axis. A simple relationship is 
found to exist between ii and n. 

When times are scaled according to nand ii and the x
coordinates are scaled by a, the behavior ofx(t ) oft 1.2) would 
become remarkably regular in the sense that different plots 
of x(t ) for widely different values ofn would appear remarka
bly similar. From this point of view, we have learned the 
major characteristics of the function x(t). 

Finally, we mention that the techniques we used in this 
paper can be applied to other models provided that the fre
quencies of oscillations are linearly independent. For exam
ple, if one considers the model considered by Buck and Su
kumar l5 with a small but finite detuning l6 in which the 
Hamiltonian is given by 

H = !lituoo-z + IitufNJ 

+ 1M [0-+a(ata)I/2 + 0- _(ata)1/2at ], (6.1) 

then the condition of linear independence of frequencies is 
satisfied. We can find, for example, that the mean angular 
frequency of the atomic inversion for this model is 

n'::::::. {2nA for the Poissonian photon distribution, (6.2) 

nA for the thermal photon distribution. (6.3) 

These can be compared with Eqs. (4.19) and (4.20), respec
tively, for the Jaynes-Cummings model. 

Note added in proof The plots of P (x) obtained numeri
cally from Eq. (2.4) vs x are presented in Fig. 3 for n = 0.1, 
0.5, 1.0, 5.0 which may be compared with Fig. 2. I am grate
ful to Mr. David Kuebel for his assistance in producing Fig. 
3. 
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APPENDIX A: MIXED POISSONIAN AND THERMAL 
DISTRIBUTION 

Instead of considering separately the Poissonian and 
the thermal photon distributions (2.5) and (2.6), we may con
sider the following mixed distribution, which contains (2.5) 
and (2.6) as special cases: 

Pk = (1 - e-f3)e-kf3e-iicll - e- ')Ld - n
e
ef3(l - e-f3 )2) 

1 (nT)k ( ne) 
= nT + 1 nT + 1 exp - nT + 1 

( ne) XL k ------
nT(nT + 1) , 

(AI) 

where ne and nT are the mean photon numbers correspond
ing to the pure Poissonian and pure thermal distributions 
respectively, and where Ln(x) is the nth Laguerre polyno
mial. The pure Poissonian distribution (2.5) and the pure 
thermal distribution (2.6) can be obtained from (AI) by let
ting nT = 0 and ne = 0, respectively. 

It turns out that, for this mixed distribution (A 1), both 
~ and 0)2 defined by Eqs. (2.15) and (3.10), respectively, can 
still be expressed in closed forms. The principal formula used 
in obtaining these closed form expressions is the Mehler's 
formula 17: 

00 nl 
" . L a( )L a( )zn 
n~or(n+a+l) nX n Y 

= (1 - z) - I exp( _ z x + Y) (xyz) - a/2 

l-z 

(
2(XYZ) I 12) 

X1a , 
l-z 

Izl < 1, 

where Iv (x) is the modified Bessel function. We find 

-2 1 ( 2ne) ( 2ne ) u = exp - 10 
2nT + 1 2nT + 1 2nT + 1 

(A2) 

_ J.. (1 _ m) I exp (_ 2ne) (A3) 
2 (nT + If nT + 1 ' 

( 
2ne) ( 2ne ) Xexp - 10 

2n T + 1 2n T + 1 

-J..(l-m)[2(m+I);l2+Ll 2
] 1 

2 (nT+I)2 

xexp( - n:~ J. (A4) 
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Let 

v-tanh!/3 = ---
2nT + 1 

For nc>n T , we find, from (A3) and (A4), 

~"'(v/41Tnc )1/2, 

lU2",(41Tncv)-1/212ncv(I + v2)A. 2 + [(1 _ V)2 

+ 2ncv(I - v2)]A 2 

+ [2(m + I)A. 2 +.::1 2]V J. 
For nc-<.nn on the other hand, we find 

~~v, 

ui","{ 2 + [2(m + I)A. 2 +.::1 2]V. 

00 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

APPENDIX B: THE SUM I ~I'nfv IN THE CASE OF 
k~O 

LARGE ii (/i;> 1, v;>O) 

The Poissonian distribution is known to become Gaus
sian in the case of large n: 

(n)k -Ii 1 [(k - n)2] 
Pk = k! e ~ (21Tn)I/2 exp - 2n . 

Thus for .::1 ~o, n large, /i;;;,J, v;;;'O, we find 
00 00 

L atn~v= (2..1. fV L atkV 
k~O k~O 

",(2..1. )2V(21Tn) - I' f~ w dx x v 

X exp [ - ~ (x - n)2 ] 

= 22v - I'1T-I' + 112(n)-I' + 112/i -1/2(nl/2,.{ )2v 

X[I +I v(v-I) ... ~~- J+ 1) r(i+ I)(n)-j/2]. 
J= I J. 2 

For the case of the thermal distribution, we find 

I atn ~V"'(2..1. )2v(l - e-(3)21'1°O e- 2v!3xx v dx 
k~O 0 

= (2..1. )2v(l_ e-(3)21' r(v + 1) 
(2fl/3 )v+ I 

(BI) 

= 2v- Ir(v + I)(n) - 21' + Ifl- v- l(nl/2,.{ )2v, (B2) 

where n = e-!3(l- e-(3)-1 and where large n corresponds 
to high temperature since n-=!3 -I in that case. 

For fl, v equal to integers in the case of the thermal 
distribution, the sum l:atn ~v can be exactly expressed in 
closed form which can be verified to agree with (B2) for large 
n. 

For the Poissonian distribution, only ~ = l:a~ and 
lU

2 = l:a~n ~ can be exactly expressed in closed forms in 
terms of the modified Bessel functions Io(2n) and II(2n), by 
noting the relations 

( 
1 )V 00 (lz2)k 

I (z) = -z 4 
v 2 k~ok!r(v+k+I) (B3) 
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and 

I bIz) = II(z). (B4) 

By using the asymptotic formula 

I ( ) rr (1 4v - 1 
v z - (21TZ)I/2 - Sz + .. -) as z ~ 00 ,(BS) 

it can be verified that (2.16) becomes (2.IS) and (3.13) be
comes (3.IS), in agreement with the results from putting 
fl = 1, v = ° and/i = 1, v = 1, respectively in (BI). 

APPENDIXC 

In Eq. (4.14), we wrote down a result for the probability 
that a random walker in a two-dimensional continuum 
space, in a sequence of n steps oflengths al,a2, ... ,an , spans a 
distance less than r from the origin. This result was given by 
Kluyver. 18 For the three-dimensional random walk, the cor
responding result was given by ehandrasekhar. 19 The more 
general result for a random walk on a d-dimensional contin
uum space (d = 2,3,4, ... ) does not seem to have been given. 
We give, in this appendix, this general result and its deriva
tion. 

Let us use the hyperspherical coordinates of d dimen
sions20 for the position vector 

where 

XI = rcos 01, 

X 2 = r sin 0 1 cos O2, 

xd_ I = r sin 01 sin O2,,, sin 0d_2 cos cp, 

Xd = r sin 01 sin O2,,, sin Od _ 2 sin cp, 

(eI) 

(e2) 

where r = Irl, O<,0j<'1T, and O<,cp<,21T. The surface element 
of the hypersphere is known to be 

dS = (sin 0l)d- 2(sin 02)d - 3"'(sin Od _ 2 )dOI .. ·dOd _ 2 dcp (e3) 

and the total surface area is 

(e4) 

Let 

u = (a l,a2, .. ·,ad). (eS) 

The joint characteristic function of the joint x I' X2"",Xd 
probability density is 

flu) = E ! exp(iu·r) J. (e6) 

Without loss of generality, we may choose 

u = (a,O,O, ... ,O). (e7) 

Then 

n 1 1" 1"12" flu) = II -... eia,acosl}, 

j~1 S 0 0 0 

X (sin Odd - 2(sin 02)d - 3"'(sin Od _ 2) 

XdOld02 .. ·dOd_ 2dcp. (es) 

But 
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f" f7T f27T Jo '''JoJo (sin02)d-3(sin03)d-4 ... (sinOd_ 2 ) 

X d02d03···dO d _ 2 dcp 

S 
(C9) 

and 

f1rejQja cas 6 {sin O)d - 2 dO = JI ejQ)ax(l _ x 2)ld - 3)/2 dx 
Jo -I 

= 1T1/2C~ayd - 2)/2F (d ~ 1) Jld _ 2)/2 (ap); (ClO) 

hence, 

[ 
1T1I2F(d _ 1) ]n n Jld _ 2)/2(aja) 

f(a) = 2Id-2)/2F((d _ 1)/2) jg (ap)ld-2)/2 

(CII) 
Thus the joint probability density functionpn(r) is 

Pn(r) = _I_JOO ... Joo f(a)e-jQ·rdal···dad' (CI2) 
(21T)d _ 00 - 00 

Now 

dal···dad = ad - I(sin Ol)d - 2{sin (2)d - 3"'(sin Od _ 2) 

xdadOI···dOd_ 2dcp, (CI3) 

and we choose r = (r, 0, 0, ... , 0) so that 

a"r = ar cos 0 1; 

then, using (C9) and the following result, 

L"e-ja,cas 6 (sin O)d - 2dO 

_ 1/2( 2 )ld-2)/2 (d - 1) 
- 1T -;;; F -2- J ld - 2)12 (ar), 

we get, from (Cl2), 

(CI4) 

(CIS) 

F (d - 1) ( 1 )Id - 2)/2 
Pn(r) = tl-d-I)/2213d-4)/2F(d /2)F((d _ 1)12) -; 

xLoo da a d/2Jld _ 2)/2 (ar)f(a), (CI6) 

wheref(a) is given by (CII). 
The distribution function P (r) which is the probability 

that Irl after n steps is less than r has the property 
2~/2 

dP(r) = F(d 12) rd-Ipn(r)dr. (CI7) 

Thus, using (CI6), we find 
1T1/2F(d - 1) 

P (r) - -------'-----'----
213d -6)l2F({d - I)/2)[F{d /2W 

x( 1T1I2F(d-I) )nfoodaf'd dl2 
2Id-2)/2F{{d_I)l2) Jo Jo PP 

d/2nn Jld _ 2)/2{aja) 
XJld - 2)12 {ap)a . { )Id _ 2)/2 

J = I aja 
1 (1T1/2 F (d _ 1) )n + I 

= 2d- 2[F{d/2W 2Id-2)/2F({d_I)/2) 

d /2lood Id - 2)/2J ( ) nn Jld - 2)/2 (aja) 
X r a a d /2 ra Id _ 2)12 ' 

o j= I (ap) 
(CIS) 
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where we have made use of the relation 

L'dP pdl2Jd/2 _ I (ap) = (I/a)r d/2Jd /2{ar), 

which follows from the more general relation 

(2.!!..)k [zvJv{z)] =zv-kJv_k{Z). 
z dz 

Equations (CI6) and (CIS) are the results which we set out to 
derive. It can be verified that, for d = 2, 

I Loo n Pn (r) = - da aJo(ra) n Jo{ap) 
21T 0 j=1 

(CI9) 

and 

P (r) = r Loo daJI{ra)J\ Jo(ap). (C20) 

Equation (C20) is the result quoted in Eq.{4.I4) which was 
first given by Kluyver. 18 

For d = 3, we have, from (CI6), 

1 1 Loo n sin(ap) 
Pn(r) = ~- da a sin(ra) IT ' 

21T r 0 J = I aja 

where we have made use of the relation 

J I/2 (x) = {2/1TX)1/2 sin x. 

(C2I) 

(C22) 

Equation (C2I) is the result given by Chandrasekhar. 19 
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A one-dimensional gas of N fermions with v intrinsic degrees offreedom. such that N Iv is integer. 
with the particles interacting via attractive delta pair potentials is considered in its ground state. 
In particular. the "clustering" into N Iv entities is shown to appear and studied comparatively 
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1. INTRODUCTION 

Among the very few exactly soluble I ("continuous" vs 
"spin" or "lattice") many-body problems is the one-dimen
sional gas of particles interacting via an attractive delta pair 
potential. 2 The exact ground state properties of this system 
were first deduced by McGuire2 for no specific permutation 
symmetry of the particles. and subsequently for fermion sta
tistics by Yang3 and independently Gaudin.4 and finally for 
boson statistic by Calogero and Degasperis.5 

The Hamiltonian is 

H=T+V 
,,2 N a 2 N 

= - - L -2 - 2voLo(x; -xj ). vo>O, (1) 
m ;~ I ax; ;<j 

and. using the Bethe ansatz.6 McGuire2 finds that the only 
bound-state eigenfunction of (1) for "open" (i.e .• no "walls" 
of any kind to contain the N particles) boundary conditions is 
the symmetric expression 

'Pee exp {- mv~ Ilx; - Xjl}. 
2" i<j 

with energy eigenvalue 
2 

Eo(N) = - mvo N(N 2 - 1). 
12,,2 

(2) 

(3) 

The Hartree-Fock approximation to (2) has been stu
died and compared with the exact or Schrodinger solution 
for both bosons5

,7 and spin one-halffermions.8 Now we con
sider in this paper the general case of N fermions with v 
intrinsic degree offreedom such that 2<v<N while N Iv is 
integer. showing the formation of N Iv clusters. This is ac
complished in Sec. 2 by obtaining and comparing the energy 

alOn leave from Instituto de Fisica and Facultad de Ciencias, Universidad 
de Mexico, Mexico 20, D. F. and Instituto Nacional de Investigaciones 
Nucleares. 

bl Fellow of CIC, Argentina. 
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ofthe system for the exact Schrodinger solution and the Har
tree-Fock solution. The latter can be improved by making 
the center-of-mass corrections as is illustrated in Sec. 3. The 
comparison of the exact and approximate solutions is also 
made in terms of the overlap of the respective wave func
tions. Sec. 4. In Sec. 5 we construct rigorous lower bounds for 
both the Schrodinger and Hartree-Fock energies per parti
cle for any density. In Sec. 6. we present upper bounds for the 
energy per particle with several nonunique solutions of the 
Hartree-Fock equations. Finally. we state our conclusions 
in Sec. 7. 

2. ONE-DIMENSIONAL FERMI GAS CLUSTERS 

We shall here consider the case of N fermions with v 
intrinsic degrees of freedom such that 2 < v<N while N I v is 
integer. If v = 2 we have the above mentioned spin-one-half 
case (e.g .• the electron gas or neutron matter). For v = 4 one 
might think of nuclear matter of spin-up and spin-down neu
trons and protons. 

If the intrinsic wave function is denoted by X (u l • 

u 2 ..... u v ) and is antisymmetric under permutations. the 
ground state of (1) will consist of an ideal gas of v-component 
entities which are "solitons .. 9 in that two such colliding clus
ters will at most be phase-shifted. 2 For v = 2 the clusters will 
be like "Cooper pairs". for v = 4 a-particles. and for v larger 
one might even think of the so called "liN expansion" mod
els lO of high energy physics, where, as in the present model. 
one has strong interparticle coupling for large interparticle 
separations. The total wave function will be given by the 
totally antisymmetric expression 

F(I,2, .... v)F(v + l,v + 2, ... ,2v) ... F(N + 1 - v ..... N - I,N) 

± all permutations of indices belonging to different 

F~ ~ 
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while the total energy of the N particle, N Iv cluster system, 
will be given by (3) through the equation 

Eo(N) = (N Iv)Eo(v). (S) 

Following Ref. 8 one can see that for N Iv integer, N 
even, the Hartree-Fock energy of our v-component fermion 
system is also of the form (S), namely 

E!;F(N) = (N Iv)E!;F(V), (6) 

since there exists a set of N orthonormal, single-particle 
functions tf=! tf;(x; O'I'O'Z'''''O'Y) Ii = 1,2, ... N I such that, in 
unrestricted HF, 

Y 

tf;(X;0'1>0'2'''''O'Y) = I tf/a)(X)X(O'a), 
a=l 

and which minimizes the expectation value 

go(tf)-<D", IH ID",), 

between the single Slater determinant 

D",=(N!)- 1/2 det [tf;(xj;O'{ ,O'L ... ,O'!)] , 

i,J = 1,2, ... ,N, 

such that 

(7) 

(8) 

(9) 

E!;F(N)=infgo(tf»Eo(N). (10) 

'" The last inequality is just a result of the Rayleigh-Ritz vari-
ational principle. Furthermore, the expectation value (8) can 
be written as 

Y 

go(tf)= I T",la) + u'" +K"" 
a=l 

T",la)= fz2 fJdxl ~tfjla)(x)12, 
m j~ I dx 

U'" - 2VoJdX ip~)(x)P",I/3)(x), 
a<p 

N 

p",la)(x)= I 1 tfj1a)(x) 1
2, 

j~1 

(11 ) 

(12) 

(13) 

(14) 

(IS) 

Again, since N I v is integer and N is even, it follows from Ref. 
8 that unrestricted HF, given by (7), gives the same HF ener
gy as restricted HF defined through the single-particle orbi
tals 

tf;(X;0'1'0'2'''''O'v) =.t:(x)x(O'd for l<i<n l , 

=.t:(X)X(0'2) forn l <i<n2, 

=.t:(x)X(O'v) for nv_ I <i<N 

with na integers, and such that 

<.t:lfj) = Dij' 

if l<i,J<n l or n l <i,J<n2 or ... or nv_ 1 <i,J<N. 

Eq. (14) then becomes (no=O) 

p",la)(x) = I Ifj(xW· 
j = no _ 1+1 

By choosing 

fj(x) =fj+nJx) for na_ 1 + I<J<na, 
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(16) 

(17) 

(18) 

(19) 

withna = aN Iv,sothatn l = N Iv,n 2 = 2N Iv, ... ,ny = N, 
then (18) becomes 

Nlv 

p",la)(x) = I Ifj(xW p",(x), (20) 
j~1 

i.e., independent of a = 1, 2, ... ,v. Consequently, from (11) to 
(IS) one has 

(21) 

U", = -2Vo!V(V-l)Jdx P/(X) 

= - vov(v - I)J dxf4(X), (22) 

go(tf) = v: J dxlf'(xW - vov(v - 1)J dxf4(X). (23) 

If e is a Lagrange multiplier then the functional variation 

:f {go(tf) - ev J dXf2(x)} = 0, 

immediately gives the HF equation 
fz2 

- - f"(x) - 2vo(v - l)f3(x) = ef(x) 
m 

with unique ll solution 

f( ) - [mvo(v - 1) ]1/2 h mvo(v - 1) 
x- 4~ ~ 2~ ~ 

- _ mvc/(v - 1)2 Jd f2( ) - 1 
e - 4fz2 ' X X - • 

Finally since 

E!;F(V) = ve + vov(v - l)J dxf4(X) 

mVo2v(v - 1)2 
12fz2 

(24) 

(2S) 

(26) 

(27) 

(28) 

(29) 

we have for the ratio of HF to Schrodinger ground state 
energies, using (S) and (6), 

v-I 
(30) --, 

v+l 

which approaches unity as v increase. For v = 2 this is only 
1/3, but for v = 4 the ratio improves to 3/4, etc. Moreover, 
for v---->-N one recovers the N-boson case5 for which the HF 
energy becomes the Schrodinger energy in the thermodyna
mic limit N~ 1. 

Note that our problem here really reduces to that of N I 
v independent systems and that we actually have a Hartree 
calculation. 

3. CENTER-Of-MASS CORRECTIONS 

In this section we show how the HF-to-Schrodinger en
ergy ratio improves as one corrects for the spurious center
of-mass effect found in standard HF theory. Instead of Eqs. 
(8) to (10), or the equivalent ones for a v-particle system, 
consider the expectation value 

go(¢ )-<¢ IH - Tcm(v)I¢), (31) 

where the center-of-mass kinetic energy is 
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Tcm(v)= £ (± ~ )2, 
vm a=1 dXa 

(32) 

and rp is the v-particle determinant 

rp =(V!)-1/2 det [Ja(xp)]; a,/3 = 1,2, ... ,v. (33) 

Then the new (projection before variation) HF energy will be 

E ~F(V) = inf 'll(rp );>Eo(v), 

'" where the variation gives the new HF equation 

_ ( v ~ 1 ) :J"(X) _ 2vo(v - I)J3(x) = eJ(x), 

which, in analogy to Eq. (25), has the unique solution 

f
-( ) - vvom h vvom 

( )

112 

x - 2 sec 2 x, 
4~ 2~ 

v~m I-e = - v(v - 1) - , f(x)dx = 1. 
4~2 

Therefore, the new HF energy is 

E~F(V) = ve + vov(v - l)J dXJ4(X) 

v(v-l)v~m 

12~2 

so that the HF-to-Schrodinger energy ratio is 

(34) 

(35) 

(36) 

(37) 

(38) 

E ~F(V) _v_ , (39) 
Eo(v) v+ 1 

a clear improvement over Eq. (30). 
A less satisfactory center-of-mass subtraction proce

dure than the above (which is necessarily very common in 
may nuclear calculations) can be called "projection after 
variation" and consists in first calculating the expectation 
value 

tcrn (v)=(D", I Tcrn (v)ID",) 

mv~(v - If 
12~2 

(40) 

whereD", now stands for a v-particle determinant with orbi
tals Eq. (26). Finally, the aforementioned ratio is computed 
as 

E~F(V) - tcrn(v) v-I 

Eo(v) v 
(41) 

which is better than Eq. (30) but worse than Eq. (39). 

4. WAVE FUNCTION OVERLAPS 

Besides the HF-to-Schrodinger energy ratio as a crite
rion of goodness, it is also instructive to consider the overlap 
between the corresponding wave functions. Suppressing the 
intrinsic wave function, which is always given as in Eq. (4), 
the v-particle Schrodinger and HF ground-state wave func
tions are, respectively. 

[ (

V m )V - I] 112 v _ mv" I" - "pi 
'P = (v - I)! _0_ II e 21'12 a . 

v ~2 a<p , 

<P = rv rrJ(xa ) (42) 
a=l 
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withJ(x) defined as in Eq. (45). Defining the scalar product 

(F I G) = J dx I •• J dX
y
8( x I + X2 

: ••• + Xy ) 

XF(xl,· .. ,Xy)G (xj, ... ,xy), 

then the required overlap will be 

tJ y=( I/Iv l<Py )2/( <Py l<Py) ('Py I 'Pv)' 

(43) 

(44) 

Although the calculation of (44) for v> 2 is very difficult we 
have been able to do numerically the case for v = 3, but defer 
all details to the Appendix and here only quote the results: 

tJ 2 = 0.9774 (and 0.8953 with center-of-mass) (45) 

tJ 3 = 0.9726. 

5. LOWER BOUNDS 

We here construct, along the lines of Ref. 8, rigorous 
lower bounds to both the Schrodinger E( p) E (N,L )/ N as 
well as the EHF( p)-E HF(N,L )IN energies per particles, for 
any density p-N / L, L being the size of a box wherein the 
system is contained. (If L--4 00, N fixed, then P--40 and we 
recover the "open" boundary condition cases discussed 
heretofore.) Upper bounds will be considered in the following 
section. 

Let the Hamiltonian (1) be written, for A real and 
0<,1<1, as 

H= T+ V= (AT+ V) + (I-A )T. (46) 

Since the Hamiltonian AT + Vis that of a gas of N fermions 
with v species and mass m/ A, we have from Eq. (3), valid at 
p = 0, Eq. (5) and from the factS that the ground state ener
gy-per-particle must be nondecreasing in p, that 

(47) 

where the expectation value is between the exact ground 
state wave function. Furthermore, the Rayleigh-Ritz princi
ple allows the assertion 

(48) 

Combining (47) and (48) one has, for (46), that 

(49) 

which on maximizing with respect to 0<,1< 1 gives (taking 
~=m = 1), 

E( p) 4r ( p )2 41T p 
IE(O)I ;> v(v - 1) Vo - vR=l Vo 

( p v(v2 _ 1)1/2) (p v(v2 _1)1/2) 
for -;> , ;> - 1 for - < , 

~ 21T ~ 21T 
(50) 

where E(O) represents the exact (zero-density) energy per par
ticle appearing on the RHS of Eq. (47) with A = 1. Since the 
zero-density HF value is also known from Eq. (29) and (6), we 
can similarly find the lower bounds 
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~F(p) > 4/f ( VP
O 

)2 _ 417" .!!..-
IE(O)I v(v - 1) v(v + 1) Vo 

(
for P > v(v - 1)), > _ ( V-I) (for .!!..- .;; v(v - 1)) . 

Vn 217" V + 1 Vo 217" 
(51) 

Both (50) and (51) follow from the non decreasing property of 
the energy per-particle as function of p which is verified not 
only in the Schrodinger but also in the HF case. 

In the following section we give several upper bounds 
which are also HF solutions but not unique-i.e., they are not 
the lowest minimum as in (lO)-in order to see how near or 
far energetically they may lie with respect to the unique solu
tion (10). The prime motivation in this, of course, is that 
these kinds of solutions, in contrast to the unique one known 
in one dimension, are easily constructed in higher, particu
larly three, dimensions. 
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FIG. I. Energy-per-particle, in units of the exact (Schrodinger) value at 
zero-density, vs. p/vo for a many-fermion (two species) system with Hamil
tonian Eq. (I) with" = m = 1. The lower dot on the ordinate axis corre
sponds to the exact result while the connecting dashed curve gives the lower 
bound Eqs. (50). The upper dot on the same axis is the lowest energy (i.e., 
unique solution) in the HF approximation and the connecting dashed curve 
the lower bound Eq. (51). The dot-dash curve is the (nonunique) exponential 
orbitals HF energy Eq. (54), which bifurcates from the plane wave HF ener
gy Eq. (52) (upper full curve). The Qverhauser HF energy Eq. (53) is also 
shown (lower full curve), and is everywhere below the plane wave curve 
exceptatp/vo = o and 00 where they both coincide. The thin curves labelled 
"numerical" correspond to the HF results of Ref. 19 and to our finite den
sity SchrOdinger ground state energy calculation of Sec. 7. 
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6. OTHER (NON UNIQUE) SOLUTIONS 

It is well-known 12 that the set of orthonormal, plane
wave single-particle orbitals satisfy (trivially) the HF equa
tions. Two non plane wave (or nontrivial) solutions are pro
vided by the Overhauser l3 and the so called "exponential" 
orbitals. 14 These have been extensively studied in Ref. 14 in 
both one and three dimensions, and we here simply state the 
results appropriately transcribed for the N fermion, v species 
system under consideration. In units of the exact result E(O) 
one has (for fJ = m = 1), for the plane-wave (PW), Over
hauser (Ov) and exponential (EXP) cases 

?w(p) _ 4~ ( P )2 12 P. 
~ - v(v-l) Vo - v(v+ 1) vo ' (52) 

EOV(p) 12~ ( P )2 12~ ( P )2 
IE(O)I v(v - 1) Vo v2(v - 1) Vo 

Xcoth [ 2~ .!!..-). 
v(v-l) Vo ' 

(53) 

= minI 4~ (.!!..- )2[ 1 + 6a ll(2a) ] 
a v(v - 1) Vo lo(2a) 

_ 12 lo(4a) .!!..-} 
v(v + 1) n(2a) Vo ' 

(54) 

where in (54) one carries out the minimization in the expo
nential orbitals variational parameter O.;;a < 00 numerical
ly, and ll(x) is the modified Bessel function. 15 Note that for 
a = 0, (54) becomes (52), as it should. 

Figures I and 2 illustrate the results for two extreme 
cases, the 2-species system and the 32-species one, respec-

E (Y) / IEEXACT (0) I 
.2 

50 100 

!Iv. 

- I 

-3 

-4 

-5 

-.6 

-.7 

~8 

.-.-.~./ -.9 

-10WESf'HF - - - -~ T'b.'"iO TOWe5tHF-eiIe,.9( _ .... ,. 
-1 ---------- - ~-------------

EXACT I.b. to exact energy 

FIG. 2. Same as Fig. I but for a v = 32 species, N-fermion system. 
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TABLE I. Finite density Schriidinger ground state energy (57), for several densities. 

p/Vo 
~p)/v~ 

o 
-1 

0.15 
- 1.000 

0.31 
-1.000 

0.41 
- 0.995 

0.54 
- 0.980 

tively. Note that all three nonunique solutions PW, Ov and 
EXP, violate the non decreasing-in-p property but that the 
EXP case is clearly the better of the three at low density, even 
qualitatively. For v = 2, €EXP(O)I 1 E"F(O) 1 is about - 0.96,14 
and for v = 4 ca1culations l6 employing more realistic pair 
interactions suggest that this value is almost - 1. 

We note that all expressions (52) to (54), being rigorous 
upper bounds, are greater than or equal to unity. 

7. FINITE DENSITY SCHRODINGER GROUND STATE 
ENERGY 

To obtain the exact ground state energy of (1) (with 
m = -Ii = 1) for plvo > 0 we must solve the Gaudin4 equa
tions for the functionJ(q) and the limit value Q, namely 

~J(q) = 1- ~fQ dq' J(q') , va>0,(55) 
2 21T _ Q v~ + (q _ q')2 

1 fQ 
p= - dqJ(q). 

1T -Q 

(56) 

Knowing these one then substitutes into the energy per par
ticle 

v2 1 fQ 
€(p) = - ....£.. + - dqq2J(q). 

4 1Tp - Q 
(57) 

These are essentially the same equations solved by Lieb and 
Liniger l7 for the repulsive delta function boson gas save, of 
course, for a sign change in Va and the absence of the binding 
energy term - v~/4 in (57). 

The equation to be solved initially, (55), is an inhomo
geneous Fredholm integral equation of the second kind. We 
have used a collocation and least-squares method 18 based 
upon an expansion ofJ(q) in terms of 12 Chebyschev func
tions. The results are shown in Table I and graphed in Fig. 1 
(lower thin curve). We note the closeness of the exact result 
to the lower bound (lower dashed curve). For comparison, in 
Fig. 1 also shown are the results of Gutierrez and Plastino l9 

for the HF energy for plvo'>O (upper thin curve). 

8. CONCLUSIONS 

We have compared the HF with the Schrooinger 
ground state energies for a system of N fermions, v species, 
and such that N Iv is integer, for a one-dimensional Hamil
tonian with attractive pair interactions of the delta function 
kind capable of producing "clusters" of v particles. Some 
non unique HF solutions which are easily constructed in 
higher dimensions were compared. In general, we found that 
as v grows the HF energy approaches (from above) the 
Schr6dinger energy and becomes, as v-~N, the well-known 
boson case for which both energies coincide in the thermo
dynamic limit. Finally, we have calculated numerically, for 
nonzero density, the Schr6dinger groupd state energy for the 
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0.70 
- 0.860 

0.90 
- 0.510 

0.99 
- 0.275 

1.08 
+0.016 

1.13 
+ 0.198 

case v = 2 and compared this with all our results as well as 
the finite-density lowest (or, unique) HF result. 
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APPENDIX 

Here we outline how the overlaps (54) were obtained for 
v = 2 and 3. We use the abbreviation c _mvol-li2 throughout. 

For v = 2 the calculation can be done analytically 
since, recalling the definition (52), one has 

- - 2f'" 4 4 (<1>21<1>2) = c dx sech cx = -C;(1[I21'1'2) = 2, 
_'" 3 

(AI) 

while 

(1[I21<P2) =~3/2J: '" dxsech2cxe-clxl = (8C)I12( ; -1), 
(A2) 

so that, finally, in view of (53) 

& 2 = ~(1T - 2)2 = 0.9774···. (A3) 

Ifwe had used the orbitalJ(x), instead of.f(x) as above, then 

2 
(<1>21<1>2) = -c; 

3 

(1[121<1>2) = 2(2C) 1/2l'" dy e- 2y sech 2y 

= 2(2c)1/2(21n 2 - 1), (A4) 

so that 

& 2 (with center-of-mass) = 6(2 In 2 - If 
= 0.8953···. (A5) 

For v = 3 one has 

( <P31<P3) 

= ~ du dv sech2 u sech2 v sech2 (u + v), 27 f'" f'" 
16 - '" - '" 

(A6) 
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where u=3cx 1/2 and v-cx2/2. The transformation 
u=~(x + y) and v=!(x - y) allows the double integral (A6) 
to be reduced to integrals found in Ref. 20, with the result 

(A7) 

on the other hand, to evaluate (1/1311/13) exactly one can in
troduce the Jacobi coordinates 

(A8) 

which constitute an orthogonal transformation so that the 
Jacobian is unity. Then 

I 
1T . 1T I + Xa cos 3 +Xb sm 3 

and if we define rand 0 by 

Xa rcos 0 O<;r< 00, 

I 
. 1T + Xb sm 3 -x cos.!!... I] 

a 3 ' 
(A9) 

Xb -r sin 0 0<;O<;21T, (AW) 

the integral (A9) takes on the more convenient form 

(1/1311/13) = 24Y3c2 f: 00 dr r 11T16 
dO exp [ - 2v'2cr cos 0 1 

= 3Y3 11T/6dO cos-2 0 = 3. (All) 

However, the integral (1/131 i(3) does not seem to be do-able 
exactly; we thus resorted to numerical evaluation via two 
routes: i) by reducing it to a single integration and ii) by 
numerically doing the original double integration. One has 

(1/I3IiP3) = ~ (54C)II21"'drrf1TdOSeCh(rSinO)Sech(rsin(o+ ;)) 

X sech (r sin (0 - ;)) exp [ - ~ r{ 1 cos 0 1 + I cos (0 + ~) I + I cos (0 - ~) I } ] , (AI2) 

which, after some tedious analysis, can be reduced to the 
form 

(54c)1/2 (OOdue-uJ(u), 
4 )0 

where, as before u=3cx 1/2, and 

J(u)=(sinh 3u)-lln [e3U cosh u ] - (cosh 3U)-1 
cosh 2u 

X In [2 cosh 2u 1 + (cosh 3u)-l e -- u{ 2 tan -leu 

+ (smh 3u)-lln - - . . [ cosh u] 1T } 
cosh 2u 2 

(Al3) 

(AI4) 

Numerical integration gives 1.7629523 for the double inte
gral (AI2) and 1.762 952 5 for the single integral (Al3). Thus 

fj = 2(1.762952)2 = 0.972 589.... (AI5) 
3 3(12 _~) 
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Optimal control of the decay of nonequilibrium statistical correlationsa) 
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A quasi thermodynamic interpretation of the stochastic control of irreversible thermodynamic 
diffusion processes is presented in which the drift is the control parameter. The joint entropy, 
considered as a function of the initial data is the negative of the optimal expected total cost, and 
the generalized Hamilton-Jacobi equation, which it satisfies, is the dynamic programming 
equation for the optimal stochastic drift control. The two cost functions, proposed by Yasue, are 
shown to differ by a stochastic gauge transformation and constitute equivalent variational 
problems. Yasue's results are shown to apply in two limiting cases: the asymptotic time limit, 
where the nonequilibrium statistical correlations have worn off, or the weak noise limit, where 
random thermal fluctuations have a negligible importance. The asymptotic expected total cost is 
governed by a minimum relative entropy principle and the goodness of the thermodynamic drift 
control in the stochastic problem is determined. 

PACS numbers: 05.40. + j, 05.70.Ln 

I. INTRODUCTION AND SUMMARY 

The Onsager-Machlup (OM) function has recently 
been interpreted as a local cost function in the stochastic 
theory of optimal control. 1 An analogy was drawn between 
irreversible thermodynamic diffusion processes and a mini
mum principle for determining the smallest eigenvalue and 
corresponding eigenfunction of the Schrodinger equation in 
which the smallest eigenvalue was shown to be the minimun 
cost of a stochastic control problem.2 The dynamics was de
scribed by a stochastic differential equation and control was 
exercised by choosing the drift as the control. The cost of 
using the control was then identified as the asymptotic time 
average of the expected value of the energy and the smallest 
eigenvalue was identified as the minimum energy of the sys
tem. 

By specifying the dynamics through a stochastic differ
ential equation, Holland2 was able to convert the Schro
dinger equation into a dynamic programming equation of 
optimal stochastic control theory. In order to apply the same 
analysis to irreversible thermodynamic diffusion processes 
Yasue l had to consider two diffusion processes: the uncon
trolled irreversible thermodynamic process and a controlled 
diffusion process in which the drift acted as the control. Ya
sue's major result was that the optimal stochastic drift con
trol is the thermodynamic drift control since it minimizes 
the OM function which he interpreted as a local cost func
tion. 

Yasue circumvented the dynamic programming analy
sis by showing that the OM function met all the prerequisites 
of a cost function and that the minimum expected value was 
obtained by setting the optimal stochastic drift control equal 
to the thermodynamic drift. Yet, deterministic control, at 
best, can only be an approximation to optimal stochastic 
control due to the presence of noise. 

When random thermal fluctuations are taken into ac
count in irreversible thermodynamics, statistical correla
tions arise between nonequilibrium states that are not well 

alWork supported in part by the CNR. 

separated in time. An analysis of nonequilibrium statistical 
correlations was performed using the kinetic analog of 
Boltzmann's principle. 3 Whereas Boltzmann's principle de
termines the probability density in terms of the entropy, its 
kinetic analog determines the transition probability density 
in terms of the entropy difference of the endpoints of transi
tion and the joint entropy which accounts for the statistical 
correlations between the nonequilibrium states. With the 
passage of time, all predominantly dissipative systems tend 
to "forget" and in the asymptotic limit, the joint entropy 
reduces to the sum of the entropies of the two states indicat
ing that they are statistically independent in this limit. As
ymptotically then, Boltzmann's principle is recovered for 
the probability of a spontaneous fluctuation from equilibri
um. 

A novel feature of the present analysis will be to show 
that the generalized Hamilton-Jacobi equation for the joint 
entropy is derivable from the dynamic programming equa
tion of optimal stochastic control. The joint entropy then can 
be interpreted as the negative of the minimum expected total 
cost when considered as a function of the initial data. In 
contrast to Yasue's result, the optimal stochastic drift con
trol will, in general, be shown not to coincide with the ther
modynamic drift. This will be attributed to the presence of 
nonequilibrium statistical correlations between the terminal 
states. However, there are two important limiting situations 
in which Yasue's result applies: in the long time limit, where 
the statistical correlations have had ample time to have worn 
off, and in the "thermodynamic" limit,4 where the random 
thermal fluctuations playa negligible role. 

The outline and basic results of the paper are as follows. 
In Sec. II, the expected relative cost is defined in terms of the 
expected value of the logarithm of the probability measure 
density for the conversion of sample paths belonging to the 
controlled diffusion process into the irreversible thermodyn
amic process. An expected total cost is also defined and 
differs from the expected relative cost by a stochastic gauge 
transformation. These two cost functions are identical to 
those introduced by Yasue in the event that the rotational 
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probability current vanishes. Hence, the two cost functions 
constitute equivalent variational problems. In Sec. III, a 
comparison is made between a "free" diffusion process (i.e., 
with zero drift) and an irreversible thermodynamic diffusion 
process. Thejoint entropy is introduced into the description 
of the nonequilibrium statistical correlations between states 
that are not well separated in time.3 By the method of dy
namic programming, it is shown that when the joint entropy 
is considered as a function of the initial data, it coincides 
with the negative of the optimal expected total cost for the 
transfer of the system between given states under optimal 
stochastic control. The long time expected value of the opti
mal total cost is equal to the expected entropy difference and 
is therefore positive semidefinite by virtue of the second law. 
In Sec. IV, the OM function is shown to be a cost function 
when the velocity is chosen as the control in the thermodyn
amic limit of vanishing noise intensity. This is precisely Ya
sue's result! which is shown to apply either in the limit of 
small noise intensities or in the long time limit. In the ther
modynamic limit two classes of optimal trajectories emerge, 
depending on the imposed boundary conditions, and are 
shown to be the maximum likelihood paths for the growth 
and decay offluctuations.4 In Sec. V, the asymptotic expect
ed total cost is shown to reduce to the terminal costs, as 
measured in terms of the entropy difference for the transfer 
of the system between nonequilibrium states under the appli
cation of the thermodynamic drift control. Furthermore, it 
will be shown that the long time total cost for the transfer of 
the system from any neighborhood of the stationary state to 
the most probable state on the boundary at which exit is 
expected to occur is governed by a minimum relative en
tropy principle, provided there exists a unique state on the 
boundary with maximum entropy.4 Finally, in Sec. VI, we 
answer the question of how good is the use of the thermodyn
amic drift in the stochastic control problem. It is shown that 
to leading order in the small noise intensity parameter, the 
optimal relative stochastic cost differs from the relative ther
modynamic cost by a term proportional to the square of the 
noise intensity parameter. 

II. STOCHASTIC CONTROL OF IRREVERSIBLE 
PROCESSES UNDER THE INFLUENCE OF RANDOM 
THERMAL FLUCTUATIONS 

The deterministic optimal control problem is converted 
into a stochastic optimal control problem when random 
thermal fluctuations are taken into account. For then, the 
deterministic optimal control given by the phenomenologi
cal laws of irreversible thermodynamics cannot, in general, 
be achieved. However, if the noise intensity is small or if a 
long enough time has elapsed so as to ensure statistical inde
pendence, the stochastic control problem approximates the 
unperturbed problem. In this section, we formulate the sto
chastic control problem. 

The state of the system is assumed to be completely 
observable at each instant in time. This assumption is essen
tial if the stochastic control problem is to reduce to a solution 
of a partial differential equation via dynamic programming.5 

The state process X (t ) is a vector in n-dimensional space Rn 
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and evolves according to the stochastic differential equation 

dX(t) = b(X(t)) dt + €udB(t), XIs) = x (1) 

written in vector-matrix notation. The WienerprocessB (t ) is 
a mathematical idealization of BrowniaQ motion which re
sults from an enormous number of small displacements fluc
tuating at random. The increments have a Gaussian distri
bution with zero mean and variance 2D dt where D = ~uut is 
the positive symmetric diffusion matrix and u t is the trans
pose of u. The last term in Eq. (1) represents the effect of 
random thermal fluctuations upon an otherwise determinis
tic system of equations. The small positive parameter € 

serves as a measure of the noise intensity. 
The drift field b is specified by the phenomenological 

laws of irreversible thermodynamics which are compatible 
with the existence of an invariant probability distribution. 
The drift field can be decomposed into what is essentially the 
gradient of a scalar potential, namely the entropy S, and a 
vector field A, viz.,6 

b=D(VS+A). (2) 

From a probabilistic point of view, the entropy determines 
the invariant probability density p "" via Boltzmann's princi
ple 

clnp"" (x) = SIx) + const. (3) 

And sincep "" satisfies the time-independent Fokker-Planck 
equation V -p "" v"" = 0 which in integrated form reads 

bp"" - €2DVp"" = v""p"", (4) 

where v ""p "" is the rotational probability current, the two 
thermodynamic fields in (2) satisfy 

D:(VSA t + €2VA) = 0 (5) 

with v"" = DA. In the thermodynamic limit as €-o+ , a nec
essary condition for the existence of an invariant probability 
density given by Boltzmann's principle (3) is that the gradi
ent field be orthogonal to rotational probability current ve
locity Voc 4.7 [cf. (54) beloW]. 

The irreversible thermodynamic diffusion process (1) 
can be compared with a controlled diffusion process where 
the drift acts as the control. ! The controlled diffusion pro
cess X (t ) is described by the stochastic differential equation 

dX(t)=u(X(t))dt+wdB(t), X(s)=x (6) 

which has the same local variance as (1) but with a different 
drift field u that acts as the control. The controlled diffusion 
process X (t ) is, in a certain sense, close to the irreversible 
thermodynamic process X (t ) and its corresponding probabil
ity measure f-l is close to the measure ii of the irreversible 
thermodynamic diffusion process. 

In order that the two measures be absolutely contin
uous with respect to one another, it is necessary and suffi
cient that the local variance matrices of the two measures 
should be equal on the entire interval [s, T] while the two drift 
fields can be different. 8 In other words, the two diffusion 
processes have the same sample functions on [s,T] but are 
considered as distinctly different stochastic processes with 
respect to their probability measures. Since ii <It, the prob
ability measure density exists and is given by the well-known 
Girsanov formula9

: 
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(7) 

where II·IIM denotes the quadratic form associated with the 
symmetric matrix M. Since the drift fields are nonanticipat
ing (which is to say that they depend upon only those X (s) in 
the past s<t), the drift fields and the increments dB (t) are 
statistically independent. From this it follows that the condi
tional expectation of the first integral in the exponent of (7) 
vanishes. This martingale property is used to define the ex
pected relative cost for the use of the control u in the follow
ing way. Taking the conditional expectation of the logarithm 
of the probability measure density (7) we obtain 

CU(x,s) = - 2CExs {ln (~)} 

=Exs{~ iTllu-bI11-,dt} 

Exs {iT L(u,x (t)) dt } (8) 

which is Yasue's representation of the expected value of the 
QM function as a cost function. I 

The expected total cost for the transfer of an initial state 
x to some target set, under the control u, can be obtained 
from the expected relative cost (8) via a "stochastic gauge" 
transformation. The integrand in (8) is expanded and the 
cross term is evaluated with the aid of the controlled diffu
sion process (6). Then introducing the drift field (2), we ob
tain the expected total cost as 

C*U(x,s) =-=CU(x,s) + ExsS(XT) - SIx) 

=Es {iT L *(u,x (t)) dt }, (9) 

where the loss function L * is defined as6 

L*(u,x)dt=UlluI11-, + V(x)] dt-AodX(t), (10) 

which represents the net energy dissipation. The scalar po
tential V is referred to as the QM potential, I 

V(x) = !llb 111-, + cV·b, (11) 

and the small circle in the last term denotes Fisk-Stratono
vich symmetric multiplication, viz., 

AodX(t) = (A + !dA) dX(t) 

=A dX(t) + cD:VA dt. (12) 

The stochastic control problems (8) and (9) can be said 
to be equivalent in the sense that their integrands differ 
merely by the mean forward stochastic derivative of the en
tropy, viz., 

d,ExsS(X(t)) = ExsGuS(X(t)), 

where 

G U = u·V + cD:VV 

(13) 

(14) 

which is the infinitesimal generator of the controlled diffu
sion process (6). In analogy with the corresponding concept 
in electrodynamics, we shall call 

L *(u,x) = L (u,x) + G uS (x) (15) 
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a stochastic gauge transformation. Since the Weierstrass ex
cess function E, corresponding to the Lagrangian L, is 

E (u,UO,x) = L (u,x) - L (uo,x) - (u - UO)V uL (UO,x) 

=!llu-uoI11-,;;;.0, (16) 

where UO is the optimal drift control, there exists a stochastic 
gauge transformation (15) giving rise to equivalent stochastic 
control problems. Moreover, if E * is the excess function cor
responding to the Lagrangian L * we obtain, by direct substi
tution, that 

E (u,UO,x) = E *(u,uo,x). ( 17) 

The Weierstrass condition (16) is the condition for a 
"strong" minimum; that is, when the extremum is not just a 
local minimum but rather an absolute minimum. 10 

The stochastic gauge transformation (15) provides the 
connecting link between the two cost functions introduced 
by Yasue, I namely, the local cost function (8) and the cost (9), 
without taking the asymptotic time limit. Rather we shall 
refer to (9) as the expected total cost since it contains the 
expected state costs as measured by the expected entropy 
difference in the transfer of the initial state x under the drift 
control u. 

III. QUASITHERMODYNAMIC DESCRIPTION OF 
NONEQUILIBRIUM STATISTICAL CORRELATIONS 
AND DYNAMIC PROGRAMMING 

In this section, we apply Girsanov's measure substitu
tion theorem to obtain a quasi thermodynamic description of 
the statistical correlations between nonequilibrium states 
that are not well separated in time. Rather than comparing 
the irreversible thermodynamic diffusion process (1) with a 
controlled diffusion process, we now compare it with a free, 
uncontrolled diffusion process, 

dX(t) = EadB(t), XIs) =s. (18) 

Through the application of nonequilibrium external con
straints, which are subsequently partially released, the free 
diffusion process (18) is converted into the irreversible ther
modynamic diffusion process (1).3 Since the local variance 
matrices of the two diffusion processes are the same, the 
probability measure p" corresponding to the process X (t ), is 
absolutely continuous with respect to the probability mea
sure {.t for the process X (t). The probability measure density 
on [s,T] is 

d~ (X(.)) = eXP{(2E2)-1 ( [D -Ib dX(t) 
df-l Js 

- !llb 111-, dt]}. (19) 

With the aid of the drift decomposition (2) and formulas (12) 
and (13), the probability measure density (19) can be written 
in the form 

~ (X(.)) = eXP{(2c)-I[S(XT) - SIx) 

- iT(V{X(t))dt-AOdX(t))]}. (20) 

The probability P that the solution ofEq. (1), which we 
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denote as Xxs (T), will be found in a Borel set !!/J coincides 
with the transition probability P, viz., II 

(21) 

Pis related to the transition probability P of the free diffusion 
process (18) by 

P(!!/J ,T lx,s) = f E{ d~ (X('))IXxs(T) = Y}P(dy,T Ix,s),(22) 
:111 dJ.l 

where Xxs(T) is the solution of Eq. (18) having the same ini
tial conditions as Xxs (T). If P has a density p and P has a 
density p then 

P(y,Tlx,s) = exp[(2c)-I[S(y) - Six) 

+ a,(y,T;x,s)]), (23) 

where the joint entropy aj is defined as 

a,(y,T;x,S)_2E21n[ E{exp [(2E2)-li
T 

(AodX(t) 

- V{X(t)) dt)] IXx,(T) =Y}P(y,TIX,S)] (24) 

and p is the transition probability density of the Wiener pro
cess. 

We have previously referred to (23) as the kinetic analog 
of Boltzmann's principle. 3 Whereas Boltzmann's principle 
(3) determines the probability of a state in terms of its en
tropy, its kinetic analog (23) relates the probability of a tem
poral succession of states to their entropy difference and 
joint entropy. The joint entropy is a quasi thermodynamic 
potential inasmuch as it is a function of the endpoints of 
transition as well as the time of transition for time homogen
eous diffusion processes. Given enough time, all predomin
antly dissipative systems "forget" and in the long time limit 
the states will become statistically independent. Then in or
der for (23) to reduce to (3) in the long time limit, the joint 
entropy must have the property that 

lim a,(y,T;x,s) =S(x) +S(y). (25) 
T-s_oo 

To prove (25) it suffices to determine the stationary solutions 
of the pair of generalized Hamilton-Jacobi equations which 
the joint entropy satisfies. 3 

In dynamic programming, the optimal expected cost is 
considered as a function of the initial data and in this sense 
the backward generalized Hamilton-Jacobi equation 

has a privileged role in optimal stochastic control theory. We 
shall now derive Eq. (26) via dynamic programming and 
show that the joint entropy, when considered as a function of 
the initial data, coincides with the negative of the optimum 
expected total cost. 

Let DC Rn be an open set in which the diffusion process 
is controlled. Define the optimal expected total cost by 

W*(x,s) = inf C *U(x,s) (27) 
u 

considered as a function of the initial data in the cylinder 
[s,TJXD such that W* is in C 1.2 (D) and continuous on the 
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closure D = DwD. Then W*(x,s)<C * "(x,s) for any admissi
ble control u and any initial data (x,s)ED. The optimal sto
chastic drift control UO is such that 

G u"W* + L *(UO,x) = min [G uW* + L *(u,x)j (28) 
u 

for all (x,s)ED and consequently W*(x,s) = C *u"(x,s) for all 
(x,s)ED. 

By virtue of the definition of the expected total cost (9) 
and the mean forward stochastic derivative of the optimal 
expected total cost, 

& W*(x,s) = lim ~ Ex, [ W*(X (7 + S),7 + s) 
T-----+O+ r 

- W*(X(s),s)j 

= (as W* + GUW*)(x,s) (29) 

taken along a sample path of the controlled diffusion pro
cess, we obtain 

!iJ W*(x,s» - L *(u,x) (30) 

or 

as W* + min [G uW* + L *(u,x)j = O. (31) 
U 

Equation (31) will be recognized as the dynamic program
ming equation of optimal stochastic control theory. And 
since the problem is of the Lagrange type [cf. (27) and (9)], the 
boundary condition is 

W*(y,T)=O. (32) 

The minimum of(31) is achieved when the gradient in u is O. 
The minimum occurs for u = un, with 

which when introduced into the dynamic programming 
equation (31) leads to 

(33) 

- asw* + !IIVW* -A 111- cD:V(VW* -A) = V(x). 
(34) 

A comparison of the generalized Hamilton-Jacobi equa
tions (26) and (34) leads to the conclusion that 

W*(x,s) = - a,(y,T;x,s) (35) 

when the joint entropy is considered as a function of the 
initial data. This establishes the role of the joint entropy in 
the realm of optimal stochastic control theory. Further
more, by virtue of the asymptotic property of the joint en
tropy (25), we can show that the optimal expected total cost 
reduces to the expected entropy difference in the asymptotic 
time limit. 12 

For a smooth set of drift controls u, the generalized 
Hamilton-Jacobi equation (26) can be written as 

asa, + G "a, <L *(u,x), (36) 

or equivalently as the dynamic programming equation 

asaJ + max! G ua, - L *(u,x) I = O. (37) 
U 

Setting the gradient of (37) with respect to u equal to 0 we 
obtain the optimal drift control 

UO = D(Va, +A), (38) 
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which when substituted back into the dynamic program
ming equation (37) yields the generalized Hamilton-Jacobi 
equation (26). The equivalence between the optimal expected 
total cost and the joint entropy has now been established. 

Integrating both sides of(36) in [s,T], using the optimal 
drift control (38), and taking the conditional expectation, we 
obtain 

lExs ! aJ(X (T),T;x,s) J = lExs {iT L *(u°,x (t)) dt } + c(x), (39) 

where the constant c can depend upon the initial state. In the 
limit as T - s--+ co, we find 

T ~is~", lExs {iT L *(u°,x (t)) dt } 

= L Sly) d/lO(y) - S(x):>O, (40) 

where flO is the invariant steady-state probability measure. 
Then in view of the asymptotic property of the joint entropy 
(25) we conclude that c(x) = 2S(x). Introducing the condi
tional entropy as3 

ac!y,Tlx,s) = aJ(y,T;x,s) - SIx), (41) 

Eq. (39) can now be written as 

lExs ! ac!X (T),T Ix,s)j - S (x) = lExs {iT L *(UO ,x(t)) dt }. 

(42) 

Taking the asymptotic time limit of (42) and using (40) we 
find 

T~is~", lExs!ac!X(T),Tlx,s)j = L S(y)d/lO(y). (43) 

Given enough time so that the initial conditions have worn 
off, the expected value of the conditional entropy reduces to 
the expected value of the entropy with respect to the invar
iant probability measure. In the asymptotic time limit statis
tical independence is achieved and this can be interpreted in 
terms of the asymptotic optimal expected total cost: In the 
long time limit, the optimal expected total cost reduces to the 
expected difference in the entropy and its positive semidefin
iteness follows from the second law. In other words, any 
additional costs arising from the statistical correlations 
between nonequilibrium states do not contribute to the 
asymptotic optimal expected cost since statistical indepen
dence is regained in the long time limit. It is precisely to this 
limit that Yasue l has addressed himself when he concluded 
that UO = b is the optimal control. 

IV. OPTIMAL CONTROL FOR SMALL NOISE 
INTENSITIES 

In the last section we saw that optimal stochastic con
trol coincides with deterministic control in the asymptotic 
time limit. This was attributed to the presence of nonequilib
rium statistical correlations which prevent optimal deter
ministic control from being used. There is, however, another 
limit in which deterministic control can be achieved, namely 
in the thermodynamic limit as €--+o+ of vanishing noise in
tensity. In this limit, the variational problem becomes a con-
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trol problem simply by taking u = x as the control. 
In the limit as €--+O+, the OM function 

i

T 1 iT 
CU(x,s) = - i lu - b II~ ,dt = L (u,x) dt 

s 2 s 
(44) 

is a cost function for the control u = X.I No expectation in 
(44) appears because the control problem is now determinis
tic. The loss function L has the following properties: 

(a) L (u,x) is strictly convex in the sense that v+ 'V~Lv > 0 
for any arbitrary vector VERn, 

(b) L (UO,x) = 0 for UO = b, the optimal or thermodyna
mic drift control, and 

(c) L (u,x) > 0 for any admissible drift control u I=uo. 
Property (c) can be easily verified by observing that 

L = E, the Weierstrass excess function (16) which is a neces
sary condition for optimality in the calculus of variations. 

The function 

H (u,x, p) = pu - L (u,x) (45) 

is known as the Pontryagin function in deterministic optimal 
control theory. 13 pER" are usually referred to as the "mo
menta" in analogy with classical mechanics. Introducing 
(45) into (44), the extremum problem can be formulated as 

LlCU(x,s) = 8iT(PU -H)dt + (pu -H)Llt I; = 0, 

(46) 

where the Ll and 8 variations are related by Llx = 8x + xLlt. 
Upon performing the indicated variations in (46) we get 

LlCU(x,s) = iT I(u - 'Vp H)8p - (p + VH)8xJ dt 

+ pLlxl; - HLlt I; = O. (47) 

From (47), we find the following extremum conditions for 
C U (cf. Ref. 4): 

(A) {;: ~~; ~''VL, 
(B) H = 0 if Llt 1;1=0, 
(c)p = 0 if Llxl; 1=0. 
Let us first consider condition (A). 

The optimal drift control u* makes H an extremum 
since 

VuH(u*,x,p) =p - 'VuL (u*,x) =p - D -I(U* - b) = 0 
(48) 

which determines u* as a single valued function of x and p. 
Introducing (48) into the second set of Hamiltonian equa
tions (A) results in 

x = u*, d, 'VuL (u*,x) = 'VL (u*,x) (49) 

which are the Euler-Lagrange equations for the optimal 
control trajectory. They are reduced to a set of first-order 
differential equations by introducing the optimal control as a 
new set of functions. The Hamiltonian for the optimal con
trol trajectory is 

H(u*,x,p)=! Ilpll~ +bp (50) 

and consequently the Euler-Lagrange equations (49) for the 
optimal trajectory are 
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x = u*, p = - (p·V)b. 

It will now be appreciated that 

p=O and u*=D(VS+A) 

(51) 

(52) 

satisfy the extremum conditions for the relative cost (A)-(C); 
corresponding to a variational problem with a free terminal 
endpoint. If both terminal endpoints are fixed, (C) cannot 
hold and we find that 

p = - 2VS and fl* = D(A - VS) (53) 

satisfies conditions (A) and (B) with (C) replaced by 
..:1xl; = 0, provided the transversality condition 

D:VSA + =0 (54) 

holds. Several comments will help to clarify the meaning of 
the optimal drift controls (52) and (53). 

Whereas the Euler-Lagrange equations are second or
der differential equations, the phenomenological equations 
of irreversible thermodynamics are of first order. This means 
that we cannot specify two initial conditions or equivalently 
two endpoint conditions, as is usually the case in the calculus 
of variations. Hence, the optimal drift control (53) must be 
interpreted in the following sense. If condition (C) is not sat
isfied then it will be possible to reach infu C u only for 
s_ - 00 when the final state of transition is specified at time 
T.14 For then as s- - 00, the system will reach any neigh
borhood of the (stable) steady state. This means that an arbi
trary nonequilibrium state, in the limit as €-o+, cannot be 
realized in a finite time if the system is initially found in any 
neighborhood of the steady state where it spends an unlimit
ed portion of its time. The variable time of transit implies 
that 

H(u*,x,p) = 0 (55) 

along both classes of optimal system trajectories which are 
solutions of Eqs. (52) and (53). 

The optimal drift control (52) is seen to coincide with 
the thermodynamic drift control. We have previously shown 
that this applies to the asymptotic time limit where statistical 
independence is regained. Here we have shown that it also 
applies to the thermodynamic limit as €-o+ and (52) is the 
optimal control for the decay of a nonequilibrium fluctu
ation. We have previously referred to the optimal path tra
jectory for the decay of a fluctuation as the "thermodyna
mic" path. 15 

Under time inversion we have t_ - t, x- - x, and 
A- - A so that we can appreciate the optimal drift control 
(53) as the mirror image in time of the thermodynamic con
trol (52). Since infu C u can only be achieved by letting 
s_ - 00, it is clear that (53) is the optimal drift control for 
the growth of a fluctuation. Its corresponding optimal tra
jectory has been referred to as the "anti thermodynamic" 
path.15 And in order that (53) be the optimal or antithermo
dynamic control for the growth of a fluctuation, the trans
versality condition (54) must be satisfied. If Boltzmann's 
principle (3) is to hold and in view of the drift field decompo
sition (2), the transversality condition (54) becomes a neces
sary condition for the existence of the invariant probability 
density in the limit as €---->-O+ as can be seen from the time
independent continuity equation (5). The optimal drift con-
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trol (53) is intimately connected with the problem ofstochas
tic exit in the limit as €-o+, as will now be shown. 

V. OPTIMAL TRAJECTORIES FOR STOCHASTIC EXIT 

Suppose that the steady state is found in a bounded do
main DC]RN with boundary aD. In the limit as €-o+ we 
have the following picture of the optimal trajectories of the 
system which is initially found in D. The overwhelming ten
dency of the system is to approach any close neighborhood of 
the steady state by sliding down a solution of the optimal or 
thermodynamic control (52). Along the thermodynamic 
path, the optimum relative cost vanishes and the asymptotic 
optimal total cost is 

C *u*(x,s) = i oo 

L *(u* ,x(t)) dt = SO - S (x»O, (56) 

where SO is the steady-state value of the entropy. Hence, the 
optimal total cost reduces to the difference in the terminal 
costs, as measured in terms of the entropy. 

The system will remain in a small neighborhood of the 
steady state for an unlimited amount of time. However, on 
account of random thermal fluctuations, the system is able 
to make excursions to those states y in D such that 
S (y) > maxzEalJS (Z).4.14 Sooner or later, the system will reach 
the boundary aD and there is maximum likelihood for exit to 
be made at that state on the boundary which possesses maxi
mum entropy, provided that such a unique state exists. To 
ensure that the system was initially in a small neighborhood 
of the steady state, we must change our perspective and take 
as the initial time some distant time in the past (i.e., 
S-+ - (0). Then noting 

S(y) -S(x) = iTu.VSdt (57) 

and 

CU(x,s) = iT J..llu - fl*111-, dt 
s 2 

-2i
T 

u·VSdt>2{S(x)-S(y)J (58) 

on account of the transversality condition (54), the optimum 
relative cost to transfer the system from any small neighbor
hood of the steady state to that state with maximum entropy 
on the boundary is 

CU*(x,- (0)= -2fT fl*.VSdt=2{S(X)-maxs(z)}>0. 
_ 00 ZEao 

(59) 

Under the same conditions, the optimal total cost for the 
anti thermodynamic drift control (53) is 

C *u*(x, - (0) = S (x) - max S (z) (60) 
zEaD 

which follows from 

C*U*(x,- (0) = CU*(x,- oo)+maxS(z)-S(x). (61) 
ZEao 

Expression (60) constitutes a minimum relative entropy prin
ciple for the optimal cost of transferring the system from any 
small neighborhood of the steady state to the most likely 
place of exit on the boundary in the thermodynamic limit as 
€-o+. 
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VI. OPTIMAL STOCHASTIC VERSUS 
THERMODYNAMIC CONTROL 

Suppose that the controller does not solve the optimal 
stochastic control problem but rather simply applies the de
terministic control. How good is the optimal deterministic 
control in the stochastic control problem? It is rather intu
itive that for small noise intensities, the deterministic control 
should be a rather good approximation to optimal stochastic 
control. We now make this statement more precise. 

The minimum expected relative cost is written as 

WE(X,S) = inf C U(x,s) (62) 
U 

in order to display the dependence of the minimum expected 
relative cost on the noise intensity. WE(X,s) satisfies the dy
namic programming equation 16 

as WE + min I GUWE + ~llu - b 111-, + E2V·b J = 0 
U 

(63) 

which is to be solved subject to the boundary condition [cf. 
(32)] 

WE(y,T) =0. 

The minimum of(63) occurs for u = uE
, with 

uE=b-DVWE, 

(64) 

(65) 

which when substituted back into the dynamic program
ming equation (63) gives 

as WE + b·VWE - !IIVWEI11 + e(D:VVW + V·b) = O. 
(66) 

A solution to the generalized Hamilton-Jacobi equa
tion (66) is sought in the form 

WE = WO + E2 W' + Ole), (67) 

which will, in general, be valid for a finite number of terms. 17 

Introducing the series expansion (67) into Eq. (66) and equat
ing to 0 terms of the same order in E, we obtain to lowest 
orders, 

as WO + b·VWO + !IIVWOI11 = 0 
and 

as W/ + b·VW' = - D:VVWo - V·b. 

(68) 

(69) 

Equation (68) is the classical Hamilton-Jacobi equation and 
in the realm of geometrical optics, it provides an alternative 
description of the motion than that given by the Euler-La
grange equations (49). In geometrical optics, the Euler-La
grange equations give a ray description of the motion while 
the Hamilton-Jacobi equation describes the motion of the 
wave front. 

Denoting 

H(u°,x,WO)=~IIVWoI11-b.Wo (70) 

as the Hamiltonian for optimal control, Eq. (68) can be writ
ten as 

(71) 

On the strength of the definition of the canonical momenta 
as p= - V WO, the Hamiltonian (70) is seen to coincide with 
(50) and along the optimal control trajectories, it vanishes 
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[cf. (55)]. Then to lowest order, the minimum expected rela
tive cost is not an explicit function of time along the optimal 
control trajectories. The trivial solution 

A. 

WO=O (72) 

of the time-independent Hamilton-Jacobi equation corre
sponds to the optimal or thermodynamic control UO = b for 
the regression of a fluctuation from a given nonequilibrium 
state. 

Equation (69) then becomes 

ds W/ = - V·b, (73) 

where ds denotes differentiation along the characteristic 
x = b. Denote y = y(x,s) as the characteristic with initial 
data (x,s) and its inverse solution by x = x( y, T). Then the 
solution of Eq. (73) is formally expressed by 

W/(x(y,T),s) = [.CV'b(Y(X,t))dt L~x(Y.T) 
= In [JaCObian (ax) ], (74) 

ay x~x(y.T) 

where the integral is taken along the optimal trajectory with 
initial endpoint (x,s). Use has also been made of the boundary 
condition (64). Introducing (72) and (74) into (67) we get 

WE(X,S) = eln[JaCObian (ax) ] + 0 (e). (75) 
ay x~x(y.T) 

Formula (75) shows that the thermodynamic control gives 
within order E2 of the optimum in the stochastic control prob
lem. The integrand in (74) is nonpositive; WE> 0 and 
WE-o+ uniformly as E-o+. Therefore, (72) is the lower 
bound of the optimal expected relative cost. 
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The stochastic analogue of the generalized H-theorem is formulated for multidimensional, time 
homogeneous diffusion processes which asymptotically are characterized by an invariant 
probability distribution. It applies to both isolated and open thermodynamic systems, the latter 
being characterized by rotational probability currents. The physical mechanism for the 
monotonic behavior of the stochastic H-function in time is linked to the decay of statistical 
correlations between a given nonequilibrium state and those through which the system passes at 
successive instants in time. 
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I. INTRODUCTION 

There are two formulations of the second law of ther
modynamics. I In the Boltzmann formulation, thermodyna
mic equilibrium refers to the state of maximum probability 
which corresponds to the state of maximum entropy. In the 
Gibbs formulation, the term equilibrium is used in connec
tion with a distribution over all possible states. However, the 
averaging is performed with respect to a probability distribu
tion for which the Gibbs entropy is maximum. Both Boltz
mann and Gibbs attempted to prove that the entropy of an 
isolated system increases in some sense. 

The Boltzmann definition of entropy does not, in gen
eral, show a monotonic tendency to increase in the course of 
time. The problem with the state definition of equilibrium is 
that if the initial conditions coincide with the state of maxi
mum entropy then there will be a finite probability to find 
states of lower entropy as the system evolves in time. 2 In the 
Boltzmann formulation, we must take the magnitude of the 
equilibrium fluctuations as a measure of the uncertainty by 
which we can specify a macroscopic state. 3 

The Gibbs entropy for an isolated system does not de
pend on time. Therefore, in what sense should it show a 
tendency to increase in the course of time remains obscure. 
Ehrenfest4 was the first to provide a meaning to the increase 
in entropy of an isolated system by introducing the notion of 
a "coarse-grained" density. The coarse-grained density is 
obtained by averaging the "fine-grained" density of the dis
tribution over small, fixed cells in phase space. This method 
has been likened to the time averaging techniques of non lin
ear mechanics.5 Just as nonlinear, periodic systems tend to a 
limiting behavior, independent of the initial conditions, so 
too will isolated thermodynamic systems approach equilib
rium irrespective of their initial conditions. However, the 
physical mechanisms are entirely different in the two cases: 
in nonlinear mechanics, limiting behavior is achieved by a 
periodic balance of negative, linear and positive, nonlinear 
dissipation while irreversible thermodynamic processes tend 
to forget their past. This continual loss of information is the 
motivation behind the coarse-graining of the probability 
density. 

After a long lapse in time, we expect stationary diffu
sion processes, in the wide sense, to become subject to sta
tionary probability laws (Le., stationary in the strict sense). 
For time homogeneous diffusion processes, the transition 
probability is a function of the time interval only while the 
probability distribution is time-independent. If there exists 
an invariant probability distribution, then the transition 
probability will approach this function in the asymptotic 
time limit. Thus, for stationary diffusion processes in the 
wide sense, the coarse-grained density cannot be an explicit 
function of time and we know that it does not approach, in 
the strict sense, the invariant probability density.6 This is 
certainly not implied by the monotonic behavior of the 
Gibbs entropy which is defined in terms of the coarse 
grained probability density. It is simply a consequence ofthe 
convexity of x In x. We emphasize that if the process was 
initially non stationary then it will remain so for all times. 

There have been more recent attempts at constructing 
an expression for a nonequilibrium H-function. 7

-
1O The 

common idea behind these attempts has been to show that 
different, normalized probability densities approach each 
other in the course of time. However, these analyses compro
mise the time homogeneity of the diffusion process that is a 
necessary condition in order to achieve a state characterized 
by an invariant probability distribution in the asymptotic 
time limit. Hence, these attempts suffer from the same di
lemma as the generalized H-theorem. 

It is therefore of interest to ask what function, in the 
stochastic theory of time homogeneous diffusion processes, 
would correspond to the coarse-grained density in the gener
alized H-theorem. In equilibrium statistical mechanics, the 
ensemble average of the H-function is identified as the nega
tive of the Gibbs entropy, in units where Boltzmann's con
stant is equal to unity.4 By replacing the coarse-grained 
probability density by the transition probability density, we 
are able to construct a stochastic H-function which provides 
a physical mechanism for the time evolution of time homo
geneous diffusion processes to an asymptotic state of the mo
tion, characterized by an invariant probability distribution. 
Such a physical mechanism is lacking in the generalized H
theorem. 
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II. DERIVATION OF THE TRANSITION PROBABILITY 
FOR MULTIDIMENSIONAL DIFFUSION PROCESSES 

The derivation of a transformation formula, relating 
transition probabilities for diffusion processes with the same 
local variance matrices but with different drift parameters, is 
based upon the absolutely continuous substitution of prob
ability measures. II The results of this section generalize our 
previous results 12 to multidimensional diffusion processes in 
which rotational probability flows can occur. The math
ematical idea of this section is originally due to Ezawa, 
Klauder, and Shepp. 13 

Consider a probability space n with a given, increasing 
family of u-algebras [.7t J which is generated by all finite
dimensional Borel cylinder subsets of 11. However, different 
probability measures on.7 can arise through the application 
of nonequilibrium, external constraints which, apart from 
perhaps a stationary component, are suddenly released. 

Let X, be an n-dimensional, time homogeneous diffu
sion process which is .7,-measurable and a solution of the 
stochastic differential equation 

(1 ) 

where W = (WI, ... ,Wn ) is a standard Brownian motion. To 
the stochastic process X" there corresponds the probability 
measure g;. The coefficient matrix u, with uij (i,) = 1, ... ,n), 
is related to the symmetric local variance or diffusion matrix 
D by D = !uut which is assumed to be both state and time
independent. Henceforth, the dagger will denote the trans
pose. 

As a result ofthe application of a nonequilibrium, exter
nal constraint which, apart from a stationary component, is 
suddenly removed, a finite drift is created which tends to 
restore the system to its stationary state. If the entire external 
constraint is released then the system will evolve toward the 
state of thermodynamic equilibrium. Since the external con
straint will have no influence on the diffusion matrix, be
cause it is a characteristic of the medium, the process X, will 
be converted into the process X, which is a solution of the 
stochastic differential equation 

dX, =J(X,)dt+udW,; Xo =xo, (2) 

where J is the thermodynamic flux which has been created 
by the nonequilibrium constraint. 

The decomposition of the thermodynamic flux must be 
consistent with: (i) the time-independent Fokker-Planck 
equation for the invariant probability density, p 00 , from 
which we define the current velocity as 

J(x) - DV lnpoo (x)=voo (x), 

and (ii) Boltzmann's principle 

In p 00 (x) = S (x) + const 

(3) 

(4) 

which relates the probability of a state to its entropy S. For 
n> 1, the probability current,p 00 v 00 ,does not have to vanish 
in R n even if it satisfies zero boundary conditions since rota
tional probability flows can occur. 14 The presence of rota
tional probability flows can be used in the characterization 
of open, as opposed to isolated, thermodynamic processes 
since there must be some form of energy transfer in order to 
sustain such flows. 
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The introduction of Boltzmann's principle (4) into the 
definition of the current velocity, (3), results in 

J(x) = DVS + Voo = DX(x), 

where X is the thermodynamic force, 

X=VS+A, 

writing A D -IV 00 • The thermodynamic force 

(5) 

(6) 

X = LtI,···,Xn) is assumed to be a nonanticipating process 
that causes the thermodynamic flux J. If the nonequilibrium 
constraint were to be removed completely, the rotational 
probability current would vanish and X would coincide with 
the entropy gradient, tending to restore the system to ther
modynamic equilibrium. If, however, there is a finite station
ary constraint which prevents the system from relaxing to 
full equilibrium, rotational probability fluxes can develop. 

Expression (6) is not to be intended as a vectorial de
composition of the thermodynamic force. Although the 
most interesting case is that in which A is completely solenoi
dal, it need not, in general, be the only case of physical inter
est. In regard to the expression for the thermodynamic flux, 
(5), it permits us to cast the continuity equation for the invar
iant probability density in the form 

(7) 

Sufficient, but not necessary, conditions for satisfying the 
continuity equation (7) require the vanishing of both terms 
separately. The vanishing of the first term is commonly re
ferred to as the "transversality" condition which necessarily 
implies the incompressibility condition. If J can be decom
posed into a field that is essentially a gradient of a potential 
and a field that is both orthogonal to the gradient field and is 
divergence free then it can be shown that Boltzmann's prin
ciple is verified on the basis of an asymptotic expansion in 
terms of Boltzmann's constant. 15 However, our results are 
independent of the size of Boltzmann's constant, which can 
be used as a measure of the strength of the thermal fluctu
ations, and consequently we require only that the continuity 
equation (7) be satisfied. Nevertheless, the metrical transitiv
ity property of the (stochastic) entropy imposes the condition 
of transversality, on the average, in the asymptotic time limit. 
Furthermore, we shall see that, in the Gaussian limit, the 
transversality condition is satisfied on the average at every 
instant in time provided the fluctuation-dissipation relation 
holds which is a sufficient condition for the stability of the 
second order moments of the distribution. 

Although the current velocity has the formal appear
ance of a classical mechanical velocity, i.e., v 00 ---;. - v 00 un
der time inversion, we cannot conclude, in general, that (5) is 
a decomposition of the flux into components that are even 
and odd against time reversal. 9 For then, the current velocity 
would be a Hamiltonian flow (derivable from a Hamiltonian) 
and therefore satisfy the incompressibility condition every
where. Rather, the current velocity is to be associated with 
rotational probability currents that occur in open thermo
dynamic systems; it behaves in much the same way as the 
magnetic induction in electrodynamics. In isolated systems, 
Voo vanishes and (5) reduces to the well-known phenomeno
logical relations of linear irreversible thermodynamics that 
satisfy the Onsager reciprocity relations. 
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We are, therefore, considering multidimensional diffu
sion processes which are stationary in the wide sense and 
become strictly stationary with the passage of time. If all the 
nonequilibrium constraints are not released we cannot ex
clude the possibility of rotational probability flows. How
ever, we do not make the Gaussian assumption which is tan
tamount to expressing the thermodynamic force as a linear 
function of the generalized displacements. Nevertheless, it 
will frequently be instructive to take the Gaussian limit 
where explicit results can be obtained. For non-Gaussian 
processes we rely on the decisive property of diffusion pro
cesses: The transition probability is, under certain regularity 
conditions, uniquely determined by the drift field J and the 
diffusion matrix D. 16 This is far from being a triviality since J 
and D are determined from the first two moments of a condi
tional distribution and a distribution is not, in general, deter
mined solely by any two of its moments. 

The application of a nonequilibrium constraint, which 
is subsequently and partially removed, leads us to consider a 
new probability measure 9 for the nonequilibrium thermo
dynamic process X, on the a-algebra of the subsets of n. In 
other words, the diffusion processes X, and X, possess the 
same sample functions but are considered as distinct sto
chastic processes with respect to their probability measures 
9 and 9. Given the transition probability for the process 
X" we a~e able to derive the transition probability for the 
process X, in terms of it. 

Since the probability measures 9 and 9 correspond to 
diffusion processes which can be obtained from one another 
by means of an absolutely continuous substitution of the 
probability measures on the probability space n, there exists 
the probability density 

d9 
d9 (X (UJ)) =PT(UJ), (8) 

known as the Radon-Nikodym derivative. 17 Here, X (UJ) 
stands for a sample function of the process X, on the closed 
interval [0,7] and UJ is the sample tag. For any Borel set f%J 
belonging to the IT-algebra S's at time s < 7, we have 

Ips d9 = 9(f%J) = J,/T d9, (9) 

which means that the probability measure density P is a mar
tingale, i.e,ps = E [PT IS's j,7>S. E [-IS's J denotes the 
conditional expectation with respect to the IT-algebra S's' In 
addition we have the normalization condition 

E[PTJ =f PTd9 =1, 
{J 

(10) 

where E [ -J denotes the mathematical expectation with re
spect to the probability measure 9. An explicit formula for 
the conditional expectation of the probability measure den
sity can now be derived on the basis of a nonequilibrium 
thermodynamic principle. This will provide a transforma
tion formula which relates the transition probability densi
ties of the two diffusion processes. 

The relative probability of observing a sample path be
longing to the diffusion process X r in the infinitesimal range 
dX

T 
is given by the nonequilibrium thermodynamic princi

ple l2 
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(11) 

In essence, we are deriving the statistics of the process X, in 
terms of the known process X,. Apart from a numerical fac
tor of!, which arises from the compatibility with equilibrium 
statistical thermodynamics in the asymptotic time limit, the 
right side of (11) can be interpreted physically as the incre
ment in the virtual work that is required to convert the 
"free" diffusion process X, into the nonequilibrium thermo
dynamic process X,. The work is virtual inasmuch as the line 
integral of (11) is not the difference of a function of state. 
Thermodynamically speaking, the existence of statistical 
correlations between nonequilibrium states that are not well
separated in time destroys the additivity oflnpr so that we 
cannot simply replace dPr/PT by d InpT' Stochastically 
speaking, the statistical correlations are described in terms 
of Brownian motion sample functions which although are 
continuous are nevertheless locally erratic. The increment 
dXr is not of the order d7, as it would be for a smooth differ
entiable function, but rather it is of order v'd7 while its vari
ance is 

( 12) 

Hence, the presence of statistical correlations between non
equilibrium states that are not well-separated in time re
quires the use of stochastic rather than ordinary calculus. 

In order to evaluate d lnpr' we apply the Ito chain rule 
of stochastic calculus 18 to obtain 

(13) 

where the second term in (13) is a concrete manifestation of 
the Brownian motion phenomenon (12). Introducing the 
nonequilibrium thermodynamic principle (11) into expres
sion (13) and taking into account (12) leads to 

dlnpT =!(XtdXT -!D:XXtd7). (14) 

Integrating (14) on the closed interval [0, 7] results in 

InpT = !f'( X t dX, - !D:XXt dt). (15) 

Expression (15) for the probability measure density is 
somewhat inconvenient since the first integral is an Ito sto
chastic integral. Physically, it expresses the fact that the non
equilibrium states are correlated statistically. A physically 
more transparent form can be derived in the following way. 
According to the Ito formula, the total derivative of the sto
chastic entropy, considered as a function of the diffusion 
process X" is 

dS(X,) = VS t dX, + D:VVS dt. (16) 

Note that on account of the time homogeneity of the diffu
sion process and Boltzmann's principle (4), the stochastic 
entropy cannot be an explicit function oftime. Although the 
vector field A is not derivable from a scalar potential, we can 
however use the symmetric mUltiplication 19 

AtodX =At dX + IdA IdX =AtdX +D'"Adt t t 2 t t· V , 

(17) 

to transform the vector, Ito stochastic integral in (15) into the 
Fisk-Stratonovich symmetric stochastic integral. Introduc-
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ing expressions (6), (16), and (17) into (15) results in 

lnp, = HS(Xr ) - S(xo) 

+ fA todX, - fD:(!xx+ + VX)dt j. (18) 

For future reference we shall refer to 

V(x) = D:(!XXt + VX) 
= !D:(VSVS t +AA t) +D:VVS, (19) 

as the Onsager-Machlup (OM) potential. 20 The second 
equality in (19) has been obtained by employing the contin
uity equation (7). Finally we remark that in those cases in 
which the incompressibility condition is satisfied, the two 
definitions of the stochastic integral coincide, since the last 
term in (17) vanishes. 

The transition probability for the diffusion process X, is 
defined b/ I 

(20) 

for any Borel subset f!lJ and Xr is a solution of the stochastic 
differential equation (2) with initial condition Xo = xo' It 
now follows from (9) that 

P(:::il ,rlxo) = l,E,,/r(cu)d9(W) 

(21) 

where 

(22) 

In addition, we know that the transition probability of the 
free diffusion process, 

P(f!lJ ,rlxo) = 9(XrE:::il), (23) 

has a density 

p(x,rlxo) = ! 41TID Irj-1/2 
Xexp! - (x -xo)t(4rD)-I(x -xo)\' (24) 

where 1·1 denotes the determinant. Expression (211 clearly 
shows that there exists a transition probability density p cor
responding to the transition probability P, viz., 

P(f!lJ ,rlxo) = L/(x,r1xo) dx, 

where 

p(x,rlxo) = <P (x,rlxo)·p(x,rlxo) 

= exp!! [S (x) - S (xo)] j 

.E!exp[!f(AtodX,- Vdtl]lXr =xj 

(25) 

.p(x,rlxo). (26) 

In the second line of (26), we have explicitly written the end
point condition in lieu of the u-algebra in order to emphasize 
that <P is a conditional Wiener integral with respect to the 
fixed endpoints of transitions. 

Parenthetically, we note that the stochastic derivation 
of the transition probability density offers a rigorous justifi
cation for Feynman's choice of representing the vector po
tential integral as a symmetric integral where the vector po
tential is evaluated at the midpoint of each interval. 22 
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Expression (26) bears a formal similarity to the Feynman 
kernel for a charged particle in an electromagnetic field. 

In the following section, we study the asymptotic be
havior of the transition probability density (26) and intro
duce quasithermodynamic potentials in order to describe the 
statistical correlations between nonequilibrium states that 
are contained in the conditional Wiener integral (26). 

III. ASYMPTOTIC BEHAVIOR AND QUASI· 
THERMODYNAMIC POTENTIALS 

Although their probability measures are absolutely 
continuous with respect to one another, the two diffusion 
processes show completely different asymptotic behavior. 
For the Brownian motion process (1), the transition prob
ability tends to zero in the course of time while the nonequi
librium process (2) is characterized by strictly stationary 
probability laws in the asymptotic time limit, provided there 
exists a physically acceptable solution to the continuity 
equation (7). 

The transition probability P will then admit an invar
iant or stationary probability distribution P 00 such that 

P 00 (f!lJ) = i P(f!lJ ,rlxo)P '" (dxo)· (27) 
R n 

I t follows that the transition probability of the process X, has 
the property that 

limP(f!lJ ,rlxo) = P", (f!lJ), (28) 
r~", 

expressing the fact that a dissipative system tends to forget 
its past. Since the invariant distribution P '" has a density p '" , 
it follows from (28) that 

limp(x,rlxo) = p", (x), (29) 

where the invariant probability density is defined in terms of 
the entropy in accordance with Boltzmann's principle (4). 
The asymptotic form of the transition probability density 
(29) and Boltzmann's principle (4) can now be shown to lead 
to the introduction of quasithermodynamic potentials when 
there is not a long time lapse between nonequilibrium states. 
We shall further show that the quasi-thermodynamic poten
tials reduce to thermodynamic state functions in the asymp
totic time limit where the statistical correlations have had 
ample time to have worn off. 

The diffusion operator 

Y =J(x)·V +D:VV, (30) 

is assigned to the process X" The transition probability den
sity p satisfies both the backward 

OrP = Yop, 

and forward 

(31) 

orP = ytp. (32) 

Kolmogorov equations with initial condition 

p(x,rlxo) = 8(x - xo) as r to. (33) 

The subscript on the diffusion operator in (31) indicates dif
ferentiation with respect to the initial coordinates of the 
transition and yt is the adjoint, viz., 

yt = -V.J(x)+D:VV. (34) 
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In an analogous way that we have defined the current 
velocity from the time independent Fokker-Planck equation 
for the invariant probability density, we now define the tran
sitional velocity12 

v(x,rlxo)==.l (x) - DVlop(x,rlxo), (35) 

from the Fokker-Planck equation (32). Observe that, unlike 
J, v is a non local function. Furthermore, v transforms as v--+ 
- v under time reversal while the transitional velocity 

u(x,rlxo)-DVlop(x,rlxo), (36) 

is invariant under time inversion. By virtue of the asymptotic 
condition (29), 

limv(x,rlxo) = Voc (x); limu(x,rlxo) = U'" (x), (37) 

u '" is referred to as the "fluctuating" or "osmotic" velocity 
in the Einstein theory of equilibrium fluctuations. 23 

The pair of Kolmogorov equations, (31) and (32), can be 
transformed into a pair of self-adjoint equations that is close
ly allied with the Schrodinger equation. To this end, we write 

p(x,rlxo) = exp/HS(x) -S(xo)] )·K(x,rlxo), (38) 

where the kernel, K, is defined as the conditional Wiener 
integral: 

K(x,rlxo) = E [exp [ !IT(A to dX, - V dt)] IXT = x) 

-p(x,rlxo). (39) 

The kernel expression (39) can be considered as a generaliza
tion of the Feynman-Kac formula 24 insofar as it expresses 
the kernel as a conditional Wiener integral of a vector A as 
well as a scalar potential V. Since the transition probability 
satisifies the pair of Kolmogorov equations, (31) and (32), the 
kernel satisfies the pair of diffusion equations: 

JTK = (Vo +!A)t D(Vo +!A)K - !V(xo)K, (40) 

JTK = (V -!A)t D(V -!A)K - !V(x)K, (41) 

with the initial condition 

K (x,rlxo) = b(x - xo) as r W. (42) 

The derivation of the pair self-adjoint diffusion equations, 
(40) and (41), has made use of the continuity equation (7). 
They bear a formal similarity to the Schrodinger equation 
for a charged particle in an electromagnetic field A with sca
lar potential V. 

The "gradient" transformation (38) has served to trans
form the original problem, (31) and (32), into a Sturm-Liou
ville problem, (40) and (41); with "natural" boundary condi
tions. 25 The asymptotic analysis can now be carried out in 
terms of a hierarchy of eigenvalues whose inverse represents 
the set of characteristic relaxation times of the nonequilibri
urn thermodynamic diffusion process. Provided that all ei
genvalues are distinct and bounded from below by the zero 
eigenvalue, an invariant probability distribution exists 
which is approached asymptotically in time by the transition 
probability. In consideration of Boltzmann's principle, this 
means that 

limK(x,rlxo) = HS(x) + S(xo)) + const. (43) 

The asymptotic form (43) implies that a long lapse in 
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time leaves the nonequilibrium states statistically indepen
dent (i.e., asymptotic independence). It should therefore be 
expected that the probability of a given state, at different 
instants in time, be equal to the product of their probabilities 
an any instant in time (i.e., strong mixing). In conjunction 
with Boltzmann's principle (4), the strong mixing property 
implies that the entropy be metrically transitive or ergodic in 
the asymptotic time limit. 

If, however, the time lapse is not long, the nonequilibri
um states through which the processes passes at successive 
instants in time will be correlated statistically. It is apparent 
that these statistical correlations cannot be described by 
thermodynamic functions of state; that is, the kernel will 
enjoy the thermodynamic additive property (43) only in the 
asymptotic time limit. This consideration motivates the de
finition of a quasi-thermodynamic potential, viz.,12 

(44) 

U J is known as the "joint" entropy; it is a quasithermodyna
mic potential inasmuch as it is a function of both endpoints 
of transition as well as the time interval of transition in the 
case of time homogeneous diffusion processes. The joint en
tropy accounts for the statistical correlations between non
equilibrium states that are not well-separated in time. Never
theless, the asymptotic form of the kernel (43) and the 
definition of joint entropy (44) require 

limuAx,r;xo) = SIx) + S(xo)' (45) 

How this limit is approached is embodied in the stochastic 
H-theorem which is given in the next section. 

To prove (45), we introduce the logarithmic transfor
mation (44) into the pair of diffusion equations, (40) and (41). 
We then obtain the pair of generalized Hamilton-Jacobi 
equations 

- JTuJ + !(VOuJ + A )t D:(VouJ + A) 

+ D:Vo(VouJ +A) = V(xo), 

- JTuJ + !(VuJ - A )t D (VuJ - A) 

+ D:V(VuJ - A) = V(x), 

(46) 

(47) 

where it will be appreciated that the joint entropy plays the 
role of a generalized classical action. We now solve Eqs. (46) 
and (47) and their common, particular, stationary solution 
(JTuJ = 0). 

The stationary solution ofEq. (46) is imposed by the 
form of OM potential (19). Integrating, we obtain 

uJ(x,r = oo;xo) = S(xo) + C(x). (48) 

The constant of integration, C, is to be determined by the 
stationary solution of(47). By virture of the continuity equa
tion (7) for invariant probability density, we obtain 
SIx) + const as the stationary solution Eq. (47) and on 
matching the constants of integration, we have 

uJ(x,r = 00 ;xo) = S (x) + S (xo)· (49) 

The only condition, used in the derivation of (49), is that the 
invariant probability density satisfy the continuity equation 
(7). 

Introducing definition (44) into expression (38) and tak
ing the logarithm of both sides give 
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Inp(x,rlxo) = HS(x) - S(xo) + uJ(x,r;xo)] + const 
(50) 

which we have shown to yield the correct asymptotic form, 
namely Boltzmann's principle (4). It is in this limit that we 
regain statistical independence. Over smaller time intervals, 
(50) provides information regarding the statistical correla
tions between nonequilibrium states. It is in this sense that 
we have referred to (50) as the kinetic analogue of Boltz
mann's principle. 12 Here, we have generalized it to include 
rotational probability currents which can only occur in mul
tidimensional diffusion processes occurring in open thermo
dynamic systems. 

In the next section we show how asymptotic indepen
dence is approached in the asympotic time limit in terms of 
the quasi-thermodynamic potential 

udx,rlxo)=uJ(x,r;xo) - S(xo)' (51) 

which is known as the "conditional" entropy. 12 On the 
strength of (45), we have 

(52) 
T--+oo 

affirming that a dissipative system forgets its past. The aver
age behavior of the conditional entropy in respect to the en
tropy comprises the stochastic H-theorem. We preface our 
derivation by noting that results-which have a similar for
mal appearance to ours-have appeared in the literature. 7

-
1O 

This formal similarity stems from the fact that a time depen
dent probability density is used in place of the transition 
probability density. The stationarity property of the diffu
sion process has been artifically relinquished and this attests 
to the absence of a physical mechanism governing the pro
posed H-theorems. We shall remedy this situation by show
ing that the statistical correlations are, on the average, a de
creasing function of the time interval of separation of the 
nonequilibrium states. 

IV. STOCHASTIC EVOLUTION CRITERION 

A stochastic evolutionary criterion is now derived 
which is valid for both isolated and open thermodynamic 
systems provided that the continuity equation (7) is satisfied. 
In spirit, it is closely allied to the Gibbs generalized H
theorem with the important difference that the transition 
probability density is used in place of the coarse-grained den
sity. By virtue of the kinetic analogue of Boltzmann's princi
ple (50), a physical mechanism can be invoked that is respon
sible for the evolution of the nonequilibrium thermodynamic 
process toward either thermodynamic equilibrium or a non
equilibrium stationary state, depending on the imposed con
straints. 

de Groot and Mazur26 refer to the negative of the quan-
tity 

Hr = Lj(x,rlxoHnlp(x,rlxo)/P"JX)]dX, (53) 

as the "Gibbs entropy postulate." They identify the left side 
of (53) with - ..:1S G

• We prefer to identify Hr with 

Hr =!E ludXr,rlxo) - S(Xr)] (54) 
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on the strength of the kinetic analogue of Boltzmann's prin
ciple, (50). According to (52), this quantity is expected to 
asymptotically tend to zero. The manner in which Hr tends 
to zero constitutes the stochastic evolutionary criterion. 

In the first place, we establish 

(55) 

This is accomplished by addingp(p 00 /,0 - 1) to the integrand 
of (53) since the effect of these two terms cancel out on inte
gration. Then, from the simple inequality 

In(l/x) + x - 1;~0, (56) 

it follows that the stochastic H-function is positive semide
finite. Physically this means that 

(57) 

stating that the statistical correlations between nonequilibri
urn states produce an entropy in addition to that of the non
equilibrium states. 

In the second place, we establish that the stochastic H
function is a monotonically decreasing function of the time 
lapse between nonequilibrium states. Letg(x,r) be a bounded 
measurable function and define the mean forward stochastic 
derivative of g as 

!iJ g(Xr,r) = lim s-II Ysg(x,r) - g(x,r)] 
SIO 

= (ar + .Y)g(Xr,r), (58) 

where .Y is the diffusion operator, defined by (30), and Y is 
the shift operator 

Ysg(x,r) =Elg(Xr+s,r+s)IXr =x] 

= i g (y,r + s)P(dy,r + slx,r). (59) 
R" 

The random variable !iJg(Xr,r) is automatically &'-measur
able. It will now be appreciated that the total time derivative 
of Hr coincides with the conditional expectation of the mean 
forward derivative of the quantity, !(uc - S), viz., 

drHr =!E 1!iJ [udXr,rlxo) - S(Xr)] J, (60) 

which is equivalent to 

drHr = i arp(x,rlxo)·lnlp(x,rlxo)/p 00 (x) ]dx. (61) 
R n 

Introducing the Fokker-Planck equation and integrating by 
parts, we obtain the fundamental inequality 

drHr = - i (V In PIP 00 )t D (V In PIP 00 )p(x,rlxo)dx';;O, 
R" 

(62) 

on account of the natural boundary conditions. In the deri
vation of(62) we have written the transitional velocity v in 
the form 

v(x,rlxo) = Voo (x) + DV In (Poo /,0) (63) 

and made use of the continuity equation (7). In the next sec
tion we shall see that thanks to the continuity equation (7), all 
terms in which the rotational probability current appears 
explicitly cancel out. The quadratic form (62) attests to the 
fact that Hr changes essentially by dissipation. The wearing 
off of the statistical correlations between nonequilibrium 
states means that a predominantly dissipative system tends 
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to forget its past and this is what is responsible for the trans
formation of the transition probability into the invariant 
probability distribution in the asymptotic time limit. 

The same cannot be said of the Gibbs entropy, defined 
in terms of the coarse-grained probability density, or of a 
nonequilibrium H-function which uses a time dependent 
probability density in its definition. 7-10 A nonstationary dif
fusion process, in the wide sense, does not become stationary, 
in the strict sense simply with the passage of time. Further
more, the stochastic H-theorem tells us how the approach to 
the invariant probability distribution is achieved: The addi
tional entropy due to the statistical correlations between 
nonequilibrium states is, on the average, a decreasing func
tion of the time interval of separation. This appears as a 
universal characteristic of all predominantly dissipative sys
tems. 

v. COMPARISON WITH THE SECOND LAW 

The question now arises as to the connection between 
the stochastic H-function and the second law ofthermody
namics. To this end, we write the stochastic H-function in 
the form 

(64) 

and analyze the time derivative of each term separately. The 
mean forward derivative of In jJ is 

iPlnjJ = - jJ-1V.jJv + jJ-1D:VVjJ 

+ J·V InjJ - D:(V InjJ)(V InjJ)t, (65) 

where we have used the Fokker-Planck equation (32) and 
the Ito chain rule of stochastic calculus 

dlnjJ = djJ/jJ - MdjJ/jJ)2. (66) 

The conditional expectation of (65) is 

EliPlnjJ) = ( IVoo·VlnjJ 
JR" 
+ D:V In jJ(V In jJ 00 /jJ)t)jJ dx. (67) 

Integrating the first time by parts and on account of the 
natural boundary conditions, we obtain 

dTEllnjJ) = -EIV,v oo +D:VlnjJ(VlnjJ/jJoo)t). 
(68) 

The total time derivative of the second time term in (64), 

dTEllnjJoo )-EIVoo·VlnjJoo +D:VlnjJoo(VlnjJoo/jJ)t], 

is precisely what is needed in order to complete the square in 
(68) and to eliminate the first term by virtue of the continuity 
equation (7). The difference between (68) and (69) is the nega
tive semidefinite quadratic form (62). 

According to Boltzmann's principle (4), expression (69) 
is the time derivative of the conditional expectation of the 
stochastic entropy. In the asymptotic time limit we have 

limdTE IS(XT)) 

= limEliPS(XT)) =E{voo'VS) = -EIV.voo )· 
T-oo 

(70) 
The invariant probability distribution has the property that 

P:' (&I) = 9(XTE&I) = P: (&I) (71) 

2458 J. Math. Phys., Vol. 23, No. 12, December 1982 

in the asymptotic time limit. In this limit, the process be
comes strictly stationary so that the limiting distribution is 
left invariant under arbitrary shift transformations. In terms 
of Boltzmann's principle, this means that the stochastic en
tropy will become metrically transitive or ergodic in the 
asymptotic time limit. The condition which guarantees the 
metrical transitive property of the stochastic entropy is given 
by (70): The transversality condition is satisfied, on the aver
age, 

(72) 
where E is the mathematical expectation with respect to the 
invariant probability density. 

It is clear from (69) that the conditional expectation of 
the stochastic entropy will not, in general, display a mono
tonic tendency to increase in time. Specializing to Gaussian 
fluctuations, we show this hinges on an appropriate choice of 
the initial conditions. The reason is that the entropy has been 
defined in terms of a single state in contrast to the Gibbs 
definition as a distribution over states. In other words, if the 
initial state could be made to coincide with the most prob
able state, compatible with the external constraints, then 
there would be a finite probability to observe states with 
lower entropy in the course of time. 

Gaussian diffusion processes have a drift field given by 

J(x) = Gx, (73) 

and an entropy difference 

SIx) - S = - lQ - I:XXt 
o 2 00 ' 

(74) 

where G is a state and time independent transport matrix, 
with no particular symmetry properties, and Q 00 is the 
asymptotic form of the matrix of the second order moments. 
The existence of Q 00 depends on whether there is a station
ary, unique and bounded solution to the matrix equation 

dTQT = GQT + QTGt + 2D; Qt=o = Qo>O, (75) 

where QT is the matrix of the second order moments that are 
defined as the conditional expectation 

QT=Ex,,\XTXn. (76) 

The condition of stationarity is 

GQoo + Qoo Gt = - 2D, (77) 

which is known as the fluctuation-dissipation relation.27 

Provided G is a stability matrix, i.e., all of its characteristic 
roots have negative real parts, there will exist the unique and 
bounded solution 

(78) 

to the fluctuation-dissipation relation (77) where At is the 
fundamental matrix associated with G, viz., At = exp(Gt): 

For Gaussian diffusion processes, (78) provides the link 
between kinetics and thermodynamics. For a given diffusion 
matrix D, the equilibrium second order moments are unique
ly defined in terms of the phenomenological transport ma
trix, G. Moreover, (78) relates the asymptotic properties of 
Gaussian diffusion processes to their asymptotic stability 
properties. This can be substantiated further by considering 
the stochastic H-function. 
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The mean and covariance functions of the nonequilibri
um thermodynamic process X, are 

- - - - t Ex"{X, J = A,xo; Ex,,{ (X - A,xo)(X - A,xo) J = C" 

where C, = Q"" - A, Q "" A ;. The two moments determine 
the transition probability density, viz., 

p(x,rlxo) = 1(217YICr IJ- 1/2 

·exp I - ~C r- I :(x - Arxo)(x - Arxo)t J, (79) 

while Boltzmann's principle determines the invariant prob
ability density, 

p"" (x) = \(21TtIQ"" I J -1/2. exp( - ~Q ,: I:xxt). (80) 

Equipped with expressions (79) and (80), we can now con
struct the stochastic H-function. 

The stochastic H-function reads 

Hr = - ~ln(IQ ,: IllCr I) + ~Q ,: I: Ar(Qo - Q",,)A ~. 
(81) 

In order to show that (81) is positive semidefinite-indepen
dent of the choice of the initial conditions-we write it in the 
form 

Hr = - pn(II -A i) - ~tr(A -Ao), (82) 

where I is the identity matrix, A _Q ,: IArQ"" A ~, and 
Ao Q,: IArQo A ~. Setting Y = I - A and using the deter
minant inequality, I Y I < IT? ~ IY;;' we conclude that (81) is 
positive semidefinite for arbitrary initial conditions because 

n 

2)Y;; -lny;;) - n;;;,O. 
; 

In comparison to (81), the condition expectation of the 
stochastic entropy is 

(83) 

de Groot and Mazur28 argue that ..:iSG __ ..:iS B
, where the 

former is the Gibbs entropy difference which they have set 
equal to the negative of expression (81), for "macroscopic" 
initial conditions and for finite time intervals. They contend 
that whereas trAo is of the order of the number of particles in 
the system, trA is of the order of the number of independent, 
fluctuating thermodynamic variables that are required to 
characterize the system thermodynamically. Since the for
mer is overwhelmingly greater than the latter and for finite 
time intervals where the logarithmic term in (81) becomes 
negligible, the Boltzmann and Gibbs definitions of the en
tropy coincide. 

On the one hand, the time derivative of the stochastic 
H-function, (81), is 

drHr = ~trl (I - A ) -IA drA + drAo J <0, (84) 

provided G is a stability matrix since then both 
drAo = Q,: IAr(GQo + QoGt)A ~<O and 
drA = - 2Q ,: lArDA ~<O on the strength of the fluctu
ation-dissipation relation (77). On the other hand, the time 
derivative of the Boltzmann entropy is 

dr..:iS B = ~tr(drA - drAo), 

which cannot be shown to possess a definite sign unless re
course is made to arguments involving "macroscopic" initial 
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conditions. 28 Indeed, if there existed an unlimited precision 
by which the initial state could be made to coincide with the 
most probable state (i.e., Qo = 0), then the stochasticH-func
tion would still show a monotonic tendency to decrease in 
the course of time while..:iS B, according to (85), would show 
the same tendency. If the identification Hr+-+ - ..:iS G were 
now made, we would obtain the paradoxical result that the 
Gibbs entropy would continue to increase in time even 
though the system was initially found in the most probable 
state! Therefore, for certain initial conditions, the Boltz
mann and Gibbs entropies show opposing tendencies. It is 
only for nearly deterministic systems (i.e., "macroscopic" 
initial conditions), where the effects of fluctuations have a 
secondary role, that the Boltzmann and Gibbs definitions of 
the entropy can be shown to be compatible. Thus, in order to 
account for nonequilibrium fluctuations, the stochastic H
function must be interpreted in accordance with the kinetic 
analogue of Boltzmann's principle (50). 

de Groot and Mazur have further argued that over fin
ite time intervals, the logarithmic term in the stochastic H
function expression (81) is of negligible importance. On the 
strength of the kinetic analogue of Boltzmann's principle, we 
can appreciate that the time rate of change of this term is a 
measure of the rate of decay of the statistical correlations. 
For the Gaussian diffusion process under consideration, we 
have 

EI90"cJ = -E[9SJ +(I-A)-I:drA. (86) 

Recalling the physical significance of the conditional en
tropy, we can appreciate that the second term in (86) is the 
rate at which the statistical correlations decay. It therefore 
becomes clear that de Groot and Mazur have addressed 
themselves to the case in which the deterministic factors pre
dominate on account of the large initial displacement from 
thermodynamic equilibrium and sufficiently large time in
tervals are considered so that the statistical correlations 
between nonequilibrium states have had ample time to have 
worn off. In this case, (86) shows that the average rates of 
change of the conditional and stochastic entropies are ap
proximately equal in magnitude and opposite in sign. The 
rate of change of the stochastic H-function therefore be
comes approximately equal to the negative of the time rate of 
change of conditional expectation of the stochastic entropy. 

In conclusion, we note that the transversality condition 
will be satisfied, on the average at every instant in time, by the 
Gaussian process under consideration. That is, 

Ex..! v"" .VS(Xr ) I 
= Ex" I (Q ,: lXr)t GXr J - Ex" I (Q ,: lXT)t D (Q ,: lXr) J 

=QT:IQ-IG+Q,:IDQ,:IJ =0, (87) 

where the matrix of the second order moments has been de
fined according to (76). Since Qr is a positive definite sym
metric matrix, it follows that the symmetric part of the sec
ond factor must vanish. This is precisely the 
fluctuation-dissipation relatipn (77). Recalling that a unique 
and bounded solution to the fluctuation-dissipation relation 
exists only in the case that G is a stability matrix [cf. Eq. (78)], 
we conclude that (87) is a sufficient condition for the asymp
totic stability of the Gaussian process. 29 
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A particular parametrization of the groups U(N) and SU(N) is constructed by observing that the 
sphere S2N - 1 is homeomorphic to the factor spaces U(N )/u(N - 1) or SU(N )/SU(N - 1) and 
continuing the corresponding fibration. The spheres are naturally embedded into Euclidean 
spaces and thus allow an extension ofthe mean field approximation by a saddle-point method to 
U(N) and SU(N) lattice gauge theories. It differs from the standard variational approach, the result 
of which can also be obtained by embedding the group into the Euclidean space of matrices. For 
both approaches the phase transition points are calculated and compared with the results of 
Monte-Carlo simulations. The best agreement is obtained for the standard variational approach 
with axial gauge fixing. 

PACS numbers: 05.50. + q 

I. INTRODUCTION 

The functional approach to the mean field theory 1 of 
chiral or gauge models on lattices makes use of an embed
ding of the group manifold into a real linear space. This 
linear space is needed for a Fourier transformation with a 
subsequent deformation of the integration contours. The 
most elementary cases are the group U( 1) whose manifold S 1, 

the unit circle, is trivially embedded into e lor R 2, and the 
group SU(2) whose manifold is considered as the unit sphere 
S 3 in R 4. For groups U(N), N> I, and SU(N), N> 2, it is no 
longer obvious how to perform the embedding. 

We emphasize that the construction of the real linear 
space is by no means unique if no further constraint is im
posed. For example, we can always use an N XN complex 
matrix realization of the groups U(N) or SU(N), which sug
gests the trivial embedding of these groups into the 2N2 di
mensional real vector space of complex N X N matrices. The 
standard variational approach2 can be viewed as such an 
embedding with the translation invariant mean field propor
tional to the unit matrix. We show in this article that U(N) 
[SU(N)] can locally be embedded into an N 2 + N (N 2 

+ N - 2) dimensional linear space. This embedding is local 
in the sense of nontrivial fiber bundles, and entails that the 
mean field itself is expressed in terms of a local coordinate 
system. 

Our construction3 is based on the fact that the group 
manifold U(N) [SU(N)] can be represented as a fiber bundle 
with the factor space U(N )/u(N - 1) [SU(N )!SU(N - 1)] as 
base space and U(N - 1) [SU(N - 1)] as fibers, and that this 
fibration can be continued with U(N - 1) [SU(N - 1)]. It 
ends with U(I), respectively, SU(2). The base space U(N)! 
U(N - 1) [SU(N )!SU(N - I)] is homeomorphic to the 
sphere S2N - 1 , which can trivially be embedded into R 2N or 
eN. 

The functional approach uses a reparametrization of 
the Gibbs measure to obtain an extremal field configuration, 
which is called "mean field" in this context. A systematic 
asymptotic expansion can be derived ifftuctuations of in
creasing order are taken into account. For a given system of 
parameters, on the other hand, an upper bound for the free 
energy density (lower bound for In Z) can be derived by a 
variational principle.2 Again we call the extremal configura-

tion "mean field." Of course, the mean fields resulting from 
the functional and the variational approach need not be iden
tical. They are identical in the case of the embedding of the 
group into 2N 2 dimensional matrix space, but they turn out 
to be different for the case of local spherical coordinates, 
which we study in this article. 

In view of Elitzur's theorem4 the question whether the 
mean field methods are compatible with gauge invariance 
have provoked some confusion. In a gauge invariant formu
lation a mean field configuration is in general a representa
tive of an orbit generated by the local gauge group or even a 
larger gauge invariant manifold, and expectations ought to 
be identified in the mean field approximation with averages 
over this manifold. After a complete gauge fixing the mean 
field may become unique with respect to the method adopt
ed. In general a systematic saddle-point expansion involves 
similar problems with gauge fixing as standard perturbation 
theory. Another question is whether gauge fixing improves 
the mean field approximation. 

Mean field approximations for U(N) and SU(N) lattice 
gauge theories yield first order phase transitions at some 
points fie (d,N) for all dimensions d> 2 and all N. Monte
Carlo simulations reveal for d = 4 a second order phase 
transition in the case of U( I) 5 and first order phase transi
tions for U(N), N;;.2 6 and SU(N), N;;.4.7 Numerical values of 
the standard variational approach without gauge fixing have 
been published in a series of articles. 8 These authors calcu
late a point which has no thermodynamical meaning in the 
mean field approximation, denote it fie' and call it "phase 
transition point" (in the earliest article) or "critical point" 
and "transition point" (in the later articles) though it has no 
relation to the phase transition point. They compare it with 
the "crossover point" or the phase transition points known 
from the Monte-Carlo results and claim an excellent agree
ment. 

In this paper we develop the spherical embedding meth
od and compare its phase transition points with those ob
tained from the standard matrix embedding approach. Con
fronting these numerically calculated phase transition 
points with published Monte-Carlo simulations it turns out 
that the Monte-Carlo phase transitions are best-and in fact 
remarkably closely-reproduced by the standard matrix 
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embedding method with axial gauge fixing imposed. In Sec. 
n the spherical embedding of the groups U(N) and SU(N) is 
constructed. Based on this embedding mean field approxi
mations for gauge models within a functional approach are 
worked out and analyzed in Sec. III. An independent link 
variational mean field derived from the same parametriza
tion is shown to be different in Sec. IV. Finally, in Sec. V the 
critical values of the standard matrix embedding mean field 
for U(N) are calculated. The numerical results following 
from both embedding procedures are compared with Monte
Carlo simulations. 

II. GROUP FIBERING AND EMBEDDING 

Consider the group U(N) [SU(N)] as acting on the com
plex vector space eN. This space decomposes into orbits 
which are spheres of radius 

(1 ) 

or the null orbit! Z = 0 J. Each sphere is homeomorphic to 
the factor space U(N )/v(N - 1) [SU(N )/SU(N - 1 I]. Indeed, 
let ?,ZEeN 

? = (1,0,0, ... ,0), (2) 

Z = (ZI,Z2,Z3"",ZN); Izi = 1. 

Then any uEU(N) [SU(N)] satisfying 

z=u? 

implies 

U = UzU, 

U z , vEU(N) [SU(N )], 
with 

u = (:: z • 

ZN 
). 

U= G ~), 
uEU(N - I)[SU(N - 1)]. 

The factor v depends of course on how the remaining co
lumns of Uz are defined as functions of z. Each definition 
represents a local coordinate system (chart) on U(N)I 
U(N - 1) [SU(N)/SU(N - 1)]. 

(3) 

(4) 

(5) 

(6) 

(7) 

For definiteness we construct a covering set of charts 
(an atlas). Denote 

Yn = (itllzil2Y/2 (8) 

and set 

ZI -zzlY2 - ZIZ31Y2Y3 -ZlzNIYN_1 

Z2 zllY2 - ZzZ31Y2Y3 -zzZNIYN-1 

Z3 0 Y21Y3 -Z3ZNIYN_1 

U = z 

o o N 
(9) 
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Note that Uz is nuII below the diagonal and to the right of the 
first column. It is easy to prove that uzESU(N). Obviously 
this chart extends to all points on the sphere with Y z # O. If 
we permute the last N - 1 components of Z and construct Uz 

for this permuted vector, we obtain another chart. N - 1 of 
these charts suffice to cover the whole sphere. 

It is important to note that the Haar measure on U(N) 
[SU(N)] can be decomposed similarly [see (5)]: 

du = d 2N - I w(z)du, (10) 

where d 2N - I w(z) is the uniform normalized measure on the 
sphere Izi = 1 in eN, 

d 2N - IW(Z) = _1_ ( IT d Rezjd 1m Zi)O(lzl - 1), 
il2N _ I j ~ I 

(11 ) 
N 

il -2 1T (12) 
2N - I - (N _ I)! 

The proof of (10) follows from left-invariance of the rhs of 
(10) under translation on the group. 

For a given uEU(N) [SU(N)] we have thus obtained a 
factorization 

(13) 

where zlk) Eek , IZlk) I = 1, and 

(14) 

o 

:} 
zl

k
k ) 

In (13) the vectors Zlk ) , k < N, depend on the chart used. 
The embedding of the spheres S2N - I into the space eN 

of complex vectors P is established by 

1 
Zi = IPT Pi> 

For any vector P<k) Eek introduce the matrix w p'" by 

I Ik)1 wp'" = P Uz , 

Z = P<k)l[plk)l. 

Then the matrix function u(13) with support on 

S2N- I XS 2N - 3X S2N - 5 ••• X S 1(3) 

can be extended to the matrix function 

w = Wp'N' Wp{N _ 1)"'Wpl',((2)) 

with support on 

R 2N XR 2N- 2XR 2N-4 ... X R 2(4) 

by means of (16). 

(15) 

(16) 

(17) 

Consider now an action function S (u) depending on 
field variables uEU(N) [SU(N)] which are carried by a set of 
simplices (7' on the lattice. The partition function of the mod
el is 

(18) 
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The action depends polynomially on all matrix elements of 
the U<7 and can correspondingly be extended to a function of 
Wq using (13) and (17). 

For test functions on the group manifold with support 
covered by one chart we can use the delta function represen
tation 

f N ( k d Re q\k) d 1m q\k) ) 
8(u - w) = II II -......:..;.---~ 

k=1(2) i=1 21T 21T 
Xexp[i Re (~k) _ plk)). qlk)], (19) 

where W is the matrix function (17) and 
k 

~k). qlk) = L z}k) q\k). (20) 
i=l 

In (18) the integration Jdu q extends over several charts. 
However, since one chart covers the whole group U(N) 
[SU(N)] up to a set ofHaar measure zero whose dimension is, 

that of the group less four, and the resulting mean field is a 
particular fixed configuration which can be chosen in the 
interior of the domain of a chart, we will neglect this pecular
ity. According to the functional approach I we insert the del
ta function (19) into (18), introduce additional integrations 
over the variables w, replace S (u) by S (w), and change the 
order of integration. Since 

N 

duu = II d 2k - I(U(~: I), 
k= 1(2) 

we can perform these integrations and obtain 

f IT [d2k-l(U(z~))expiRez~)·q~)l 
k = 1(2) 

(21) 

= IT {(k-l)!(1 :)I)k_IJk_I(lq~)I)}, (22) 
k= 1(2) qq 

where I n is the Bessel function of order n. Then we have 

Z= II II II i,u qi,udRep\k)dlmp\k) (k-l)! -- Jk_dlq~)I)exp(-iReplk)q-lk)) eSlw). f { N ( k dReqlk)dlm Ik) ) (2 )k-I } 

(2 )2 I,U I.U Iqlk)1 u u 
u k = 1(2) i = I 1T u 

Denote 

1/\':,) = Re q\~J, 
rlk) = 1m q\k) (24) 
~ ',U r,u' 

The integration contours in 1/1':,), ; I':,) can be deformed arbi
trarily in compact domains. We let them pass through the 
stationary points, which obviously lie on the imaginary axis. 
Thus we put at these points 

-n\k) = iRe mlk ) 
·'1," I,U' 

r\k) = i 1m mlk ) 
~ I,CT 1,0' 

and get as conditions for the extremal points 

Plk) = _ m1k) _1_ 1/1' (II Ik)) 
',CT I,CT (k) k r-u , 

J-Lu 
where 

In is the modified Bessel function of order n. 

(25) 

(26) 

(27) 

(28) 

Instead of solving (26) for the m\k) we define an effective 
action by inserting P)~J into the exp~~ent of (23), 

N 

Seft"(m)=S(w)+ L L [l/Ik(J-L~))-J-L~)l/Ik(J-L~J)). (29) 
q k= 1(2) 

Here 

Wu = ( IT I/Ik(J-L~))) Ru, 
k= 1(2) 

(30) 

where Ru is the function u(13) with arguments 
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(23) 

(31) 

III. GAUGE MODELS 

In the case of gauge models on a cubic lattice in d di
mensions the field variables are carried by the links and with
out gauge fixing, 

I 
S(u) =fJ L - ReTr Up, 

p N 
(32) 

where Up is the ordered product of the Uu along the border of 
the plaquette P. Let V denote the number of sites and 

(33) 

Seft" assumes a maximal value if the products of the Ru form
ing the plaquette variables R p equal 1. Moreover, we assume 
J-L~) not to depend on the link (7. Then 

_1_ Seft" = fJ * [ IT 1/1 k (J-Llk ))]4 
Vd k= 1(2) 

N 

+ L [l/IdJ-Llk))-J-Llk)I/I"(J-Llk))). (34) 
k = 1(2) 

We can further maximize Seft" in the remaining parameters 
J-L1k) . 

From (28) we find 

I/I,,(s) = Ids)/Ik_ ds) (35) 

and 

I/I;;(s) >0, O<s < 00. (36) 

The stationarity condition for Seft" then reads 
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4/3*[ IT 1[!~(J-l(nl)]4 =J-llkll[!k(J-llk l), 
n ~ 1121 

1 (2)<.k<.N. 

This set of equations has two solutions: 

(1) all J-llk I = 0; 

(2) allJ-llk l #0. 

(37) 

The absolute maximum of Self (34) with respect to the pa
rameters J-l(l)2, ... , J-lINI gives the logarithm of the partition 
function Z. The first solution yields the absolute maximum 
for sufficiently small /3, the second for sufficiently large /3. 
There is a first order phase transition at /3c (N) in between. 
For O<./3<./3c In Z is zero and increases for /3> /3c. The sec
ond solution can be found numerically and in addition as
ymptotically for /3- 00 . 

We first consider the asymptotic expansion. Set 

a = J-llk II[! 'd J-llk I) (38) 

and solve for J-llk I , 

J-llk I = J-llk I (a). 

For a- 00 we find 

(39) 

J-llk I(a) = a + k - ~ - 2~ (k - ~)(k - ~) + 0 ( ~2 ) . 

(40) 

On the other hand, we get from (37) 

[ 

N J-llk I(a) ]4 
4/3*=a II -- , 

k~ 1(21 a 
which for a-oo yields 

4/3 * = a + ao + ~ + 0 ( ~2 ) , 

with 

ao=2.1, 

a l = 2.J 2 - j N(N - 1)(4N + 1). 

(41) 

(42) 

(43) 

(44) 

Here we introduced the dimension.J of the group manifold, 

{
N2, 

.J = N2 _ 1, 
for U(N), 

forSU(N). 
(45) 

We recognize that a- 00 implies /3 *-00 and vice versa. 

Inversion of(41), (42) gives 

a = 4/3* - ao - ~ + 0((/3*)-2) 
4/3* 

and furthermore, by (40) 

J-llk I = 4/3 * - ao + k - ~ 

(46) 

-(1/4/3*)[a l +!(k-!)(k-~)] +0((/3*)-2). 
(47) 

This expression can be inserted into Self (34) and gives its 
extremal value 

_ {*.J * N (k - I)! 
Self,extr - Vd /3 - - In 2/3 + I In 1/' 

2 k ~ 1121 (41T)-

+ _1_a l + 0((/3*)-2)} . (48) 
16/3 * 

As a typical shortcoming of mean field approximations 
without gauge fixing we observe that the coefficient of In /3 * 
in Self,extr is proportional to d whereas :l similar treatment 
with gauge fixing would make it proportional to d - 1. 

In order to calculate /3c numerically we remember that 
/3c is the largest value of /3 for which 

Self,extr = O. (49) 

The stationarity conditions (37) and this equation determine 
the critical parameters /3c (d,N) and J-l~112(d,N ) ... J-li['I(d,N). It 
is moreover convenient to scale /3c by.J (45) and define 

1Jc =/3~/.J. (50) 

Numerical values of 1Jc are given in Table I. 
For sufficiently large N the expansion (48) remains even 

valid for /3 * = /3 ~ and can then be solved to give 

1Jc = pn 2N + pn (pn 2N) + l + 0 ( In (In N) ) . 
InN 

(51) 

1Jc increases with N and assumes no limit at N = 00. 

IV. THE VARIATIONAL APPROACH 

By means of Jensen's inequality 

f dm e i>eJdmJ, (52) 

valid for any probability measure m and real-valued function 

TABLE I. TI, = (Id - 1)/2.:1 )/3, • .:1 = N 2 for U(N) and N 2 
- I for SU(N) calculated without gauge fixing. The Monte-Carlo results are valid only ford = 4. 

UIN) UIN) SU(N) U(N) 
N matrices spheres spheres Monte Carlo 

1.823353 1.823353 1.50751 
2 1.681680 1.939844 1.413114 1.24 ± 0.02hl 

3 1.645080 2.101356 1.860603 1.15 ± 0.08hl 

4 1.629917 2.239659 2.097655 1.14 ± 0.07"' 
5 1.6222 2.355515 2.260836 1.13 ± 0.07hl 

6 1.6177 2.454012 2.385978 1. 13 ± 0.11 hi 

7 1.6147 2.487805 
8 1.61275 
9 1.61133 

10 1.61028 
00 1.60506959 
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f, we can derive a lower bound for the partition function. 
With a local chart (13) and the Haar measure represented in 
the form (21) we define the probability measure 

dm = II { IT [d2k~ 1{i)(z~l) 
<7 k = 1121 

Xexp (Rez~I;n(kl- I/'k(,u(k l))]}, (53) 

with I/Ik from (28), a labelling the links, and arbitrary vectors 
mlklECk and,ulk l = Im(kll. In addition we set 

1 
f=f3I-ReTru p 

p N 

+ III/Id,ulkl) - Rez~l;nlkIJ. 
k.<7 

Inserting (53) and (54) into (52) yields 

_I_In Z ;;.f3 * J.- Tr (M2M +2) 
Vd N 

N 

+ I f I/Id ,u(k I) - ,u(k 11/1 k (,ulk I)J. 
k= 1121 

The matrix M factorizes, 
N 

M = II Mdm(kl), 
k = 1(21 

ordered 

(54) 

(55) 

(56) 

where the order of the factors is the same as in (13). Each 
factor is defined by the integral 

Mdm(kl) = f d2k~ 1{i)(zlkl)Ui" 

X expf Re Z(k l;nlk 1_ I/Id ,u(k I) J, (57) 

with U z '" as in (9) and (14). 
Again we can maximize the rhs of (55) with respect to all 

the vectors m(k I ECk 
• Except for the smallest N this seems 

quite a hard task. A weaker bound can be obtained if we 
assume 

m'''~ (f) 
Then Mk (m(k I) is diagonal, 

(

d kl 

M,(m'''1 ~ ~ 
and we obtain 

dn
kl = 1 for n<,N - k, 

d; ~ k + I = 1/1 k ( ,u(k I). 

n;;.3. 
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(58) 

(59) 

(60) 

This result obviously differs from (34) obtained by the func
tional approach. 

V. NUMERICAL RESULTS FOR PHASE TRANSITION 
POINTS 

In this section we compare numerical values of the 
phase transition points f3e obtained by different mean field 
approaches with the results of Monte-Carlo simulations for 
U(N) groups.5.6 First we do not impose gauge fixing. The 
functional approach based on embedding of spheres has al
ready been discussed in Sec. III. The standard variational 
method (which can be viewed as a functional approach by 
N X N matrix embedding) leads to 

In Z {( w'(x) )4 } -- ;;. max f3 * -- + w(x) - xw'(x) 
Vd XER. N 

(61) 

with 

w(x)=ln f duexReTru. (62) 

We restrict the discussion to the case ofU(N) groups, where 

w(x)=lndetM, 
(63) 

Mkl = Ik ~ I (x), k,/ = 1, ... ,N. 

For large Nan asymptotic expansion of(61) can be per
formed using, for x = NS, S> 1 fixed,9.10 

1 - w(x) = f;- - 1 In f;- _ 3 N 2 !:> 2 !:> 4 

+ _1_ (Til _ A _ I In N + 1 In _S_ ) (64) 
N 2 I TI 8 S _ 1 

+ ~4 ( rls' (S ~ W - ~) + O(N-
6

), 

with A = 0.248 754477 O. For large N we can even obtain 
the critical parameters xc, f3 ~ in the form of asymptotic ex
pansions. Defining 

Xc = NSe , (65) 

f3~ = .tJ.7]c> (66) 

we first determine from (61) the expansion 

1 
Sc = So + N 2 (alln N + bd 

1 + N
4 

(a2 In
2 N + b2 In N + c2 ) + 0 (N -6) (67) 

and therefore obtain 

(68) 

It is crucial that 50 > 1 in order that the expansion (64) is 
applicable; we find 50 = 4.514 65957. 
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In Table I we list the values for 1]e' For U(N) and the 
matrix embedding method (standard variation method) the 
1] e are calculated numerically for 1 <,N <,4 and are obtained
from (68) for N> 5. In the case of the sphere embedding meth
od all numbers for U(N) and SU(N) are obtained by numeri
cal computations. For extremely large N we could also use 
the expansion (51). In the same table we list the results of 
Lautrup and NauenbergS and Creutz and Moriarty6 ob
tained by Monte-Carlo simulations for d = 4 dimensions but 
re-expressed in terms of the parameter 1]e together with the 
errors quoted by these authors. Obviously both the matrix 
and the spherical embedding approach provide too large 
numbers. The latter one is even worse since it yields values of 
1]e increasing with N whereas the Monte-Carlo results seem 
to tend to a constant limit. 

We next impose axial gauge fixing. We study only the 
standard variational approach (matrix embedding) since we 
expect that the qualitative behavior for N--+oo is conserved 
under gauge fixing. Then instead ofEq. (6) we have 

~ InZ> m~x {(d ~ 1)f3( w:) r + (d - 1)f3( w:) r 
+ (d - l)[w(x) - XW'(X))}. (69) 

The critical point f3e is again obtained from condition (49). 
We consider only d = 4 and list the results for (1/ N 2)/3e in 
Table II. For N>5 we again employ the asymptotic expan
sions (67), (68). In this case So = 2.415 278 13. Comparison 
of Tables I and II shows that gauge fixing reduces f3e consid
erably. Moreover, the results for f3e of Table II are in surpris
ingly good agreement with the Monte-Carlo simulations. 
ForSU(2)weobtainjf3e = 0.560 57553. We expect (11..::1 )f3e 
for SU(N) to converge with N from below to the same limit as 
for U(N). 

The latent heat per plaquette, 

1 J 
q = (0 V Jf3 In Zip ~ P. + 0' 

(70) 

is more sensitive thanf3e . For N = 00 we obtain for the latent 
heat per plaquette 

qlN~oo =~[(1- 2~J4 + (1- 2~J2], (71) 

which for d = 4 gives 
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TABLE II. (1/..:1 )/3"..:1 = N 2 forU(N)calculated with axial gauge fixing. All 

numbers are for d = 4. 

U(N) U(N) 
N matrices Monte Carlo 

I 0.776662 1.00551 
2 0.712823 0.825 ± 0.01361 

3 0.695149 0.76 ± 0.0661 

4 0.687593 0.76 ± 0.0461 

5 0.6837 0.75 ± 0.046
) 

6 0.6813 0.75 ± 0.076
) 

7 0.6798 
8 0.67871 
9 0.67795 

10 0.67739 
00 0.67455297 

qlN~oo =0.512122. 

This is more than twice the value which can be read off the 
data of Ref. 6 for U(6). Since In Z = 0 for f3<,f3e in the mean 
field approximation it is not surprising that q is too large. 
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A system of nonlinear partial differential equations is obtained by considering complex self-dual 
Yang-Mills fields in Minkowski space and then selecting those fields whose real part is again a 
solution of the Yang-Mills field equations. From solutions of this system families of real solutions 
of the Yang-Mills field equations in Minkowski space are obtained, which depend on one or more 
arbitrary solutions of the two-dimensional Laplace equation and one or more arbitrary functions. 

PACS numbers: 11.10.Np 

I. INTRODUCTION 

The important role of Yang-Mills theory in particle 
physics led people to a detailed investigation of this theory. 
Several attempts were made to find real classical solutions of 
a pure Yang-Mills theory in Minkowski space, but the num
ber of solutions, which have been found explicitly, is limit
ed. '-H On the other hand, the number of the corresponding 
solutions in Euclidean space is quite large. R This is mainly 
due to the fact that a self-dual field can be real in Euclidean 
space, while it is necessarily complex in Minkowski space. It 
is obvious that it is much easier to solve the equations coming 
from the self-duality condition, than those coming from the 
Yang-Mills field equations, since the order of the former is 
lower than the order of the latter. 

The standard way of getting real solutions in Min
kowski space is by using directly the equations of motion. 
We shall not apply this method. Instead we shall try to find 
complex self-dual solutions, whose real parts are again solu
tions of the Yang-Mills field equations. One solution with 
this property has been found before. 5 In Sec. II we express 
complex self-dual solutions by a real function rp and a com
plex function p. These functions must satisfy a system of 
nonlinear partial differential equations. In Sec. III we select 
those self-dual fields, whose real part is again a solution. 
Then we are led to an additional set of differential equations 
for the functions rp and p. In Sec. IV by solving the system of 
differential equations found in Secs. II and III, a number of 
real Minkowski space solutions is obtained, which depend 
on one or more arbitrary solutions of the two-dimensional 
Laplace equation and one or more arbitrary functions. 

II. SELF-DUAL SU(2) GAUGE FIELDS IN MINKOWSKI 
SPACE 

To proceed in the description of self-dual SU(2) gauge 
field in Minkowski space we introduce the variables y, y, z, Z 
by the relations 

y = (l/v2)(x, + ix2), Y= (l/v2)(x, - ix2), 
(2.1) 

z = (l/V2)(X3 + xo), Z = (l/V2)(X3 - xo). 

Also, if b ~, i = 1,2,3, Il = 0,1'00.,3 are the gauge field and! ~v 
the field strengths 

! i _ J b i J b i ,ijk b j b k 
I"V - v 11 - f-l v - ee" f-1 v' (2.2) 

we introduce the matrices BI" = (e/2i)a j b ~ and 
F"v = (e!2i)a j ! ~v' where a j are the Pauli matrices. Then we 
get 

(2.3) 

Finally we define the variables By ,By,Bz ,Bz by the relations 

By = (l/v2)(B, - iB2), By = (lh/2)(B, + iB2), 
(2.4) 

Bz = (l/v2)(B3 + Bo), Bz = (l/v2)(B3 - Bo)· 

A Yang-Mills field in Minkowski space is called self
dual if it satisfies the relations 

(2.5) 

wherecI"vpa is totally anti symmetric and c1230 = l.1t is obvi
ous from Eq. (2.5) that every self-dual Yang-Mills field in 
Minkowski space is necessarily complex. Equation (2.5) im
plies the relations F'2 = - iF30, F13 = iF20, and 
F23 = - iFIO• From these expressions and Eqs. (2.4) and 
(2.5) we get 

Fyz = Fyz = 0, 

Fyy +Fzz = 0. 

Equations (2.6) and (2.7) are equivalent to Eq. (2.5). 
Equation (2.6) is solved by the expressions 

By = D -'JyD, By = 15 -'Jy15, 

(2.6) 

(2.7) 

(2.8) 

Bz = D -'JzD, Bz = 15 -'JzD, (2.9) 

where D and 15 are 2 X 2 matrices. We are interested in find
ing solutions for which b ~, a = 1 and 2, are real. For such 
solutions the matrices BVf3 are anti-Hermitian. Then from 
Eqs. (2.8) we get 

(2.10) 

As in the Euclidean space case9 we can go in the R gauge, 
defined by the relation 

D=R = _1_(1, 0), 
vrp \p, rp 

(2.11) 

where rp is real and p is complex in general. Then from Eqs. 
(2.8) and (2.9) we find the following expressions for the fields: 

eb, = (l/2rp)[P2 + P2 + i(p, - pd, 
p, +p, - i(P2 -P2)' - 2rp2], (2.12) 

eb2 = (i/2rp )[P2 - P2 + i( p, + PI)' 
p, - p, - i( P2 + P2)' - 2irp,], (2.13) 
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eb3 = (l/2q? )[i( P3 - P3 + Po + Po), 

P3 + P3 + Po - Po, - 2irp ], 

ebo = (l/2rp Hi( P3 + P3 + Po - Po), 

P3 - P3 + Po + Po, - 2irp3], 

(2.14) 

(2.15) 

where the index in the functions P and rp means differenti
ation with respect to the corresponding variable xI-" We see 
immediately from Eqs. (2.12)-(2.15) that the fields b l and b2 

are real while the field b3 and bo are complex. Therefore let us 
write 

bl-' = b: + ib~, (2.16) 

where b: is the real part of the field and Ib~ the imaginary 
part. To simplify the notation let us introduce the Hermitian 
matrices Hand K by the relations 

H = (- rp P\, 
P, rp j 

G=(O, 
ip, 

-ip\ 

° j' 

(2.17) 

(2.18) 

Combining Eqs. (2.7) and (2.25) we find that the functions rp 
and P must satisfy the system 

rp(rpy'y + rpzz) - rpyrpy - rpzrpz + py iJy + pz pz = 0, 
(2.26) 

rp(pyy +pzz) - 2pyrpy - 2pzrpz = 0, 

rp( Pyy + pzz) - 2jjyrpy - 2jjzrpz = 0. 

(2.27) 

(2.28) 

If we express Eqs. (2.26)-(2.28) in the variables xI-' we get 
respectively 

rpal-'al-'rp - if'rpal-'rp + if'pal-' P 

+ i(PIP2 -P2PI) - (P3PO -POP3) = 0, 

rpal-'al-' P - 2al-'rpal-' P 

+ 2i(rpl P2 - rp2pIl- 2(rp3PO - rpOP3) = 0, 

rpal-'al-' P - 2al-'rpal-' P - 2i(rpl P2 - rp2PI) 

+ 2(rp3 Po - rpu P3) = 0. 

(2.29) 

(2.30) 

(2.31) 

The imaginary part ofEq. (2.29) which isp3Po - POP3 must 
be zero. Also taking the complex conjugate ofEq. (2.31) and 
subtracting it from Eg. (2.30) we find that the expression 
rp3 Po - rpo P3 must be zero. Therefore the system of Eqs. 
(2.29)-(2.31) is equivalent to the system 

rpif'al-'rp - if'rpal-'rp + if'pal-'P + i(PIP2 - P2pIl = 0, 
(2.32) 

rpal-'al-' P - 2al-'rpal-' P + 2i(rp1P2 - rp2PI) = 0, (2.33) 

rp3PO - rpOP3 = 0, 

P3PU - PUP] = 0. 

(2.34) 

(2.35) 
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and let us write 

B: = (eI2i)(J'.b:, 

B ~ = (eI2i)(J'.b~, 

in which case we have 

(2.19) 

(2.20) 

BI-'=B:+iB:,. (2.21) 

From Eqs. (2.12)-(2.20) we get 

Ba =B~ = (l/2irp)€a(3H(3 + (l/2irp)Ga , a ,(3 = 1,2, 
(2.22) 

B ~ = (l/2irp )G" B ~ = (l/2rp )Ho, (2.23) 

B ~ = (l/2irp )Go, B ~ = (l/2rp )H3 , (2.24) 

where the index in a matrix means differentiation of all the 
matrix elements of that matrix with respect to the corre
sponding variable xI-' . 

From Eqs. (2.8), (2.9), and (2.11) we get 

(2.25) 

III. CONDITIONS UNDER WHICH THE REAL PART OF 
THE COMPLEX SELF-DUAL SOLUTION IS AGAIN A 
SOLUTION 

We shall determine in this section the conditions under 
which the real part of the complex self-dual solution (2.22)
(2.24) is again a solution of the Yang-Mills field equations in 
Minkowski space 

al-'FI-'v + [BI-',FI-'vl = 0. (3.1) 

To do that we introduce the expression (2.21) into Eq. (2.3), 
in which case we get 

FI-'v = F:" + iF~v' (3.2) 

where F:v is the anti-Hermitian part of the matrix F'"v and 

iF~v is its Hermitian part. Explicitly we get 

(3.3) 

F~v =avB:, -al-'B~, - [B:,B~,] - [B~,B~], (3.4) 

where MI-'v are the field strengths coming from the real part 
of the complex field namely 

MI-'v =avB: -al-'B~ - [B:,B~]. (3.5) 

From Eqs. (2.21), (3.1), and (3.2) we get 

al-'F:v +iJl-'F:". + [(BR)",F:v ] - [(B1)",F:,,,] 

+ i[(B R )",F~v] + i[(B I)I-',F:v ] = 0, (3.6) 

from which we find that we must have 

a"F:v + [(B R )",F:v1- [(B I),',(F1)l-'v] = 0. (3.7) 

Using Eqs. (3.3) and (3.4) to eliminateF:v and F:,v from Eg. 
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(3.7) we get 

JI'Ml'v +au[B~,B~] + [(BRr,Ml'v + [B~,B~]] 
- [(B'r,JvB~ -JI'B~ - [B~,B~] - [B~,B~]] 

== 0. (3.8) 

We want the real part of the complex self-dual solution to be 
again a solution, namely, we want to have 

(3.9) 

Since Eq. (3.8) is satisfied we get if we subtract Eq. (3.9) from 
Eq. (3.8) 

JI'[B:"B~] + [(BRr,[B~,B~]] - [(B'r,JvB~ 

-JI'B~ - [B~,B~] - [B~,B~]] ==0. (3.10) 

Therefore, we find that if a self-dual Yang-Mills field satis
fies Eq. (3.10) its real part is again a solution of the Yang
Mills field equations. We shall take this as the basic equation 
which the field has to satisfy. Of course we could directly 
require the field to satisfy Eq. (3.9). This however, leads to a 
higher-order system of nonlinear partial differential 
equations. 

Let us assume that the field is of the form ofEqs. (2.22)
(2.24). Then for v == a == 1 or 2 since B ~ == ° we get from Eq. 
(3.10) 

[B LJ a B i ] - [B ~ ,JaB ~ ] - [B L [B LB ~ ]] 
+ [B ~, [B ~,B ~ ]] == 0, (3.11) 

which becomes if we use the explicit expressions for the fields 
B i, B ~, and B ~ given by Eqs. (2.22)-(2.24) 

[Ho,Hoa] - [H3,H3a ] - (l/2i<p )cafj [Ho, [Ho.Hfj ]] 

- (l/2i<p )[Ho, [Ho,Ga ]] + (l/2i<p )cafj [H3' [H3,Hfj ]] 

+ (l/2i<p ) [H3, [H3,Ga ]] == 0. (3.12) 

Equation (3.12) is satisfied if the functions <P andp satisfy the 
following relations: 

Po(<p POa - <POPa) - PO(<PPOa - <POPa) - P3(<PP3a - <P3 Pa) 

+ P3(<PP3a - <P3Pa) + iCafj{<Po(POPfj + pfj Po) 

- <P3(P3Pfj + pfj P3) - 2<pfj(poPo - P3P3)] == 0, 

2<Po(<PPoa - <POPa) - 2<P3(<PP3a - <P3Pa) 

- po(2<P<Poa + POPa + Pa Po) 

(3.13) 

+ P,(2<P<P3a + P3 Pa + Pa P3) + iCafj {2pf3(<p ~ - <P ~) 

- 2<pf3 (<Po Po - <P3 P3) + pf3( Po Po - P3P3) 

(3.14) 

For v == 3 Eq. (3.10) gives 

JO[B ~,B i ] + [(B R )0, [B ~,B i]] - [(B')0,J3B ~ - JoB i] 
+ [(BI)O,[Bg,Bi] + [B~,Bf]] ==0. (3.15) 

From this equation we get 

JO[H3.Hol - (3<p0l<p )[H3.Hol - [H3,H33 - Hool 

+ (l/2i<p){ [Go,[H3.Holl + [H3,[ Go,Holl 

+ [H3,[H3,G3 ll J == 0, 

which is satisfied if the following relations hold 

2469 J. Math. Phys., Vol. 23, No. 12, December 1982 

(3.16) 

<p[2( P3 Poo - P3 Pool + Po P30 - Po P30 + P3 P33 - P3 P33] 

+ 5<po( P3PO - POP3) == 0, (3.17) 

2<p [JO(<P3 Po - <POP3) + <P3( Poo - P33) - P3(<POO - <pd] 

- 6<pO(<P3PO - <POP3) - 2<p3(<POPO - <P3P3) 

- 2p3(POPO -P3P3) +PO(P3PO -POP3) == 0. (3.18) 

Ifwe take into account Eqs. (2.34) and (2.35), Eqs. (3.17) and 
(3.18) becomes, respectively, 

2( P3 POD - P3 POD) + Po P30 - Po P30 + P3 P33 - P3 P33 == 0, 

(3.19) 

<P[<P3( Poo - pd - P3(<POO - <pd] - <P3(<PO Po - <p, P3) 

- P3( Po Po - P3 P3) == 0. (3.20) 

For v == ° Eq. (3.10) gives 

J3[BLB~] + [BL[Bf,B~]] - [Bi,JoBi -J3B~] 

+ [BL[Bf,B~] + [BLBg]] ==0. (3.21) 

or 

J3[Ho.H3l - (3<p3/<P )[HO.H3l - [Ho,Hoo - Hd 

+ (l/2i<p){ [G,,[Ho,H3]] + [HO,[G3,H3ll 

+ [Ho,[Ho,Goll J == 0. (3.22) 

The above equation is satisfied if the following relations 
hold: 

<p[2(fto P33 - Po pd + P3 P03 - P3 P03 + Po Poo - Po POD] 

+ 5<P3( POP3 - P3 po) == 0, (3.23) 

2<p[J3(<pOP3 - <P3 Po) + <Pot P33 - Pool - PO(<P33 - <Pool] 

- 6<p3(<PO P3 - <P3 Po) - 2<PO(<P3 P3 - <Po Po) 

- 2pO(P3P3 - Po Po) + P3(POP3 - P3PO) == 0. (3.24) 

Since the functions <P andp must satisfy Eqs. (2.34) and (2.35) 
Eqs. (3.23) and (3.24) become, respectively, 

2( Po P33 - Po P33) + P3 P03 - P3 P03 + Po Poo - Po Poo == 0, 
(3.25) 

- Pot P3 P3 - Po Po) == 0. (3.26) 

Therefore we find that the functions <P and P must satisfy 
Eqs. (2.32)-(2.35), (3.13), (3.14), (3.19), (3.20), (3.25), and 
(3.26). 

The system of equations which the function <P and P 
must satisfy is considerably simplified if P is real. In this case 
the system (2.32)-(2.35) is replaced by the system 

<pJI'JI'<p - JI'<pJI'<P + Jl'pJI'P == 0, 

<pJI'JI' P - 2JI'<pJI' P == 0, 

<PI P2 - <P2PI == 0, 

(3.27) 

(3.28) 

(3.29) 

<P3PO - <POP3 == 0. (3.30) 

Also, in this case we get from Eq. (3.14) 

<PO(<PPOa - <POPa) - <P3(<PP3a - <P3 Pa) - PO(<P<POa + POPa) 

+P3(<P<P3a +P3Pa) ==0, (3.31) 

(<P3P3 - <POPO)<Pa - (<p~ - <P~)Pa == 0, a == 1,2 

From Eqs. (3.20) and (3.13) 
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tp3[tp( POO - pd + tp3 P3 - tpOPO] 

- P3[tp(tpOO - tp33) + POPO - P3 P3] = 0, 

(P3P3 - PoPa)tpa - (tp3 P3 - tpaPo)Pa = 0, 

(3.33) 

(3.34) 

while Eqs. (3.19) and (3.25) are satisfied. We find that Eq. 
(3.34) holds if Eqs. (3.30) and (3.32) are satisfied, except if 
tpo = tp3 = 0. Finally the relation we get from Eq. (3.26) fol
lows from Eqs. (3.30) and (3.33) except if tp3 = P3 = 0, which 
is a noninteresting case. Therefore, ifp is real the real part of 
the complex expressions (2.22)-(2.24) is a solution of the 
Yang-Mills field equations in Minkowski space if Eqs. 
(3.27)-(3.34) are satisfied and we do not have tp3 = P3 = 0. 

IV. REAL MINKOWSKI SPACE SOLUTIONS 

In this section we shall present a number of Minkowski 
space Yang-Mills fields, which are obtained by solving the 
system of nonlinear partial differential equations, found in 
Sees. II and III. We shall consider solutions of the following 
two types. 

A. Solutions of the first type 

We shall call solutions of the first type the solutions of 
the form 

(4.1) 

In this case Eqs. (3.29)-(3.32) are satisfied and (3.27), (3.28), 
and (3.33) become, respectively, 

tp(tpll + tpnl- tpttp) - tp2tp2 + P3 P3 - PaPa = 0, (4.2) 

tp( P33 - Pool = 0, (4.3) 

P3( P3 P3 - PoPo) = 0, (4.4) 

while Eq. (3.34) gives (P3 P3 - Po PO)tpa = 0. The general so
lution of this system is 

tp = e ", P = h (z) or 1'(i), (4.5) 

where v is an arbitrary solution of the two-dimensional La
place equation 

(4.6) 

and hand l' are arbitrary real functions of their arguments. 
For P = h (z) if we write q = (lIY/2)h z we get from Eqs. 
(2.12)-(2.16) 

eb~ = (0,0, - Ea{3V{3)' ebf = (O,qe - V,O). (4.7) 
These potentials give the field strengths 

eff2 = effo = 0, ef~5 = qe - V( - Ea{3 V{3 'Va ,0). (4.8) 

Similar expressions are obtained if we takep = 1'(i). The ex
pressions (4.7) and (4.8) give a class of real solutions of the 
Yang-Mills field equations in Minkowski space, which de
pends on an arbitrary solution v ofEq. (4.6) and an arbitrary 
function q = q(z). 

The action density S is given by the expression 

S = - i(fR jl'v(fR )Ill' = (lI2e2) Tr [(F R yW(F R )Ill' ]. (4.9) 

Also the energy-momentum tensor Bill' is 

aI''' = - W)IlA WV + !glll'(fRY"7(f
R

)pu' (4.10) 

from which we find the energy density It'. 

W = Boo = ~(fR)Oj(fR)Oj + !(fRtdfRk (4.11) 
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The total energy E is the space integral of the above 
expression. 

The action density which is obtained from the expres
sions (4.8) is zero and the energy density is 

(4.12) 

B. Solutions of the second type 

We shall call solutions of the second type the solutions 
of the form 

tp = tp(x t,X2,X3 + xo), P = p(x t,X2,X3 + xo)· (4.13) 

For such solutions we have tpi = Pi = Pi = 0, tp3 = tpo, 
P3 = PO,P3 = Po' Then Eqs. (3.13), (3.14), (3.19), (3.20), (3.25), 
and (3.26) are satisfied, while Eqs. (2.26) and (2.27) give, 
respectively, 

tptpyy - tpytpy + Py py = 0, (4.14) 

tpPyy - 2pytpy = 0. (4.15) 

Also, Eq. (2.28) gives the complex conjugate of Eq. (4.15). 
Therefore, the only equations the function tp and P must 
satisfy are (4.14) and (4.15). We shall consider the following 
families of solutions. 

1. First family of solutions 

This is the family in which 

tp = q5(g)h (z), P =P =p(g)h (z), g = g(X 1,X2). (4.16) 

Then, Eqs. (4.14) and (4.15) become, respectively, 

gyyipip' + gy gy [ipip" _ (ip')2 + (,0')2] = 0, (4.17) 

gyyipp' + gy gy(ipp" - lip'p') = 0, (4.18) 

where the prime denotes differentiation with respect to g. 
Proceeding as in Ref. lOwe find that the general solution of 
the above system is 

ip = ± b Icosh v, P = b tanh v + c, (4.19) 

where v is an arbitrary solution of the two-dimensional La
place equation (4.6) and band c are arbitrary real constants. 
From Eqs. (2.12)-(2.16), (4.16) and (4.19) we get 

R ( V{3 va ) eba = ± Ea{3 ---, ± ---, Ea{3V{3 tanh v , 
cosh v cosh v 

a = 1,2, (4.20) 

ebf = [0, ± (h z /21/2h )(sinh v + I cosh v),O], 

f = 3,0, (4.21) 

where I = clb and h is an arbitrary function of z. The field 
strengths which are obtained from the expressions (4.20) and 
(4.21) are 

eff2 = effo = 0, (4.22) 

ef~5 = (hJ2t/2h H ± Ea{3v{3(sinh V + I cosh v)tanh v, 

+ Va (cosh v + I sinh v), - Ea{3v{3(tanh V + I) J. 
(4.23) 

Equations (4.20)-(4.23), where v is an arbitrary solution of 
the two-dimensional Laplace equation, h is an arbitrary 
function of z and I an arbitrary constant, give a real solution 
of the Yang-Mills field equations in Minkowski space. 
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For the solution (4.20)-(4.23) we get from Eqs. (4.9) and 
(4.11) 

S=O, 

~ = ~(hJh )2vava [(1 + /2)cosh 2v + 2/ sinh 2v). 
(4.24) 

2. Second family of solutions 

This is the family in which 

qJ = qJ(X I ,X2,z), (4.25a) 

(4.25b) P =pty,z). 

Then, Eq. (4.15) is satisfied and Eq. (4.14) becomes 
qJqJyy - qJyqJy = 0. The general solution of this equation is 

qJ = eV
, v = I V(k)(X I ,x2)h (k)(Z), k = 1,2,3 ... , (4.26) 

k 

where the functions V(k) are arbitrary solutions of the two
dimensional Laplace equation, and the h (k) are arbitrary 
functions of z. From Eqs. (2.12)-(2.16), (4.25b), and (4.26) we 
get the following expressions for the potentials: 

eb~ = (0,0, - €af3v(3)' 

bR 1 -V['( -) -0] e 5 = -- e 1 pz - pz 'Pz + Pz' . 
21/2 

From these potentials we get 

eff2 = effo = 0, 

ef~s = [(l/21/2)e~ v 

(4.27) 

(4.28) 

(4.29) 

X [ivaI pz - pz) - i(Pza - Pza) - €af3Vf3(pz + Pz)]' 
(l/21/2)e~V[va(Pz +pz) (4.30) 

- (Pza + Pza) + i€af3vf3(pz - Pz)], - (l/1/2)€af3 vf3z j. 

The action density S obtained from this solution is zero, and 
the energy density ~ is given by the expression 

~ = (l/2e2) 

X [vazvaz +e~2V[2vavuPzPz -va(pzpzu +pzpzu) 

+i€uf3vf3(pzuPz -PzaPz)+PzaPzu]j. (4.31) 

3. Third family of solutions 

This contains the solutions of the system (4.14)-(4.15), 
whose P is complex in general, and satisfies the relation 
Py #0. In this case Eq. (4.15) gives (In Py)y = (In qJ2)y. 
Therefore, 

Py = qJ 2U(y,X3 + xo), (4.32) 

where u is an arbitrary function of its arguments. Substitut
ing in Eq. (4.14) we get 

(In qJ)yy + uiiqJ 2 = 0, (4.33) 

or if we write w = In qJ + !In uiithe above equation becomes 

(alai + a2a2)W + 2e2w = 0. (4.34) 

This is the two-dimensional Liouville's equation. Its solution 
is 

(4.35) 

whereg = g( y) is an arbitrary function ofy. Therefore we get 

(
g g- )112 1 

qJ= ~ ---. 
uu gg + 1 

(4.36) 
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From Eqs. (4.32) and (4.36) we get 

gy 1 
P= ----. 

iig gg+ 1 
(4.37) 

An arbitrary function of y can be added on the right-hand 
side of the above expression, which however is unimportant 
and will be omitted. 

To calculate the potentials we shall use Eqs. (2.12)
(2.16), (4.36), and (4.37). Then we find 

ebf = [_1_' qJ (u - ii), _1_ qJ (u + ii), - (In qJh], (4.38) 
1/2 1/2 

ebf = [ - _1_ qJ (u + ii), _1_' qJ (u - ii), (In qJ)I]' (4.39) 
1/2 1/2 

ebf = ebg 

1_ 1/2 [i[ggyu(lnii)z-ggyii(lnu)z], 
2gg(2gy gyuii) 

ggyu(lnii)z +ggyii(ln u)z,Oj. (4.40) 

The field strengths eff2 and effo we get from Eqs. (4.38)
(4.40) are 

eff2 = effo = 0. (4.41) 

Also, since ff3 + iff3 = f;z the field strengths ff3 and f~ are 
the real and imaginary parts respectively of C:z' The explicit 
expression off;z can be calculated from (2.12)-(2.16). We get 

(4.42) 

Also, we have ef~3 = ef~o' Finally from Eqs. (4.9) and (4.11) 
we obtain S = ° and 

w 1 R R 
(9 = 2" fyz·fyz· 

e 
(4.43) 

If we use the expression (4.42) we get from Eq. (4.43) 

~ = ..!.. [..!..(~) (ii
z

) + ..!..(Uz ) (iiz ) ]. (4.44) 
e2 2 ug y iig y 4 u y ii y 
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We present an embedding of Stiefel manifolds!n: V2•1 (F)-+Vn + I,n (F), (n>2) with F = Cor H 
having the property that the pullback via!n of the curvature 2-form on Vn + I.n (F) to V2,I (F) is an 
integer multiple n times the curvature 2-form on V2•1 (F). We thus obtain the field of a magnetic 
pole of strength g = n/2. 

PACS numbers: l1.lO.Np, 02.40.Sf 

1. INTRODUCTION 

The unit sphere S2n + I' n = 1,2,3, ... in (2n + 2)-di
mensional Euclidean space is given by the equation 

n I ZhZh = 1, Zh EC (h = 0, 1,2, ... , n), (1.1) 
h~O 

where the bar denotes complex conjugation. This is invar
iant under the right action of U( 1) given by 

(1.2) 

These transformations are generated by the unit tangent vec
tor field on S2n + I : 

n (a a ) & = I Xh - - Yh - , 
h~O aYh aXh 

(1.3) 

The I-form dual to this is 

(J) = i (xhdYh - Yh dxh) = i i Zh dzh· (1.4) 
h~O h~O 

This is the connection I-form on the Hopfbundle S2n + I 
-+CPn (see Trautman I for an alternative derivation). The 
corresponding curvature 2-form 

fl = d(J} 

satisfies, as well as the Bianchi identities 

dfl =0 

the sourceless gauge equations (proved in Ref. 1), 

d*fl = 0. 

(1.5) 

(1.6) 

(1.7) 

For the case n = 1, the bundle space becomes the 3-
sphere 

S3: zoZo + ZIZI = 1; 

the connection I-form is now 

(J}o = i(zo dzo + Z I dz,) 

(1.8) 

(1.9) 

and the pullback of (J}o to the base space CPI = S2' via a cross 
section of the bundle S3-+CPI' is the potential ofa magnetic 
pole (modulo a gauge transformation) of strength g = !. I 

Writing (1.8) in the form 

(1.10) 

and using the binomial expansion we obtain Trautman's I 
embedding 

kn : S3-+S 2n + I , 

k n (zo' ZI) = (z~, (7)1/2Z~ - IZI' ... , (~)I/2~ - hz7, ... , z~), (1.11) 

which he expressed as an embedding of the base manifolds 

n 

k • . " (n)zn - h hd (-n - 1r=Jr) n (J) = I £., h 0 Z I Zo Zl~ = n(J}o, (1.12) 
h~O 

which when pulled back to CPI, via a cross section of the 
bundle S3-+CPI' corresponds to the potential of a magnetic 
pole of strength g = n12. If flo = d(J}o then clearly 

k ~fl = nflo. (1.13) 

In this paper we present an analog of (1.11) for embed
ding the bundle spaces V2•1 (F), F = H or C, in Vn + I.n (F), 
n>2, of Stiefel bundles over the Grassmannians G2,I (F) and 
Gn + I.n (F), respectively (see Trautman and Nowakowski2 

who have shown that for the natural connections on Stiefel 
bundles3.4 the curvature 2-forms satisfy the sourceless gauge 
equations). Here Gn + I,n (H) = Sn' Gn + I,n (C) = CPn, 
Vn+ ,.n(H) = SO(n + 1) and Vn+ l,n(C) = SU(n + 1). Thus a 
representation ofSO(2) or SU(2) by (n + l)x(n + 1) matri
ces would constitute an embedding of the bundle spaces and 
this is in fact what we describe in the sequel. When the curva
ture 2-form on Vn + I,n (F) is pulled back to V2•1 (F), using our 
embedding we obtain a similar result to (1.13). The bundle 
V2•1 (H)-+G2•1 (JR) is trivial but we include it since our argu
ment applies equally well to the case F = H as to the case 
F=C, 

2. EMBEDDING V2,l (F) IN Vn+ l.n(F) 

Let a = (aafj)' a, f3 = 1, 2 be a 2 X 2 matrix with real or 
complex entries. Let!n (a) = A be an (n + 1) X (n + 1) matrix 
given by 

(~)1/2(all + a l2t)n - m(a21 + a22t t = i Amh (~)1I2t h 
h~O 

(2.1) 

for m = 0, 1,2, ... , n. Here t is arbitrary and may be real or 
complex while (~) is the binomial coefficient. We first prove 
that!n is a homomorphism which preserves the Hermitian 
conjugate operation, indicated by a dagger; thus we have 

Lemma 1: 

(i)!n(ba) =!n(b )!n(a), 

(ii)!n (at) = Un (a))t. 
Proof (i) Let!n (a) = A given by (2.1) and!n (b) = B so 

that 

(~)1I2(bll + bl2t)n-m(b21 + b22t)m = i Bmh(~)1/2th 
h~O 

(2.2) 
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for m = 0, 1,2, ... , n. MUltiply this equation by 

(::,)1/2sm = i 8mq (;)1/2s'1, (2.3) 
q~O 

where s is an arbitrary real or complex variable and 8 mq is the 
Kronecker delta. Then sum the resulting equation with re
spect to m from ° to n to obtain 

Ib ll +b12t+(b21 + b22t)s}n = i iBqh(;)1/2(~)1/2s'1th. 
h~Oq~O 

(2.4) 

Differentiating m times with respect to t and putting t = ° 
we have 

(::,)1/2(bll+b2IS)n-m(bl2+b22S)m= i Bqm (;)1/2s'1. (2.5) 
q~O 

Multiply this equation by (2.1) and sum over m from ° to n: 

I (b ll + b2Is)(a ll + a 12t) + (bl2 + b2~)(a21 + a22t) J n 

(2.6) 

where 

Cqh = i BqmAmh (2.7) 
m=O 

or, in matrix notation, C = BA. Differentiating (2.6) r times 
with respect to s and putting s = ° the resulting expression 
may be written 

(~)1/2(CII +c12t)n-r(C21 + C22t)' = i Crh (Z)I/2t h, (2.8) 
h~O 

where, in matrix notation, C = ba. Comparing this with the 
definition of In we have 

In (ba) = C = BA = In (b )In (a). (2.9) 
(ii) Letln (at) = D. Then by the definition (2.1) of In we 

have 
n 

(::,)1/2(1211 + a21 t)"-m(a12 + a22tt = L Dmh(h)I/2t h.(2. 10) 
h~O 

Repeating the argument which led from (2.2) to (2.5) we may 
obtain from (2.10) the equation 

(::,)1/2(1211 + al~)"-m(a21 + a22S)m = i Dhm(~)1/2sh (2.11) 
h~O 

for m = 0, 1,2, ... , n. Comparing this with the complex con
jugate of (2.1) (with t = s) we find that 

Dhm =Amh =A hm. (2.12) 

Thus 

In (at) =A t = (fn(a)t (2.13) 

It clearly follows from the definition of In thatln (1) = 1 
and thus we have the 

Corollary 1: If ata = 1 then (fn (a))Vn (a) = 1 and so 

In: U(2)_U(n + 1) if aa(3eC (a, /3 = 1, 2), 

In: O(2)-O(n + 1) if aa(3eR (a, /3 = 1,2). 

The embedding/n requires one further property before 
it can be applied to the Stiefel manifolds and this is obtained 
from the following 

Lemma 2: If ata = 1 and A = In (a), then 
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det A = (det a)"ln + 1)/2. 

Proof Let b be a unitary 2 X 2 matrix within (b) = B. By 
Lemma 1 

In(btab) =BtAB (2.14) 

and by Corollary 1 A and B are unitary. Let 

btab=c, BtAB=C, (2.15) 

and by (2.14) we have 
n 

(::,)I12(C II +C I2t)n-m(C21 +C22t)m = L Cmh(~)1/2th (2.16) 
h=O 

for m = 0,1,2, ... , n. Since a and b are unitary we may choose 
b so that c is diagonal. Thus, 

(n )1/2cn-mcm t m = ~ C (n)I/2th 
m II 22 £.. mh h (2.17) 

h=O 
from which we conclude that C is diagonal with diagonal 
entries 

(2.18) 

Hence we have 

det C = (cllcd nln + 1)/2 = (det c)nln + 1)12, (2.19) 

and since det C = det A and det c = det a we have estab
lished the result of the lemma. 

It is interesting to note that the result of this lemma is 
also true if a t a # 1, but aa(3eC, a, /3 = 1, 2for then the unitary 
matrix b can triangularize a and one can show then thatln (b ) 
= B can triangularize A, i.e., C is triangular with diagonal 

elements given again by (2.18). Thus (2.19) holds once more 
and the result of the lemma is again established. 

Corollary 2: If ata = 1 and det a = 1 thenA tA = 1 and 
det A = 1 where A = In (a) and so 

In: SU(2)-SU(n + 1) if aa(3eC (a, f3 = 1,2), 

In: SO(2)-SO(n + 1) if aa(3eR (a, /3 = 1,2). 

We may therefore write 

(2.20) 

The homomorphism In provides an (n + I)-dimensional re
presentation of the groups SU(2) and SO(2). In the complex 
case, puttingc ll = (7, C22 = a-I, where (7 = eiP,peR, in (2.18) 
we find 

tr C = tr A = a" + a" - 2 + ... + (7- n+ 2 + (7- n. (2.21) 

But this is X j( pI, the character of the irreducible representa
tion with index} = n/2. Thusln is an irreducible representa
tion ofSU(2) of dimension 2} + 1 = n + 1 (cf. Talman, Ref. 
5, p. 115). 

3. THE CURVATURE 2-FORM 

Following Trautman and Nowakowski2 we begin with 
the Maurer-Cartan form on Vn + I.n (F) given by 

W =A tdA, AeVn+ l.n(F), (3.1) 

which has values in the Lie algebra so(n + 1) or su(n + 1). Its 
components W mh thus satisfy Whm + W mh = 0, m, h = 0, 1, 2, 
... , n. The components Wab' a, b = 0, 1,2, ... , (n - 1) consti
tute the natural connection I-form on Vn + I.n (F). The corre
sponding curvature 2-form has components 
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n - I 

flab = dWab + I Wac 1\ Web = Wna 1\ Wnb · 
c=o 

We now establish the following 

Lemma 3: 

I~ flab = nfl08a.n _ lob.n _ I (n;;;.2), 

where/~ denotes the pullback of forms via/n from 

(3.2) 

Vn + I,n (F) to V2.1 (F) while flo is the curvature 2-form on 
V2•I (F). 

Proof We begin by calculating 

I~ Wnb = i A ~h dA hb , b = 0, 1,2, ... , (n - 1), (3.3) 
h~O 

where A hq is given by (2.1). Beginning with 

(~)l/2(all + a2l t)" - m(a12 + ant t = i A ~h(~)1/2th (3.4) 
h~O 

and repeating the sequence of operations which led from 
(2.2) to (2.5) we obtain 

(~)1/2(all + al~)" -- rn(a21 + a22St 

= i A !rn(;)1/2sq
. (3.5) 

q~O 

From (2.1) we have 

(~)1/2! (n - m)(a ll + a I2t)" - rn - I(da ll + da 12t )(a21 + a22t)rn 

= i dAmh(~)1/2th. 
h~O 

(3.6) 

Multiply (3.6) by (3.5) and sum over m from ° to n. Then, 
using the property at a = 1, we find 

n(1 +stj"-I!(atda)11 + (atdabls 

+ (atda)12t + (a tda)22st J 
n n 

= I I (A tdA )qh(~)1/2(;)1/2ths9. (3.7) 
h~Oq~O 

Differentiating m times with respect to t and putting t = ° 
gives 

(~)1/2!(n - m)sm((atda) I I + (atdabs) + msm-I((atda)12 

+ (atdabs)J = i (A tdA )qm(;)1/2sq (3.8) 
q~O 

for m = 1, 2, 3, ... , n. From this we see that 

(A tdA )nrn = 0, m = 1,2,3, ... , (n - 2) (3.9) 

and 

(A tdA )n.n-I = nI/2(atdab. (3.10) 

We calculate directly from (3.5) that 

while (2.1) yields 

ArnO = (~)1/2a71- m a~I' m = 0, 1,2, ... , n, (3.12) 

and so 
n 

(A tdA )nO I (~)072- m~2d (a71- ma~l) 
m=O 

= n(ata)~I- I(atdabl = 0, n;;;'2. (3.13) 

2474 J. Math. Phys., Vol. 23, No. 12, December 1982 

Hence (3.3) becomes, using (3.9), (3.10), and (3.13), 

I~ Wnb = n 1/2(atdabt8b.n _ I 

for b = 0, 1,2, ... , (n - 1). Thus we have 

with 

flo = (atdabll\(atdabl' 

The connection I-form Wo on V2•1 (F) is 

(3.14) 

(3.15) 

(3.16) 

wo=(atda)" = Woo (3.17) 

and the curvature 2-form is [from (3.2) with n = 1] 

flo = floo = dwo = WIO I\wlO (3.18) 

with WIO = (atdabl' We obtain agreement with (1.9) by 
choosing 0"1 = a22 = Zo, a l2 = - 0'21 = iZ I and making the 
replacement wo--+iwo in (3.17) and (3.18). Then (1.8) corre
sponds to ata = 1. 

We finally note that to obtain a result similar to ( 1.12) 
we should consider In as embedding V2• dF ) in Vn+ 1, I (F). 
The connection I-form on Vn + 1.1 (F) is (A tdA )00' and using 

A 6m = (~)1/ 2071- m~I' m = 0, 1,2, ... , n (3.19) 

together with Amo given by (3.12), we see that 

" I~(A t dA )00 = I (~) 071- m a;; d (a71- ma~1 ) 
m=O 

= n(ata)71- I(atda) I I (3.20) 

4. CONCLUSION 

Trautman and Nowakowski2 have suggested the inter
esting problem of taking a principal bundle with a connec
tion and with structure group the orthogonal, unitary, or 
simplectic groups, embedding its base manifold in a Grass
mannian (on account of the universality of these manifolds); 
calculating the connection on the original bundle induced by 
the embedding; and checking if it corresponds to a sourceless 
gauge field. We have described in this paper a simple exam
ple of this program. The curvature 2-form/~ flab clearly 
satisfies the sourceless gauge equations (1.7). 
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A novel approach to the unification of spacetime metric and Yang-Mills fields is presented. The 
spacetime metric field appears naturally as part of a first order G-structure, a Galilean subspace 
structure on a world manifold of higher dimension. There is an a priori distinction between 
internal space dimensions and spacetime dimensions. The prolongation of the first order Galilean 
subspace structure to second order is a principal bundle of second order coframes which has 
additional degrees of freedom in the second order part of its gauge group. The Yang-Mills fields 
are defined in a natural way as second order gauge fields by a reduction of the second order 
Galilean subspace structure. The Yang-Mills fields appear as part of a connection on the world 
manifold rather than on the spacetime manifold. The kinematic foundations of the new model are 
analyzed using the theory of G-structures and their prolongations. Kaluza-Klein models are also 
discussed from the G-structure viewpoint and compared with the Galilean subspace model. 

PACS numbers: 11.10.Np, 11.30.Ly 

1. INTRODUCTION 

The hypothesis that there exist world dimensions in ad
dition to the four dimensions of spacetime has been an im
portant theme in the search for a unified field theory since 
the early work of Kaluza and Klein. 1.2 The idea that such 
additional world dimensions should exist became more plau
sible with the discovery of new internal degrees of freedom 
and the subsequent increasing importance of internal sym
metry groups, particularly in connection with Yang-Mills 
gauge fields. 3 It is customary to interpret a Yang-Mills 
gauge field as a connection on a principal fiber bundle over 
spacetime with an internal symmetry group as typical fiber. 
The shift to a model of the Kaluza-Klein type consists in 
regarding the total space rather than the base space of the 
bundle as the real world manifold; consequently, in such a 
model, the group dimensions are assumed to be just as real as 
the spacetime dimensions. Moreover, the geometric struc
ture of such models is that of a first order flat and involutive 
subspace structure4

-
6 defined on a world manifold of higher 

dimension equipped with a pseudo-Riemannian metric of 
the Lorentz type. Although the subspace structure is intro
duced a priori in some presentations 7 and by means of a spon
taneous symmetry breaking8 mechanism in others,9 the geo
metric structure ultimately obtained is the same. The 
essential point is that these models are based on afirst order 
G-structure on the world manifold. In Sec. 7, the various 
approaches to the Kaluza-Klein models will be discussed, 
and models of this type will be contrasted with the type of 
model introduced in this paper. 

The purpose of this paper is to describe a new model in 
which spacetime metric and Yang-Mills fields are unified. 
In this model an a priori distinction between spacetime di-

., Supported by Natural Sciences & Engineering Research Council of Can
ada. 

bl Present address: Dept. of Physics. Lyman Laboratories, Harvard Univer
sity, Cambridge, MA 02139. 

mens ions and internal dimensions is made. This distinction 
is achieved by postulating a Galilean subspace structure on a 
world manifold of higher dimensions. The subspace dimen
sions are the internal dimensions and the other dimensions 
are the spacetime dimensions. In the case of the familiar 
Galilean spacetime structure, the subspace dimensions are 
space dimensions while the other dimension is the time di
mension. It is natural to demand that the subspace structure 
(distribution) is involutive in order that the world manifold 
be foliated with exactly one leaf (maximal connected sub
manifold) of the foliation through each world pointp such 
that the tangent space to the leaf at p is the subspace of the 
world tangent space at p picked out by the subspace struc
ture. It is then possible to require that these internal subman
ifolds are compact by requiring that they be manifolds of 
constant positive curvature, a condition which may be ex
pressed as a system of second order partial differential equa
tions for the subspace metric gs. The constant curvature 
may vary with the submanifold (depend on the spacetime 
variables). If the subspace structure is required to be first 
order flat (hence also involutive), then there exist locally (not 
just at a point) adapted coordinate systems with respect to 
which the spacetime metric g assumes a particularly simple 
form and depends only on the spacetime variables. 

It is well known that a first order (pseudo) Riemannian 
structure completely determines the prolonged structure in 
second (and higher) order; that is, the connection (up to a 
torsion) is uniquely determined by the metric. However, a 
first order Galilean subspace structure does not completely 
determine a connection (even up to a torsion), a result that is 
widely known in the special case of Galilean spacetime struc
tures analyzed in conjunction with Galilean general relati
vity theory. 10 For the particular assignment of internal and 
spacetime dimensions stated above, part of the Galilean sub
space structure connection that is left undetermined may be 
assigned the role ofa Yang-Mills gauge field; consequently, 
the Yang Mills gauge fields may be introduced by a reduc-

2475 J. Math. Phys. 23(12), December 1982 0022-2488/821122475-13$02.50 ® 1982 American Institute of Physics 2475 



                                                                                                                                    

tion of the second order Galilean subspace structure. In this 
model, the spacetime metric appears naturally as part of a 
first order G-structure, and the Yang-Mills fields appear 
equally naturally as part of a second order G-structure, as 
part of a connection. Note that here the Yang-Mills gauge 
fields are part of a second order G-structure on the world 
manifold while in models of the Kaluza-Klein type they are 
part of a first order G-structure on the world manifold. 

The language for jets and G-structures and the particu
lar approach to the prolongation of G-structures used in this 
paper has been explicated in detail in a previous paper by 
Coleman and Korte. II Simple first order subspace structures 
(without metrics) are described in Sec. 2 and the prolonga
tion of such structures to second order is carried out in Sec. 
3. The results of these two sections are generalized to the case 
of Galilean subspace structures in Sec. 4 with the details of 
the solution of the prolongation equations presented in Ap
pendix A. Then the metric forms canonically associated with 
the first order Galilean subspace structure are discussed in 
Sec. 5. Finally, in Sec. 6, the preceding results as well as the 
discussion of first order integrability conditions presented in 
Appendix B are used to describe the new model in which 
spacetime metric and Yang-Mills fields are unified, and in 
Sec. 7, this model is compared and contrasted with the mod
els of the Kaluza-Klein type. 

In Appendix C, it is shown that under a transformation 
from one adapted coordinate system to another, the Yang
Mills fields do in fact transform according to the standard 
Yang-Mills gauge transformation. 

Although Galilean subspace structures are also of inter
est in connection with the analysis of Galilean general relati
vity theory, the task of specializing our results to this parti
cular case and of relating the resulting description to that of 
Kiinzle 10 is left for lack of space to the interested reader. 

2. FIRST ORDER SUBSPACE STRUCTURES 

Subspace structures appear as an integral part of a var
iety of geometric structures of interest to theoretical physi
cists. An absolute time or an absolute space structure is a 
subspace structure in a pure form. A connection on a princi
pal or associated fiber bundle is a type of subspace structure. 
The essence of a model of the Kaluza-Klein type is a sub
space structure on a pseudo-Riemannian manifold. A spe
cial type of subspace structure, the Galilean subspace struc
ture, plays a key role in the model presented in this paper. In 
this section, subspace structures are presented from the G
structure viewpoint, which is then related to the more cus
tomary treatment. 

Let M be a Coo manifold of dimension N = n + m. The 
conventions adopted for index ranges are as follows: 

I,J,K,L,.·· 1,2, ... ,N, 

K,A,Il,V"" 1,2, ... ,n, (2.1) 

a,b,c,ej,··· n + I,n + 2, ... ,N = n + m. 

Denote by S !,m the subgroup of G ~ consisting of those ele
ments 

a~ IN(a~d ~ I~) (2.2) 

for which (a~) has the block form 
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s~] . (2.3) 

The k th order prolongation of S !.m will be denoted by S ~,m . 
If(~) and (t ~) are matrices of the form (2.3), then the product 
(~) where r = st is explicitly given by 

~ =s',\t~, 

r:, =s).t~ +~t~, 
r:, = s~t~. 

The element inverse to (2.3) is 

_ II y 

[ 
(sP.)-1 

(SJ ) = _ (~)-ls1(~)-1 

(2.4) 

(2.5) 

where (s<:) - I and (s~) - I denote the inverses of the subma
trices (s<:) and (s~), respectively. Note thats y- II' denotes the n
dimensional part of the inverse of ~. Also, since st = 0, 
(Sy-II') = (s<:)-I. 

LetpEUCM and let h:U----+VCRNbe a local diffeomor
phism such thath (p) = O. The I-jetj~h isanN I-coframefor 
Mat p. Relative to any given chart (U,x),j~h may be repre
sented in the form 

(2.6) 

where h ~ is the partial derivative of h IoXp- I with respect to 
the J th argument at OERn and xp = x - x( pl. The bundle of 
N I-coframes on M is denoted by 

dYl*(M) = (HI*(M),1TH'.,M,G~). (2.7) 

The structure group G ~ acts freely on the left of dYl *(M). By 
restricting this action to the group S !.m C G ~, one may con
struct the associated bundle of S !,m related N I-coframes, 

S !.m \,,;y'I*(M) 

= (S !.m \,H 1*(M),1TS~.m',H'. ,M,S !,m \,G ~,dYl*(M). (2.8) 

An S !.m -structure on M (a subspace structure) is defined by 
a cross section of S !,m \,dYl*(M ),~:M----+S !.m \,dYl*(M), 
which determines at each pEM an equivalence class, ~ (p), of 
S !.m related N I-coframes. 

It is more convenient, from a computational viewpoint, 
to work with a family oflocal cross sections of dYl *(M), 
w here for each such local cross section h: U----+ H 1*( U ), the N 1-
coframe h (p) for any pEUbelongs to the equivalence class of 
N I-coframes ~ (p) determined by the S !.m -structure. If 
h:U----+H I*(U) is any other such local cross section and 
UnU #0, then hand h are related by a local S !,m gauge 
transformation, s: UnU----+UnUxS ! m given by 

sIp) = a~ IN(s~d ~ 1-;"'). (2.9) 

Thus, for pEUnU, 

h (p) = s(p)oh (p) 

= a~ IN(~h ~d ~xJ). (2.10) 

From the expression 

- [ s',\h ~ 
(h ~) = sa h). + sah C 

A. v c v 

(2.11) 
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it is easy to see that a suitable standard representative for the 
equivalence classes may be selected by means of the coordi
nate dependent, gauge fixing conditions 

(2.12) 

The standard form of (h ~) will be denoted by (.2' ~). 
To derive the coordinate transformation law for the 

standard representative.I ~, consider a coordinate transfor
mation from (U,x) to (D,x). Then 

and 

X~] 
xa 

b 

(2.13) 

= [X~ +.2'~X~, X~ +.2'~X~] 
X~ X%' (2.14) 

From (2.11) and (2.12), it is apparent that the standard repre
sentative (1: ~) is determined by 

(2.15) 

Clearly, by choosing X % = 8% and X ~ = -.2' ~, one obtains 
1: ~ = 0; consequently, for any pEM, there exists a preferred 
coordinate system in which (.2' ~) = (8 ~). Such a coordinate 
system is said to be adapted at pEM. Moreover, if .2' ~ = 0, 
then 1: ~ = 0 iff X ~ = 0; consequently, the preferred coordi
nate system is determined only up to an S ~.m transforma
tion. 

For every pEM, the active microsymmetry group for an 
S ~.m -structure is isomorphic to S ~.m' LetfM~M be a dif
feomorphism such thatf( p) = p. Then the microtransforma
tion atp is 

J'I f= al X(FI d I xJ) p p J p , (2.16) 

where F~ is the partial derivative of FI = x~ ofoxp- I with 
respect to the J th argument at OER. Under such a transfor
mation, the standard representative transforms according to 

1~ = (F~ +.2'~F1)-I(F~ +.2':F~). (2.17) 

The invariance condition is just 1 ~ = .2' ~, from which it 
readily follows that 

(2.18) 

It is a routine matter to show that the transformations (2.16) 
with Fb given by (2.18) form a group isomorphic to S ~.m' 
Indeed, since the coordinate system may be freely chosen, 
one of the preferred systems in which .2' ~ = 0 may be used. 
In such a system, F~, F~, and F% may be chosen freely 
whileF~ = O. 

To recover the customary description of a subspace 
structure from the above G-structure treatment, note that 
the first n arguments of the standard N I-coframe 

a~IN(.I~d ;xJ) (2.19) 

determined by the S !.m -structure determine n linearly inde
pendent 11-cospeeds (I-forms); namely, 

uf' = ()I l(d I xl' + .I I'd I x a) o pap (2.20) 

foreachlJ:E[ 1,2, ... ,n j. A II-speed (vector) atpEMisa l:jetj~r 
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of a map r:R~M for which rIO) = p. 

j~r = a~x(rfd U)· (2.21) 

The set of such II-speeds at p forms a linear vector space 
L : (Mp) [isomorphic to T(Mp)]. The 11-cospeeds (2.20) de
fine a linear subspace of L : (Mp) consisting of those 11_ 
speeds (2.21) which satisfy 

uf'-j~ r = 0, IJ: = 1,2, ... ,n. (2.22) 

It is easy to show that the subspace so defined is invariant 
under both coordinate and active microsymmetry transfor
mations. In an adapted coordinate system, the y;- = 0 while 
the r': are arbitrary. 

3. SECOND ORDER SUBSPACE STRUCTURES 

An S !.m -structure determines at each pEM an equiv
alence class of N I-coframes; namely, the N I-coframes 

(3.1) 

where (...!' ~) determines the standard representative and 
(~)ES ~.m' Any N 2-coframe which projects onto the N I_CO_ 
frame (3.1) may be expressed in the form 

a2l (J ~Rd2 J 1 I rR d2 Jd2 K) o N SR":-J pX +2!SR JK pX pX . (3.2) 

If qEM is a point infinitesimally near pEM and WI 
= XI(q) - xI(p), then the N 2-coframe (3.2) atp determines 

an N I-coframe at q; namely, 

a~l N [s~ (.2' ~ + r~swS)d !xJ]. (3.3) 

The standard representative corresponding to the N I-CO
frame (3.3) may be determined from 

(.2'~ + r~s~) 

= [~+r~sws 
r~s~ 

= [~+r~s~ 
r~sws 

.2'~ + r~s~] 
8% + r%sws 

8% + r%swSO_ r~s.2'~~ ] 

[~ .2'~ + r~sws - r~s.2'~wS] 
X 0 8~ . (3.4) 

Thus, the standard matrix for (3.3) is 

[
8':.

o
v .2'~ + r~sws - r~s.2'~wS] 

8% . (3.5) 

On the other hand, the S ~.m -structure determines at qEM an 
equivalence class of N I-coframes, the standard representa
tive of which is 

a~IN(.2'~(q)d !xJ). 

However, expanding.2' ~(q) about p gives 

.2' ~(q) = .2' ~(p) +.2' ~.s( p)~ 

(3.6) 

=[~ .I~+8~~·sWS], (3.7) 

which is already in standard form. The prolongation (3.2) is 
self-consistent iff(3.7) and (3.5) differ at most by a term of the 
form (B ~s ~), where B ~K = - B ~J' In block matrix form, 

R. A. Coleman and R. B. Mann 2477 



                                                                                                                                    

this term is 

BtAuf + Btc WC ] . 
B~Auf+B~cwc 

(3.8) 

Both (3.5) and (3.7) have a zero matrix in the lower left block; 
consequently, 

B ~A = 0, B ~c = 0. (3.9) 

Since the diagonal blocks of both (3.5) and (3.7) are 8~ and 
8~, 

(3.10) 
B ~c = 0, B ~A = 0. 

By skew symmetry, 

BtA = - B~b = 0. (3.11) 

Thus, only B tc may differ from zero. Thus, the condition for 
self-consistency of the prolonged structure is 

.It + .It.sws + BtcwC =.It + rtswS 
- r~s.I~ws. 

(3.12) 

Hence, 

.It.v = rtv - r~v.I~, 
(3.13) 

.It.c + Btc = rtc - r~c.I~. 

The first of these equations gives 

r~b = rtv = .It.v + r~v.I~· (3.14) 

The symmetric part of the second equation of (3.13) and 
(3.14) together give 

r tc = !(.I t.c +.I ~.b) + !(.I t.v.I ~ + .I ~.v.I ~) 
+r~A.I~.I~. (3.15) 

From the skew symmetric part of the second equation of 
(3.13) and from (3.14), it follows that 

Btc = - !(.It.c -.I~b) + ~(.It.v.I~ -.I~v.I~)·(3.16) 
Thus, the components r ~A' r ~A' r ~c ( = r ~v), and r ~c 
are completely undetermined while the components 
r~b( = rtv) and rtc are determined by the first order 
structure, and r ~A and B tc depend only on the first order 
structure. The undetermined coefficients indicate that the 
prolonged group S ~.m has more parameters than S ~.m . 

It will now be shown that the general NZ-coframe (3.2) 
which belongs to the S ~.m -structure factors into the product 
of an S~.m group element and a standard representative NZ_ 
coframe. 

Let TSK have the block form 

(3.17) 

and define .I 5K by 
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where 

.I tc = !(.It.c + .I~.b) + !(.It.a.I ~ + .I~.a.I ~). 
Now consider the product of 

(3.18) 

(3.19) 

a~IN (d~ I~ + ;, TSKd~ I~d~ I~) (3.20) 

and 

a~ IN (.ISd~x' + ;, .ISKd~xJd~XK). (3.21) 

One obtains 

aZI (~JdZ J 1 rJ dZ Jd2 K) o N ~ J pX + 2! JK pX pX , 

where 

rSK =.ISK + TiM.I;.I~· 
In block form, Eq. (3.23) becomes 

rtA =.ItA + 2T~A.I~, 
r~c = .I~c + 2T~v.I~, 
rtc = .Itc + T~f3.I~.I~, 
r~A = T~A' 

r~A = T~A' 

r~c = 2T~a.I~ + 2T~c' 
r%A = 2T~A.I~ + 2T%A' 

r%c = T~f3.I~.I~ + T~c.I~ + T%a.I~ + T%c' 

(3.22) 

(3.23) 

(3.24) 

The first three of these equations coincide with (3.14) and 
(3.15). From the remaining equations, it is clear that the 
quantities r~A' r~A' r~c = r~v' and r%c may be expressed 
in terms of the quantities T~A' T~A' T~c = T~v' and T%c and 
conversely; consequently, if one set is arbitrary so is the oth
er. 

The product of 

a~IN(sSd~ I~) (3.25) 

and (3.20) yields 

a~IN (sSd~I~ + ~, sSKd~ I~d~ I~), (3.26) 

where ~K and ~A may be freely chosen and 

(3.27) 

The 2-jet (3.26) is the general element of the prolonged group 
S ~.m • The N 2 -coframe (3.21) is the standard representative of 
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the equivalence class of N 2 -coframes at pEAl determined by 
the S ~,m -structure, The general N 2 -coframe belonging to 
this equivalence class is given by (3.2), which is the composi
tion of(3,26) and (3.21). 

4. GALILEAN SUBSPACE STRUCTURES 

Denote by S II p.q).lr,s) the subgroup of G 1 consisting of 
those elements 

a~ IN(s~d ~ I~) (4.1) 

where (I;) has the block form (2.3) and 

(4.2) 

where (naB) [respectively, (nab)] is diagonal with + 1 in the 
first p (respectively, r) positions and - 1 in the remaining q 
(respectively, s) positions. S IIp,q),lr.s) is a subgroup of S ~,m' 
where p + q = nand r + s = m. If q = 0 = s, the subgroup 
will be denoted by S in).lm) . A Galilean subspace structure or 
S II p.q).lr,s) -structure is defined by a cross section ~ of the asso
ciated bundle S lp.q).lr.s) \."J¥'I*(M) of S IIp.q).lr,s) related N I_CO_ 
frames. Such a cross section may be conveniently represent
ed by a family oflocal cross sections of J¥'I*(M). For each 
local cross section h: U-H 1*( U) belonging to the family, the 
N I-coframe h (p)u (p), the equivalence class of N I_CO_ 

~t + rtswS] 

~~ +r~sws 

frames determined by the S ip.q).lr,S)-structure; moreover, if 
h:U-H I*(U) is any other such local cross section and 
UnU #0, then hand h are related by a local gauge transfor
mation (2.10), where now s( p)ES ip,q).lr,s)' From (2.11) and the 
fact that in the present case (~)E 0 ;.q and (~)E 0 ~,s, it is 
clear that a suitable standard representative for the N I-CO_ 
frames ~ (p) is given by 

~t] 
~a 

b 

in which (~~) and (~ %) are upper triangular. 

(4.3) 

(4.4) 

To prolong the S IIp.q).lr.s) -structure to an S fp,q).lr.s) -struc
ture, consider an arbitrary member of ~ (p), namely, 

(4.5) 

and an arbitrary N 2-coframe which projects onto the N (
coframe, namely, 

a2 I (SI ~Rd2XJ + ~SI r R d 2x Jd 2xK). (4.6) o N R J p 2! R JK p p 

This N 2-coframe determines the N I-coframe 

a~ IN(s~(~f +rfsws)d!xJ) (4.7) 

at q, where WI = Xl (q) - Xl (p). Next, bring (4.7) to standard 
form. First, consider 

0] [~~ + r~sws 
o~ 0 

~t + rtsw
S 

] 
~~ + r~sws - r;s(~~)-I~iwS . 

(4.8) 

Next, choose infinitesimal transformations (A ~)EO ;,q and (A ~)EO ;,s, where 

(4.9) 

and 

(4.10) 

such that 

o ] [~~ + r~sws ~t + r~sws ] 

A ~ 0 I% + r~sw -r;s(~~)-l~iw 

Since (I ~) and (I b) are by definition upper triangular, 
the requirement that the diagonal elements of block matrix 
(4.11) be upper triangular yields the equations 

r~s+A~sI~=O for Jl>V, 

r a _ra ('£'P)-I'£'..t + j a ~c -0 ~ b (4.12) bS pS ..;, A. ..;, b /l, cS";' b - lor a > . 
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I 

(4.11) 

In view of the skew symmetry (4.10), these equations may be 
solved for A ~s in terms of r~s and I ~ and for A %s in terms 
ofr~s, r;s,~~,I~, andI~.In theiol/owing, it is assumed 
that this has been done. 

The S i p,q),(r,s) -structure already specifies a standard N 1_ 
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coframe at q; namely, 

a~ IN (.2' ~(q)d ~xJ) 
= a~ IN [(.2' ~(p) +.2' ~.s(p)wS)d ~xJ]. (4.13) 

In order that the prolonged structure be self-consistent, the 
matrix 

.2' p. +.2' p. wS 
] b b.S 

.2'a +.2'a wS 
b b.S 

(4.14) 

may differ from the standard form (4.11) by at most a matrix 
of the form (3.8), which satisfies 

B ~s = 0 for f1 > v, 

B ~s = 0 for a > b, 

B~s =0. 

Such a matrix has the explicit form 

(4.15) 

[B~A uI + B~cwc B~A uI + B~cWC] 
o B~cwc' (4.16) 

The compatibility conditions are 

.2'~.A + B~A = r~A + A ~A.2'~, 

.2'~.c +B~c =r~c +A~c.2'~, 

.2'~.A +B~A =r~A +A~A.2'~, 

.2' ~.c + B ~c = r ~c + A ~c.2' ~, 

.2' ~.A = r~A - r~A (.2' ~ )-1.2' ~ + A ~A.2' ~, 

(4.17) 

.2'~c +Ba
b 

=ra
b 

_ra (.2'P)-I.2' '' + 1 a ~e 
• c c pc u b /l, ec~ b' 

Equations (4.17) constitute a linear system for the unk
nowns r ~K and B ~K' The system is underdetermined and 
some of the variables may be chosen arbitrarily. The details 
of the analysis are presented in Appendix A. A description of 
the results is given here. 

The general element of the prolonged group S 2 is ( p.q)(r.s) 

a~ IN (S~d~ I-:' + ;! ~Kd~ I-:'d~ I~), 
where ~K has the block form 

Moreover, if T5K is defined by 

S~K =S~T~K 

(4.18) 

(4.19) 

(4.20) 

then the T~K have the same block form as the ~K and the 
T~A = T~b satisfy the symmetry condition 

(4.21) 

If sand S are any two elements of S 2, ) ( ), their product s is p,q. ,..s 
explicitly given by 
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~ =Yl~, 

s~ =~~ +s~~, 

~ =S~S~, (4.22) 
sa _ sa ;:p -" + Aa ;:p -e Aa -e;:p ~-e 

VA - p"YvS A SpeS"S A + SepSv~). + ~eS"A' 
S~A = ~b = S~S~A + ~fS~~ . 

From the last of these equations, one obtains 

T~A = T~A + se- larjg%.i1. (4.23) 

By using the second of the relations (4.2), one may show that 
T~A satisfies (4.10) provided that r~A and T~A satisfy (4.10). 

Denote the standard representative of the equivalence 
class of Sfp.q).(r.s) related N 2-coframes by 

a~ IN (.2'~dp2XJ + ~.2'~Kd2XJd2XK) 2! p p . 

Then .2' ~K has the block form 

Also, 

.2' ~A =.2' ~b , 

.2' ~A =.2' ~b , 

.2'~A = 0 for a>b. 

(4.24) 

(4.25) 

(4.26) 

The .2' ~K are completely determined by the functions 
.2' ~ which describe the first order structure. The explicit for
mulas are rather complicated and are given in Appendix A. 

Finally, note that the N 2-coframe (4.6) is the composi
tion of an Sf p.q).(r.s) group element (4.18) and the standard N 2_ 

coframe (4.13); consequently, 

or 

and 

r I _ ~I TI ~R~S JK - ~ JK + RS~ J~ K 

r~A = .2'~A' 

r~A = .2'~A = r~b' 

r~c = .2'~c 

r~A = T~".2'~.2'r, 

(4.27) 

(4.28) 

r ~A = r ~b =.2' ~A + T~".2'~.2' r + T~".2'~.2' r, (4.29) 

r a =.2'a + T a .2'P.2''' + T a .2'e.2'p + TO ~e ~p be be pa beep c b ep.s::; b~ c· 

5. THE GALILEAN METRIC FORMS 

In Sec. 4, a Galilean subspace structure was defined as 
an S (lp.q).(r.S)-structure. However, it is customary to describe 
such a structure at least in part in terms of metrics naturally 
associated with such a structure. These metrics will now be 
discussed. 
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The standard N l-coframe (4.3) defines a basis for the 
cotangent space at peM consisting of the forms 

Cti" = I~dpxv + I~dpXb, 
(5.1) 

(J)U = I ~dpXb. 

The basis for the tangent space at peM that is dual to the 
basis (5.1) is 

;1' = I 1'- IVJpxv' 

or 

;[ = I [- IJJpxJ' 

Under a change of coordinate system defined by 
X = xox- 1, the standard N I-coframes are related by 

(5.2) 

~~ =~I~X~, (5.3) 

where the (~)ES ip,q),'r,s) is uniquely determined by I ~ and 
X~. Thus, the forms (5.1) transform according to 

Cti" = ~(J)v, 

(JU = s~(J)v + ~(J)b, (5.4) 

Clearly, for each peM, a subspace of the tangent space is 
invariantIy defined which consists of all vectors V which 
satisfy 

Cti"(V) = O. 

Restricted to this subspace, the subspace metric 

gs = 7Jub(J)u ® (J)b 

is invariant. In addition, the invariant metric 

(5.5) 

(5,6) 

g = 7Jl'vCti" ®(J)v (5,7) 

provides a measure of distance between subspaces. 
The metric (5.7) and the metric (5.6) restricted to the 

appropriate subspace are also invariant under active micro
symmetry transformations, Consider a diffeomorphism 
fM_M such that/( p) = p, and set F = x%x- I

, Then the 
I-jet 

(5.8) 

is a microsymmetry iff any N I-coframe belonging to the 
S ip,q)"r,s) -structure at peM is transformed into another such 
N I-coframe. This condition is satisfied iff 

F~ = I A- 1[~I~, (5.9) 

where the (s~)ES ip,q)"r,s) may be chosen arbitrarily. Under 
such a transformation the basis (5.1) will be transformed into 
another basis given by 

(5.10) 

(ijU = s~(J)v + ~(J)b. 
It is clear that the metricg, the subspace defined by (5.5) and 
the metric gs restricted to this subspace are invariant under 
the active transformation (5.10). Note that the meaning of 
(5.4) is quite different from that of (5.10) despite the similar 
form. 
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6. THE GALILEAN SUBSPACE WORLD MODEL 

Our geometric model for the unification of the space
time metric and Y ang-Mills fields is based on a C~ manifold 
M of dimension 4 + m. This world manifold is equipped 
with a first order Galilean subspace structure determined by 
a cross section of the bundle S [I,3),lm) ,\JI1'I*(M). In this mod
el, the internal symmetry group is O(M ); however, the model 
may be adapted in the manner discussed below to permit a 
unitary internal symmetry group. The Galilean subspace 
structure determines a distribution on the world manifold 
M; that is, a subspace (of dimension m) of each tangent space 
is singled out in a smooth way, These distinguished sub
spaces play the role of tangent spaces of the internal symme
try submanifolds. There is therefore an a priori distinction 
between internal and spacetime dimensions. 

For an arbitrary distribution, there will not in general 
exist submanifolds the tangent spaces of which are the sub
spaces distinguished by the distribution. As pointed out in 
Appendix B, in order that internal symmetry submanifolds 
exist, it is necessary and sufficient that the distribution is 
involutive.~ In terms of the first order structure fields I~, 
this condition may be expressed by the partial differential 
constraint equations (BI). For an involutive Galilean sub
space structure, the metricgs given by (5.6) and restricted to 
a given internal symmetry submanifold is a Riemann metric 
for that submanifold. In the neighborhood of any point peM, 
there exist adapted coordinate systems such that the internal 
symmetry submanifolds are determined in any such system 
by the equations 

xl'=O. (6.1) 

In such a system, the metric gs will take the form 

gs = KSab(XI',xa)dxa ® dxb (6.2) 

and the curvature tensor R ~bcd will be given by the usual 
expression with the xl' coordinates behaving as mere specta
tors. It should be emphasized that the above comments ap
ply locally and not just at a point. 

If desired, it is possible to compactify the internal sym
metry submanifolds and to considerably reduce the number 
of dyamically interesting fields in the S 1\.3).lm) -structure by 
requiring that the internal symmetry submanifolds are 
spaces of constant positive curvature. 12 This requirement 
may be expressed as a system of second order partial differ
ential constraint equations for KSab; namely, 

RSabcd = n(nR~ 1) (Ksac KSbd - KSad KSbc)' (6.3) 

where the curvature scalar Rs may depend on the spacetime 
variable xl'. 

The metric g given by (5.7) is of course the spacetime 
metric. In the adapted coordinate system ~ ~ = 0 (locally 
not just at a point), and g takes the form 

g = Kl'v(xl',xa)dxl' ® dx". (6.4) 

If the Galilean subspace structure is not only involutive but 
also first order flat then, as discussed in Appendix B, the first 
order structure fields I ~ satisfy the condition (B4) as well as 
the condition (B 1). It is easy to see that in the adapted coordi-
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nate system ~ ~,b = ° locally; consequently, gpv(F,xb
) is in 

fact a function of the variable xP only. 
In summary, for a theory based on a first order flat 

Galilean subspace structure with internal symmetry sub
manifolds which have constant positive curvature indepen
dent of the spacetime variables, the only field which is dyna
mically interesting in first order is the spacetime metric g 
which in a natural, locally adapted coordinate system is re
presented by a spacetime tensor field gpv (xP ). Note that the 
coordinate transformations which relate adapted coordinate 
systems permit arbitrary spacetime coordinate transforma
tions, Also, the special forms and functional dependence of 
the various fields are obtained as exact statements. No ap
proximations are involved. 

At this point, one might obtain a Kaluza-Klein model 
by a further reduction of the S (\,3),(m)-structure. In this ap
proach which will be discussed more fully in the next section, 
the first order structure of the world manifold is enriched to 
accomodate the Yang-Mills fields, A qualitatively different 
approach leads to a new model in which Yang-Mills fields 
are accomodated not as part of a first order G-structure on 
the world manifold but as part of a second order G-structure 
on the world manifold. The S ll.3),(m)-structure determines by 
prolongation an S ~1,3),(m)-structure in the way explicated in 
Sec. 4 and Appendix A. Moreover, new gauge degrees of 
freedom appear in second order, The general element of the 
group S ~1,3),(m) is given by (4.18)-(4.21). Define the subgroup 
tS~I.3),(m) by setting T~;;. = 0. Denote by Y~I:3),(m)(M) the 
principal bundle of second order coframes defined by the 
S ~1,3),(m)-structure. The Yang-Mills fields are introduced by 
a reduction 13 of this principal bundle to the subgroup 
ts ~1,3),(m)' Such a reduction is defined by a cross section of the 
associated fiber bundle tS~l.3),lm) '\Y~I:3),(m)(M). Since an ar
bitrary element of S ~1,3),(m) may be written as the product of 
an element ts t1,3),(m) and an element of G ~ + m of the form 
(15 ~,A ~K ), where only A ~;;. = A ~b =f ° and A ~;;. satisfies 
(4,21), the reduction is defined locally by specifying theA~;;. 
as smooth functions ofpEUCM. In this model the Yang
Mills fields are part of a connection on the world manifold, 
In contrast, the Yang-Mills fields in a Kaluza-Klein model 
are part of a SUbspace-metric structure on the world mani
fold which in certain cases may be regarded as the total space 
of a fiber bundle over a spacetime manifold of four dimen
sions in which cases the Yang-Mills fields may be interpret
ed as a connection over spacetime, 

The analysis of the second order structure just defined 
is also greatly simplified by making use of those coordinate 
systems introduced above which are locally adapted to the 
involutive S (\,3),(m)-structure. The simplifications that occur 
are briefly noted in Appendix C, The main purpose of Ap
pendix C is to show that under a coordinate transformation 
(~1) relati~ any two locally adapted coordinate systems, 
(U,X) and (U,x), the fields A ~;;. transform for an infinitesimal 
transformation according to 

"'a -a "a-, AeA-a AM =AM +OJjAM -OJb e;;' 

~a ~ -lp t'..P-A a ~J-Ea 
- OJb.p~ ;;. - UT;;. bp - aT;;. bi' (6.S) 

where ~ ~ and ~ ~c determine E %c according to (C21), This 
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transformation law justifies the identification of the fields 
A ~;;. as Yang-Mills fields. 

Let VI and WI be the coordinates of two vectors rela
tive to the orthonormal bases in one of the adapted coordi
nate systems. Then the Yang-Mills fields, regarded as part 
of a connection, yield the infinitesimal transformation 

DVP = 0, 
(6.6) 

Dva = (A~;;. W;;,Wb + (A ~c wcWv 
for parallel transport of Valong W. The two terms in the 
expression for DJ/" represent an infinitesimal rotation and an 
infinitesimal special Galilean transformation, respectively. 
As for the other parts of the connection, ~ ~c = 0, :] ~c = 0, 
~~;;., and ~ ~c have their customary interpretation, and there 
remains in second order a gauge freedom s~;;. . 

The model may be adapted to accomodate U(r) as an 
internal symmetry group in the following way. Start with a 
4 + 2r dimensional COO world manifold equipped with an 
involutive and first order flat S (\.3),12r)-structure. The group 
U(r) is a subgroup ofO(2r). Denote by S il.3),(r) the subgroup 
of S (\.3),(2r) obtained by restricting the 2r X 2r diagonal block 
of the group elements to the group U(r). A cross section of 
the associated fiber bundle S il.3),(r) \Yll:3),(2r) (M) defines an 
S il,3).(r) -structure on the world manifold where Yit3),(2r) (M) 

denotes the principal bundle of S il.3).(2r) related N l-coframes. 
The 2r dimensional internal sub manifolds are equipped with 
an almost Hermitian structure. 14 Clearly, one may compac
tify the internal symmetry submanifolds by imposing the 
condition of constant positive curvature, 15,16 

Although a considerable increase in the complexity of 
the algebraic details is to be expected, the procedure detailed 
in Sec. 4 and Appendix A may be used to prolong theS (\,3),(r) 

-structure to an S ~l.3),(r) -structure. Again, one expects addi
tional gauge freedoms s~;;. and~;;. to appear; however, for 
each A one expects that T%;;. will be restricted to the Lie 
algebra ofU(r) rather than just to the Lie algebra ofO(2r), By 
defining the group tS~I,3),(r) to be the subgroup of Sfl.3),(r) 

consisting of those elements with T%;;. = 0, one may intro
duce the Yang-Mills fields A ~;;. by a reduction of the princi
pal bundle Y'fl:3),(r) (M) of second order Sfl,3),(r) related N 2

_ 

coframes to the group tStl,3),(r)' The fields A %;;. would in this 
case be skew Hermitian (expressed in real form) in the indices 
a and b, 

7. COMPARISON WITH KALUZA-KLEIN MODELS 

In order to relate the model discussed in the previous 
section to the Kaluza-Klein type of model, a brief descrip
tion of the Kaluza-Klein models will be given from the G
structure viewpoint adopted in this paper. For simplicity, 
only those models for which the internal symmetry group is 
O(m) will be considered; however, U(r) can be accomodated 
as an internal symmetry group, and much of the comment at 
the end of Sec, 6 applies with equal force to the Kaluza
Klein case, 

There are three approaches to the geometric structure 
that is characteristic of the Kaluza-Kelin type of model; 
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namely, (1) define an S fl,3),(m)-structure on the world mani
fold, require it to be involutive and first order fiat, and then 
reduce this structure to the subgroup 0 :,3 X 0 ~; (2) define 
an 0 :'3 + m -structure on the world manifold, reduce this 
structure to the group 0 :'3 X 0 ~, and require that the m
dimensional distribution so defined is involutive and first 
order fiat (note that a four dimensional distribution is also 
defined); (3) define an 0 :'3 X 0 ~ -structure on the world 
manifold and require that the m-dimensional internal distri
bution is involutive and first order fiat. From a purely geo
metric standpoint, all three approaches are equivalent. The 
third option is the most direct; however, either the first or the 
second option may be preferred depending on the nature of 
the underlying dynamical mechanism that is assumed. The 
paper by Cho 7 employs the theory of connections on a princi
pal fiber bundle over spacetime which is a special case of 
option 1. On the other hand, option 2 is employed in the 
paper by Cho and Freund9 in a dynamical context in which 
spontaneous symmetry breaking is used to generate in 
succession the 0 :.3+ m -structure and the 0 :'3 X 0 ~ -struc
ture. For the purpose of comparing the Kaluza-Klein model 
with the Galilean subspace model, the first option is the most 
appropriate. 

Two types of Kaluza-Klein models will be considered; 
namely, the model for which the internal symmetry subman
ifolds have the structure of the group O(r) where 
m = r(r - I )/2, and the model for which the internal sym
metry submanifolds have the structure of the sphere sm . For 
the second model, the discussion in Sec. 6 up to and includ
ing the paragraph containing Eq. (6.4) applies without 
change to the Kaluza-Klein case. However, for the first 
model, condition (6.3) is not imposed. Instead, the internal 
submanifolds are compactified and given the structure of the 
group O(r) by requiring that the forms (ija = I ~dXb satisfy 
the Maurer-Cartan 17

•
18 equations for the group O(r). This 

case corresponds to the model discussed in Cho 7 and Cho 
and Freund.9 

In either case, the Yang-Mills fields are introduced by a 
reduction of the S (",3).(m)-structure to the subgroup 
o :.3 X 0 ~. Such a reduction may be specified locally by 
smooth functions A ~. The standard representative of the 
equivalence class of 0 :'3 X 0 ~ related N I-coframes is given 
by 

from which are obtained the forms 

uY' = I~dxv + I~dxb, 

(JJa = I~dxb +A ~I~dxb +A ~I~dxv. 

(7.2) 

The world manifold is equipped with a pseudo-Riemannian 
metric 

g = 7Jp.vuY' ® (JJV + 7Jab(JJa ® (JJb, (7.3) 

where 7Jp.v has signature ( - 2) and 7Jab = - Dab; conse
quently g has signature ( - 2 - m), a choice motivated by 
dynamical considerations. 19 In a coordinate system which is 
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locally adapted to the involutive and first order fiat S fl,3),(m, -
structure, the matrix of the metric (7.3) is given by (recall that 

I~=O) 

7JceAiI~I~] , 
7JceI~I ~ 

(7.4) 

which evidently agrees, given suitable identifications, with 
Eq. (12) ofCh07 and Eq. (4.2a) ofCho and Freund,9 

For the model with internal submanifolds diffeomor
phic to O(m), the upper index on the field A ~ is a Lie algebra 
index; consequently, these fields may be directly identified 
with the Yang-Mills fields. However, there is a problem in 
that these fields are functions not only of the spacetime var
iables xl' but also of the internal variables xa 

• There are two 
ways to circumvent this difficulty. 20,21 One way is to demand 
additional symmetry, basically invariance of the subspace 
structure under translations in the internal dimensions, in 
order that the fields A ~ will in fact be independent of the 
internal variables. The other way is to expand the fields in 
terms of harmonic functions defined on the group manifold 
and to argue on dynamical grounds that the zero order term 
dominates. It should be pointed out that a similar problem 
exists with the fields A ~A which play the role of the Yang
Mills fields in the Galilean subspace model described in Sec. 
6. Note that in this case the pair of indices, a and b, consti
tutes a single Lie Algebra index. 

For the Kaluza-Klein model having spheres for inter
nal symmetry submanifolds,22 the upper index on the fields 
A ~ is not a Lie Algebra index; consequently, these fields 
cannot be directly interpreted as Yang-Mills fields. This 
type of model is related to the theory of connections on an 
associated fiber bundle rather than to the theory of connec
tions on a principal fiber bundle, It is of course possible to 
work backwards to determine the symmetry conditions that 
must be imposed in order to recover the Yang-Mills fields 
from the fields A ~. An analogous situation is that in which a 
linear connection on T (M) determines a connection onL (M). 

In conclusion, at the geometric level, there exist two 
qualitatively distinct types of models in which Yang-Mills 
and gravitational fields can be unified in the context of a 
world manifold of higher dimension, In one of these, the 
Kaluza-Klein type of model, the Yang-Mills fields define a 
pair of mutually orthogonal subspace structures in a pseudo
Riemannian world manifold. In the other, the Yang-Mills 
fields are defined as part of a connection on the world mani
fold which has in first order only a Galilean subspace struc-
ture. 

APPENDIX A: SOLVING THE GALILEAN 
PROLONGATION EQUATIONS 

The system of linear equations (4.17), supplemented by 
Eqs. (4.12) which fix the A ~s and the A ~s, determines the 
prolongation of an S ip.q).(r,S)-structure to an S ~ P.q),(r,s)-struc

ture. The explicit solution of this system is derived in this 
appendix. The analysis of the general case will be presented; 
however, the reader will more readily obtain a grasp of the 
general strategy by making use of the fact that it is always 
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possible to choose a coordinate system which is adapted to 
the S i p,q),(r,s) -structure at anyone given point pt0!, With re
spect to such a system, ~~ = 8~, ~~ = 0, and ~~ = 8~ at 
the point p (note, however, that the derivatives of these func
tions are in general not zero), and Eqs, (4.12) and (4.17) are 
greatly simplified. However, since the transformation laws 
are rather complicated, it is easier to work out the general 
solution directly than to transform the solution of the simpli
fied system. 

The solution of(4.l7a) is well known23 since these equa
tions arise in the prolongation of a pseudo-Riemannian or 
o ~,q -structure to an 0 ;,q -structure. The torsion B ~A is com
pletely undetermined. The A ~A are given by 

27Jl'yA ~p~ A- IP = 7JI'Y(~~'p - ~~,a)~ ,,-la~ A- IP 

+ 27Jl'yB ~p~ ,,- la ~ A- IP 

+ 7J (~ y - ~ Y \ ~ - la ~ - IP "y a,p p,a~ A fL 
+ 27J B y ~ - la ~ - IP "yap A fL 
-7JAY(~~'P -~~.a)L 1'-la~ ,,-IP 

- 27JAyB ~p~ fL-la~ ,,-IP, (AI) 

while the r~A are given by 

r~A =!(~~,A +~~,,,)+!'Tfp~;IY7JaP(~~.A -~~.y)L~ 

+ I"","P~ -ly (~a ~a \~p 
'2'/ ~p 7Jap~y."-~,,.y~A 

+ "","p~-ly Ba ~P 
'/ ~ p 7Jap YA~" 

+ 'Tfp ~ p- lY7Jap B ~,,~ 1. (A2) 

Since the r ~A are fully determined by the ~ ~ and the B~..l , 
they form part of the standard N 2-coframe and may be ren
amed~~A' 

From (4.l7b) and (4.l7c), one obtains 

~a~-~+ Ba~-~- ~I'~-~ A 7JfLa p.c" 7JfLa pc v - 7JfLa pc v + fLVC 

and 
~ a ~ - Ip B a ~ - Ip 

7JfLa~ c.P~ v - 7Jl'a pc~ v 
_ ~a ~ -lp + 1 ~p ~ - 10' 
- 7JJ.la~ pc~ v /Lppu "::'- c"::" v , 

respectively. From these equations, it follows that 

AfLvc = 7JfLa (~;.c - ~ ~p)L v- Ip 

(A3) 

(A4) 

+ 27JfLaB ;c~ v- Ip + AI'PO'~~~ V- 10'. (AS) 

Now B ~c = 0 and ~ :- IfL = 0 unless fl < v (a consequence of 
the upper triangular gauge conditions). Thus 7Jl'aB ;c~ :- Ip 
= 0 unless fl = a <p < v. Hence, for fl > v 

AfLVC = 7JfLa(~;.c - ~~p)L v-
lp + AI'PO'~~~ v- lO'. (A6) 

For fl < v, one may use AfLvc = - AvfLc ' Also, note that 
7JfLa~ ;.c~ v- Ip = 0 for fl > v. By adding and subtracting 
(4.l7b) and (4.l7c), one readily obtains 

B~c = - ~(~~.c - ~~v) + ~ ~c~~ - ~ ~v~~ (A7) 

and 

r~C = !(~~.c +~~.,,) - 0~c~~ - 0~v~~' (AS) 

Again, r ~c = ~ ~c because these components are fully deter
mined by the first order structure. 

Next, the skew and symmetric parts of (4.l7d) yield 

B~c = - ~(~~.c -~~b) - !(A~b~~ -A~~~) (A9) 
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and 

~~C -r~c = !(~~,c + ~~.b) - !(A ~b~~ + A ~c~n 
(A 10) 

ConsidernextEq. (4.l7e). Thecomponentsr~A maybe 
chosen freely. This fact is indicated by the presence of the off 
diagonal submatrix ~ ~, which vanishes in an adapted frame. 
It is more convenient to introduce as parameters for the sec
ond order gauge group the quantities 

T~A = r~p~ v-la~ A- IP. (All) 

Define 

r- a -ra T a ~a~p 
M - M - ap~ b~ A' (AI2) 

Then (4.l7e) becomes 

~ ~.A = F ~A + A ~A ~ ~, (A13) 

while the relevant part of (4.l2b) becomes 

F%A +A~A~~ =0 for a>b, (A14) 

which is included in (A 13) since ~ % • ..l = 0 for a> b. If r %..l is 
defined by 

then (A13) yields 

rae..l~ b- Ie + AaM = O. 

It follows that 

rae..l~ b- Ie + rbe..l~ a- Ie = 0 

while 

A r"" ~ - Ie r"" ~ - Ie 
- abA = aeA.";:" b - be)."::;' a 

is undetermined. Define 
T a _ r a ~ - le~ - Ip 

b..l - ep b A' 

Then T~A satisfies (4.10) and 

r~A =~%.A + T~p~~~~ + T~p~~~~, 
from which it is clear that 

~ %..l = ~ ~b = ~ %.A . 

Finally, rewrite (4.l7f) as 

(AlS) 

(A16) 

(A17) 

(AlS) 

(A19) 

(A20)1 

(A2l) 

r%c +,,1, ~c~~ = ~%.c + B%c + r~c~ p-la~~, (A22) 

where all quantities on the right-hand side are regarded as 
known. This set of equations has the same structure as the set 
(4.l7a) and may be solved in the same way. The result is 

27JaeA ~f~ c- If = 7Jae(~ /.g - ~ ;J)L b- If~ c- Ig 

+ 27J B e ~ - If~ - Ig ae fg b c 

+ 7Jbe(~ /.g - ~ ;J)L c- If~ a- Ig 

+ 27J B e ~ - If~ - Ig be fg c a 
- 7Jce (~/,g - ~ ;J)~ a- If}; b- Ig 

+ 27JceB ;g~ a- lf~ b- Ig 

+ 7Jaer;a~ p- la~: 
X (~ b- If.I c- Ig - ~ c- If~ b- Ig) 

+ 7Jber;a~ p-la~: 
X (~ c- If.I a- Ig - ~ a- If~ c- Ig) 

- 7Jcer;a~ p- la~~ 

X (~ a- If.I b- Ig - ~ b- lf~ a- Ig) (A23) 
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and 

2r%e =~%,c +~~,b +7Jae~e~IJ7Jpq(~l.b -~~J),1'~ 

+ 7Jae~ e~ IJ7Jpq (~I.e - ~ ~J),1' b 

+ 27Jae~ e~ IJ7Jpq (B 'fl,~ ~ + B jc~ b) 

+ 7Jae~ e~ IJ~;~ a~ 1/37Jpq(T~b~~ + r~c~b) 
_ 7Jae ~ ~ lf7J r p ~ ~ I a(~ /3 ~ q + ~ /3 ~ q ) 

e pqJa/3 be eb 

+ r%a~ /3~ la~~ + r~a~ /3~ la~~, (A24) 

It is now straightforward albeit tedious to show by using 
(A20) that 

r%e =~~e + T~/3~~~~ + T~/3~~~~ + T~/3~~~~' (A25) 

provided that ~ %e is given by 

2~%e =~%,e +~~,b +7Jae~e~IJ7Jpq(~l.b -~~J),1'~ 

+ 7Jae~ e~ IJ7Jpq(~l.e -~~J),1'b 

+ ~a ~ ~la~/3+~a ~ ~la~/3 
ba/3 c ca/3 b 

+ ( ~ p ~ q + ~ p ~ q ) ~ ~ la ~ /3 ~ ~ If, ea 
7Jpq ~ b~ ea ~ e~ ba ~ /3 ~ J~ e 71 

_ 71 ~ p ~ q ~ ~ 1f,7Jea ~ ~ la ~ /3 
pq b Ja e /3 e 

-71 ~p ~q ~ ~ 1f,7Jea~ ~ la~/3 
pqeJae /3 b 

+ 27Jae~ e~ IJ7J pq (B 'fl,~ ~ + B je~ b)' (A26) 

The fact that Eqs, (4,29) are just Eqs, (All), (A20), and 
(A25) shows that the desired factorization of the general N 2_ 

co frame (4,6) into a standard N 2-coframe (4.24) and an 
S ~ p,q),lr,s) transformation (4,29) occurs, 

APPENDIX B: FIRST ORDER INTEGRABILITY 
CONDITIONS 

As pointed out in Sec. 5, any subspace structure invar
iantly defines a differentiable distribution4

-6 on M; that is, 
for eachpEM, a subspace (of fixed dimension) of the tangent 
space is distinguished in such a way that for every local 
neighborhood UEM, a set of differentiable local vector fields 
exist which provide a basis for the distinguished subspace for 
each qEU. For the case of a Galilean subspace structure, the 
locally defined vector fields are the ta given in (5,2). 

It is natural to inquire under what conditions can the 
distinguished subs paces be pieced together to form maximal 
connected submanifolds of M in such a manner that each 
point pEM lies on one and only one such submanifold. The 
manifold M is then said to be folia ted and the submanifolds 
are referred to as the leaves of the foliation, and 'if pEM, the 
tangent space of the leaf through p is the subspace of the 
tangent space of M distinguished by the subspace structure 
on M. The answer to the question is provided by Frobenius's 
theorem, for a formal statement and proof of which the read
er is referred to the text of Sternberg.4 Briefly, the theorem 
states that a subspace structure is integrable in the sense that 
it determines a foliation iff it is involutive, that is, iff the 
commutator [;a ,tb] at each point belongs to the distin
guished subspace at that point. The commutator may be ex
panded in terms of the basis tl" ta at any point, and the 
criterion is equivalent to the requirement that the coefficient 
of tl' vanish, which gives the condition 

~ I' _ ~ I' + ~ I' ~ ~ Ip ~ (7 _ ~ I' ~ ~ Ip ~ (7 
a,b b,a p,a a b p,b a a 
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+ ~~.(7~ a~ Ip~ /3~ 1(7(~~~~ - ~~~~) 
_ (~I' ~ - Ip ~ (7 _ ~ I" ~ ~ Ip ~ (7) = 0 

a,p a b b.p a a • 
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(BI) 

For a simple subspace structure for which ~ ~ = 13 ~ locally, 
the condition (B I) simplifies considerably to 

~~,b - ~~.a - (~~.p~~ - ~~'P~~) = O. (B2) 

Note that each of the local vector fields ta defines a 
local one parameter family of local diffeomorphisms of M, a 
local flow on M, If the subspace structure defines a foliation 
of M, then the flow lines of each flow will follow the leaves of 
the foliation; consequently, if a vector tangent to a leaf is 
intuitively pictured as an arrow joining two neighboring 
points of the leaf, it is clear that such a tangent vector should 
remain tangent to the leaf as the tail and tip flow along their 
respective flow lines for a given flow. 

Finally, note that the criterion may also be stated in 
terms of the forms (5, I) as the requirement 

(B3) 

There is also a somewhat stronger integrability condi
tion that requires not only that the subspace structure deter
mine a foliation onMbut also that the leaves of this foliation 
flow into each other under the local flows on M generated by 
the local vector fields t 1" If this stronger condition is satis
fied, the subspace structure is said to befirst order flat. A 
subspace structure is first order flat iff both of the commuta
tors [; a ,t b] and [t I' ,t b] belong to the distinguished sub
space at each point pEM, In addition to (B I), one obtains the 
condition 

~ I' ~ - Ip ~ ~ I a ~ /3 _ ~ I' ~ ~ Ip ~ /3 ~ ~ 1(7 
p,a v /3 b p.<7 /3 b v 

- ~ I' ~ ~ Ip + ~ I' ~ - Ip = 0 p,b v b.p v ' (B4) 

In combination with (BI), (B4) gives 
~ I' ~ I' + ~ I' ~ ~ Ip ~ /3 ~ I' ~ ~ Ip ~ /3 - 0 
~ a.b - ~ b,a ~ p,a~ /3 ~ b - ~ a,p~ /3 ~ b - . 

The condition (B4) also follows from 

doj'KI' I\tb) = 0, 

(B5) 

(B6) 

Finally, note that the condition (BI) may also be ex
pressed in the form 

B I' + B I' ~ - Ip ~ a 
be pb a c 

_BI'~-lp~a_BI' ~~la~p~~I/3~<7=O (B7) 
pea b a/3/3 ba e' 

APPENDIX C: THE YANG-MILLS GAUGE 
TRANSFORMATION 

As pointed out in Sec. 6 [see (6, I)], an involutiveS (\,3),(m) 

-structure determines in a natural way a class of locally de
fined adapted coordinate systems, A coordinate transforma
tion relating any two such systems has the form 

xl' = Xl'(xl'), XiI = XI'(XI'), 

(el) 

In this appendix, it will be shown that under such a transfor
mation, the transformation relating A %..1. and A %..1. is essen
tially the usual Yang-Mills gauge transformation. For sim
plicity, only infinitesimal transformations will be 
considered. 

In any ofthe special coordinate systems under consider
ation,::r ~,.x ~c' B ~c,::r ~c' B ~e' and::r ~ all vanish; moreover, 
::r ~..1. and::r %c are given by the usual formulas in terms of::r ~ 
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and ~ %, respectively, with the variables xa and xl-', respec
tively, playing a spectator role. Since the torsions B ~A and 
B %c are completely undetermined, they may be chosen to be 
zero. If the S (\.31.(ml -structure is first order fiat, then ~ ~ de
pends only on xl-'; consequently, that part of ~ ~A which is 
independent ofB ~A depends only on xl-'. Thus, even if a the
ory involving spacetime torsion is desired, it would be na
tural to assume that B ~A depends only on xl-'. For the follow
ing calculation, only those special results that follow from 
the existence of coordinate systems locally (not just at a 
point) adapted to an involutive Galilean subspace structure 
(in particular, the fact that the above mentioned quantities 
vanish) are required. 

Let (X~,x ~K) = (8~ + X~'X~K) be the second degree ap
proximation to an infinitesimal coordinate transformation 
of the type (CI) [we use here the notation: (X~,x ~K) 

a2 
X(XI d 2 x J +(1121)%1 d 2 xJ d 2 x K

)] Thenxl-' Xl-' p J p " JK p p' b' ,'c 
= X~V, and X ~c are zero. An infinitesimal element of S ~1.31,(ml 

is given by (s~ /'K) = (8~ + W~,W~K)' where oJ/, = ° and only 
4J~-A #0 and W%A = W~b #0. Note that WaM = - WbaA . The 
transformation law for the structure fields (~ ~,~ ~K) is deter
mined by 

(.~~J~K) = (S~'~K)(~~'~~K)(X~,x~K)' (C2) 

To first order in the infinitesimal quantities, (C2) yields 

and 

A I ~ I AI - R ~ I - R 
~J =,L,J +WR~J +,L,RXJ 

~ I ~ I AJ ~ R ~ I - R 
,L, JK =,L, JK + W R,L, JK + ,L, JRX K 

(C3) 

+~kKX~+~kx~K +@ks~~~~· (C4) 

Consider the first order equations (C3). That the off 
diagonal blocks of .1' ~ and ~ ~ vanish while the diagonal 
blocks are upper triangular gives 

(C5a) 

(C5b) 

Aa~p + ~a-e - ° (C5c) Wp,L, v ,L, eX" - , 

which equations determine~, @%, and @~. Then Eqs. (C3) 
become 

.1'~ =]~ + OJ:,]~ + ]~X~, 

.1'% =~% +@~]~ +~~X~, 
from which follow (to first order) 

{Y.' = ~I'.1'- II' + OJ: + ]I-':;R~ - la 
" p v v pA. 0- v , 

{;:a = ~a.1' -Ic+@a +]aX-e~ -If, 
Ub ,L,e v bel b 

From the fact that .1' ~A = ° = ~ ~A' it follows that 

(C6) 

(C7) 

]~eX~ + ~~AX: + ~~X:A + @;a~~~~ = 0, (C8) 

which determines @~'A' The fact that .1' %A = ° = ~ %A for 
a> b gives 

@~p] ~~ ~ + @~] ~A +] %eX~ 
+ ~ ~AX~ +] ~X~A = 0, a> b, 

from which @~A may be determined since @aM = 
Then (C4) gives the transformation law 
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(C9) 

.1' %A = ~ %A + @:~ ~A + ~ %eX~ + ~ %p~ 
+~~AX~ +~~X~A +@~p~~~~. (CW) 

The Yang-Mills fields, A %A' define the reduction of the 
S~I.31.lm)-structure to the tStl,31.lml-structure with structure 
fields (~ ~,t ~ ~K)' where 

t~~K =~~K +Aks~~~~· 

Since only A %A = A ~b #0, 

t~jK =~'.iK 

while 

and 

(CII) 

(CI2) 

(C13) 

t~%c =~%c +A~p~~~~ +A;e~~~~' (CI4) 

In an adapted coordinate system, 

(CI5) 

The transformation laws for the fields (~ ~,t ~ ~A.) are 
determined by an equation similar to (C2) in which ~ ~K' 
] ~K' and S~K are replaced by t.1' ~K' t~ ~K' and tS~K' respec
tively. Note that the only nonzero component Oft~K is tS~'A' 

The first order results are unchanged. In second order, 
(C8) is replaced by 

t~~eX~ +t~~AX: +~~X:A +t@;a~~]~ =0 (CI6) 

and (CW) is replaced by 

t.1'%A = t~%A + @~t]~A + t~%eX~ + t~%pX~ 
+ t~~AX~ +~~X~A' (CI7) 

From (CW), (CI3), and (CI7), it follows that 

AA a ~ e ~ p _ A- a ~ e ~ p Aa A-1 ~ e ~ I' ep,L, b,L, A - ep,L, b,L, A + WI ep,L, b,L, A 

-@~p~~~~ +A~a~~];~ 
- -1--+ A ;p~ eX~~~' (CI8) 

In order to relate @%A to @%.A , differentiate the relation 
(C5b) to obtain (recall that the adapted coordinate systems 
are valid in an open neighborhood) 

(@~,a~ p- la)l'~~~ + @~~~.A 
+ ~ ~.AX~ + ~ ~X~'A = 0, a> b. (CI9) 

Since] %.A = ~%A andX%.A = X%A' (C9), (CI9), and (C5c) give 

(Aa Au ~ la\~e~p _ ~a ~ _leAr~p (C20) Wep - We,a,L, p I"'" b,L, A -,L, be,L, 1 UJ'p,L, A • 

Let E%c be the unique solution of 

E~c~ ~ = ~ %e~ c-- Ie (C21) 

which satisfies Eabc = - E bac ' Then 

(C22) 

Finally, (CI8) together with (C7) and (C22) yields the infini
tesimal Yang-Mills gauge transformation 
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This paper discusses the structure of the angular momentum operator in a nonabelian gauge field 
of an N-dimensional monopole. Besides the finite rotation operators with a general gauge group, 
infinitesimal operators in various moving frames are introduced. By using these the 
transformation offrames may be easily operated recursively, so the applied relation between the 
transitive and stationary parts in the top is displayed, and the explicit formulation of angular 
momentum operators including different gauge potential of a monopole are obtained quite 
conveniently. Hence the gauge potential of an N-dimensional monopole in the Schwinger gauge 
and the Wu-Yang overlapping gauge are given explicitly. In addition, we obtain also the result 
that the self-rotation operators (N th axis is stationary) in a fixed frame under geodesic gauge equal 
to the sum or difference of isospin and orbital momentum. Finally we have discussed the general 
gauge group of an N-dimensional monopole. 

PACS numbers: 11.10.Np, 12.90. + b 

I. INTRODUCTION 

In the gauge field of a monopole, the space symmetry 
and unitary symmetry are closely connected. This gives a 
cue for analyzing the relation between the space freedom and 
isospin freedom. Since 1931 there have been a lot of papers 
discussing the angular momentum operator and its eigen
functions in the field of a monopole, but all have adopted a 
definite gauge, so the theory contains explicitly only two 
rotation freedoms (Oandq;). In 1975, Wu-Yang l introduced 
a gauge with overlapping definition regions. In another pa
per2 it was noticed that the gauge freedom and the freedom 
of rotation in space may be combined into the "body rota
tion" of a top, which has three freedoms in total and is gauge 
invariant. This paper provides generalization in N dimen
sions. This is contrary to the paper2 in which we first ana
lyzed the structure of N-dimensional top operator, and then 
obtain angular momentum operators including the gauge 
potential of an N-dimensional monopole. For the problem of 
many dimensions the situation becomes very complicated, 
and we do not know yet the applied expression of a general 
N-dimensional top operator (compare with Ref. 3). In order 
to analyze the problem penetratingly, we apply the method 
of moving frames. Thus in Sec. II, besides the finite SO(N) 
operators, infinitesimal operators in moving frames are in
troduced. By virtue of these the transformation of frames 
may be easily operated step by step, and the explicit expres
sion of the top operator can be obtained. In Sec. III, the 
SO(N - 1) self-rotation group of the SO(N) top is replaced by 
the SO(N - 1) gauge group of an SO(N) monopole, from 
which the rotation operator including gauge potential can be 
conveniently obtained. By means of these we get the general 
expressions for the gauge potential of N-dimensional mono
pole under the Schwinger gauge and under the Wu-Yang 

overlapping gauge. For instance N = 5, it is the SO(5) sym
metry solution of the monopole obtained by Yang.4 Yang 
had discovered that the self-rotation angular momentum of 
this solution equals the sum or difference of the isospin and 
orbital momentum.5 In Sec. III, this relation is extended into 
N dimensions. and is related to the left-right symmetry of 
the finite rotation operator under the geodesic gauge. Simul
taneously we obtain also the expression of an N-dimensional 
top operator in fixed frame. Finally we also discuss the gen
eral gauge group of an N-dimensional monopole. 

II. SO(N) TOP OPERATOR 

Let us first introduce the notation 

R}k (0) = exp(O~k)' (1 ) 

which is a finite rotation operator in the (e) - ek ) plane. 
where l.k are the generators. For the sake of brevity we ex-

J . . 

Press R k I k (0 ) by R k (0 ). Any SO(N) fimte rotation opera
+ . k 

tor can be given in terms of N (N - 1)/2 Euler anglers 0 ) 
(l.;;;;h;;N-l,lq.;;;;k)asfollows: 

D INI = R [N-II ... R [II = R IN-liD IN-II, (2) 

in which 

R Ikl =Rd07)R2(O~) ... Rk(O~), (3) 

namely, D [NI = D [NI(!) ), where!) = 10 jl is the set of all 
Euler angles, which has the boundary condition 

0.;;;;07 < 21r, 

O.;;;;O;<1T U#l). 
The wavefunction of the symmetry top is given by 

(D[N)(!))} = (e(O)ID[NI(!))Ie(O)). 

(4) 

(5) 
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where le(e) and le(e) are the square integrable functions on 
the group manifold, and can be chosen as the bases of the 
unitary irreducible representation ofSO(N). The differential 
operators corresponding to the second- and the first-param
eter groups Jjk and J kj are given as follows6

: 

(jkiD INI(il) = Jki(D INI(il ), 
(6) 

Jki or Jkj are the kj components of the top operator on the 
space fixed frame! ek I or in the final moving frame! ek I 

/ = I -0k ej !\ek = I ~k~ !\ek · 
jk jk 

Furthermore we introduce the intermediary moving frames, 
for example, jkj is the components of the top operator on the 
natural bases! ek I (tangents oflongitude and latitude), 
which are given by 

jkj(D (NI) = (R IN-lljkjD IN-II). (7) 

From (2), with respect to each e;, D IN I(il ) may be decom
posed as 

D IN I = R Ikil.Ri(e j).lkiIR, (8) 

hence, in a similar way, we can introduce 

(R IkiljihRi(ej).lkiIR) =J,I;il(DINI). (9) 

The superscripts kj in J ,1;;1 mean that ih are tensor indices in 
the moving frame which is obtained from the fixed frame by 
the rotation R Ikjl on the left of e;. 

J ki , Jkj , jki may be all expressed in terms of Euler an
glesandP; = - ia/ae;. Now, by using intermediary mov
ing frames, the differential operator of a Euler angle P; may 
be written as a component of / in the intermediary moving 
frame 

PJk(D INI) = _ i ~ (D INI) = Jlkjl(D INI) ae k J+ I.J ' 
J 

namely, 

p k _Jlkjl 
i - i+ I.i· (10) 

We project it on the natural frame, i.e., rotate it by the 
(N - 1 - j)factorinR IN- lion therightofRi(e;,,- I) step by 
step 

p N- 1 =JIN-I.il =CN-IJ[N-I.J+11 +SN-IJIN-I.J+11 
J J+I.J J+l J+I.J J+I J+2.J 

N-I 
= " A[N-I,i+llj .+i:'-lsN-l"'SN-lj. (11) £.. I I.J J+11+2 N-l NJ' 

I~i+ 1 

where 

and 

A IN-l.i+ II_ CN-1 
i+1 -J+I' 

A IN- I,j+ II - cN- ISN- I SN-I 
I - I I ... j+1 

(12) 

(13) 
(j+ 1d<.N-1). 

The last term of (11) is the transitive part of the top 
operator which may be solved. Then we get 
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I N .N - I = P:~ = i , 
Jo _(pN-I_ N~l AIN-I.i+ I IJO.)0-N-I ... -N-1 N,j - j £.. I Ij SN_ I ~+ I 

I=j+ 1 

(j<N - 1). (14) 

Because the latitudes are not geodesic lines, on the right
hand side of (14), besides the term of orbital part 
P j"'. I /s~.= i "'Sj"'+-II, there are also the terms of the station
ary part llj. For example N = 3, 

D 131 = R I(B 7 )R2(B ~)R I(B i )==R l(a)R2( (3)R tty)· 

By virtue of (14) we get 

J,o = P 22 = - i ~ = J,e' . - a(3 T 

JlI=(P7-C~J2I)1S~=-i a +icot(3~ 
sin(3aa Jy 

= -Je , 

which are the well-known expressions for the three-dimen
sional top operator in the natural frame. 

II. GAUGE POTENTIAL AND ANGULAR MOMENTUM 
OPERATOR IN FIELD OF AN N-DIMENSIONAL 
MONOPOLE 

In a previous paper7 the structure of the gauge field has 
been discussed and the potential of the point monopole in N 
dimensions has been given by.wi = TuX i/r, where Tij is 
the generator ofSO(N) group. [For example: N = 2, Dirac 
string; N = 3, 'tRooft monopole; N = 4, SO(4) meron and 
antimeron; N = 5, SO(5) instant on and anti-instanton.] 

The Euler freedom of the top can be divided into that of 
the stationary SO(N - 1) subgroup and that in coset space 
SN-I(e~-I) 

D INI(il) = R IN- Il(w)D IN-II(T), 

where w = ! e ~ - II is the set of transitive angles along the 
surfaceSN-I(e~ - I) and r = ! e /1 (j<.N - 2) is the set of 
self-rotation angles in the stationary subgroup. 

Let S N - I (e ~ - I) be synchronous with the space 
S N- I(ek ), the latter is described by ek as follows: 

namely, 

( 15) 

e~-I=ek' (16) 

Noting that the gauge potential ofa point monopole can 
be transformed into the explicit reduced form,7,s which con
tain only SO(N - 1) isospin, so that it may be replaced by the 
SO(N - I) stationary subgroup of the SO(N) top. Simulta
neously the symmetry top wavefunction is replaced by the 
gauge dependent wavefunction 

(R IN-II(w)D r.;-II(r), 

where the subscript Ton Dr.; - ll(r) indicates that jki has 
been replaced by the isospin matrix Tkj . Now the bases of the 
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representation become the direct product of Ie) and Ii). 
Here Ie) are square integrable functions on sphere S N - I, I i) 
are regular representations of SO(N - 1) isospin. As in the 
case of (6)-(9), we can write 

J k) (R IN - II D ~v - I I) = (R IN - I I j k) D V' - I I ) 

= (R [N-IITk)D ~V-II) 

= T (R IN- liD [N- II) (17) kJ T, 

( R IN liD IN- liT .) = T(R [N-IID IN-II) 
T kJ kJ 7' 

( 18) 
P~(R IN-liD ~V-II) = T!J/L(R IN-liD If' II). 

Since our gauge bases I i) are eigenfunctions of Tk) in the final 
moving gauge frame, the gauge condition is fixed by choos
ing the dependence of local SO(N - 1) gauge rotation pa
rameters (()~ I on the coordinates ()k 

()~=()~U()kll U<N-1). 

Owing to (16), (19), we get 

P 
. a P N _ I a()~ . 

k = - I -- = k + -- PJ 
a()k a()k " 

( 19) 

(20) 

Substituting (18), (20) into (14), expressing~, by 0" project-
. TTl J 'I h' h' f T-Ing j1' ,-+ 1.1 to t e ng t as In terms 0 jI' we get 

(21) 

where 

L N .S __ I = PN - I , 

(22) 
Lv) = P/sN . I "'S) + I (when J <N - 1), 

are components of the orbital momentum on the natural 
frame along the space, .eI]' are the Ii isospin andJ-space com
ponents of the SO(N - 1) gauge potential of point monopole 
in N dimensions. For instance, 

Schwinger gauge: 

()~ = 0, 

so 

Pk = p~'-I, ~,= 0, = T;" 
substitute these in (14), we get 

J N,N __ . I = Ps -_ I , 

(23) 

(24) 

where coefficients A I) + II are defined as (13), only that ();: - I 

are replaced by ()k' Comparing it with (21) we get 

,elY = c,!rsN _ I"'S, (N - I>I>J + 1>2), (25) 

all others are zero. 

Wu-Yang gauge: 

( <rr-€) ()Z ~ = +()N-2 when ()N-I >O+€ ' 

(); = - (), (i<N - 3), 

()~=O (i<J<N-1). 
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(26) 

Now 

p.V- 1 =P~=:, P N - 2 =p~=l +P~=L 

p,=pN-I_p; (i<N-3). (27) 

Due to the gauge conditions (26) the rotation operator can be 
written as 

R IN-liD ~v- II = R I(()dR 2(()2) .. ·R N - 2 (()N_ 2)R S - I Wv- I) 

XR ~-2( + ()N_2) .. ·R J( - ()2)R i( - ()I)' 

(28) 

The left and right factors are nearly symmetrical. Hence the 
expression of P; = T) '~\., by i}, is almost the same as that of 
P)' - I by J)/ (except for one term and the sign of the last 
term), 

N- 2 

P; = I AI'+'lth ±SN_2·"S,+I T N_1.I ,= ,+ I 

N 2 " 
P.v - 2 = TN __ I.S - 2' 

By virtue of these, (14) becomes 

IN) = (Pj - CN_ISN_2'''Sj+ I TN _ I •j 

± S N _ 2 .. ·S) + I TN _ I. j )Is N _ I .. • s) + 1 

(i<N - 3), 

(29) 

, ± 1 - CN _ I ' 

=LN) + TN_I,) U<N-I), (30) 
SN_I 

IN,N-, = P N - I = iN,N-I' 

Then we project TN _ I.j on the right in terms of ~i' For 
simplicity we consider only in north region, 

in which 

B~V-21=SN J'''SkCk--I' 

where, stipulating Co = 1, So = 0, for J < N - 2, we get 

T - TIN-2,N- 21 
,\'- I.j - N- l,J 

-C TIN-3,N- 31 +S T[N-3,N-31 
- N - 2 N - I.) N - 2 N - 2,) 

N-I 
" B [N-- IIT[),)1 + S· "'S TI),)I. L k kj N -- 2 J + I J + I.J 

k~j+2 

= k':~+12 B 1N - II(CJ ,t B ))ITkl - Sj Tk,j + I) 
~ IJI-+ SN __ 2 "'5) +- I L B I 0 + 1.1' 
,~ I 

Combining (31), (32), we can write 

T "'BIN-I,jIT 
N-I.j = L k,l kl' 

k,/ 

where B 1'~ - I.jl equal: (lower sign belongs to the south 
region) 

(31) 

(32) 

(33) 

(34) 

+ SA' _ 2 "'SkCk _ I Sj 

-Ck __ IS) 

±SN_2"'Sk Ck __ I CJCj_1 

N-2>k>J+ 1 =1>2, 

N - 1 = k > J + 1 = I> 2, 

N - 2>k>J= 1>1, 

Hou, Hou, and Wang 2490 



                                                                                                                                    

± SN _ 2 "'SkCk _ I CjSj _ I "·S,C,_ I N - 2;;.k > j> 1;;.1, 

Ck_ICjSj_I"'S,C'_1 N - 1 = k>j>I;;.I, (35) 

all others are zero (when k - 1 = j, replace Ck _ I cj by 1). 
Substituting (34) into (30), and compare with (21), we get 

dkl_ =+=I+cN _ I BIN-!,jl 
j - k.l· 

rSN _ I 

(36) 

For example N = 3, it is the 'tHooft point monopole, from 
(25), Schwinger gauge potential 

dil = cos 82 , all others are zero; 
r sin 82 

from (36) and (35), Wu-Yang gauge potential 

.a1i l = =+= 1 + cos 82 , all others are zero. 
r sin82 

These are well-known results. 
Another example N = 5, it is the SO(5) symmetry mon

opole, from (36) and (35), we get the Wu-Yang gauge poten
tial [for simplicity, let W = ( + 1 + CN _ I )/rsN _ I]: 

.a1~2= +S,C2SI W, .a1~1 = ±S3C2CIW, .W"il = ±shW, 

.of;2 = - C3S1 W, .of;1 = C3CI W, 

.a1~2 = ± S3CI W, d~1 = ± S3S1 W, (37) 

,Gfi3 = - C3S2 W, di2 = C3C2C I W, di l = C3C2S I W, 

,ofj3 = c2 W, dj2 = S2CI W, ,Gfjl = S2S1 W, 

all other components are zero. 
Furthermore, TJ.k may be decomposed into 

t;± = ~(~C;jk TJk ± t ,4 )· (38) 

Taking the representation with t - = 0 (or t + = 0), we get 
the SO(5) symmetrical self-dual (or anti-self-dual) monopole 
solution of the SU(2) gauge group, which components may 
expressed with the matrix as follows: 

( 

± S3C2S1 + C3CI 
(d'lal~ = W +S3CI + C3C2S1 

S2S1 

± S3C2CI - C3S1 

± S3S1 + C3C2CI 
S2CI 

±S3C2CI +C,SI 

± S3S1 - C3C2CI 
-S2CI 

+S3
S2) 

C3S 2 • 

- C2 

This is the solution obtained by Yang,5 the gauge conditions 
are the same, only the space coordinate systems are different, 
the relations between coordinate systems (r,81,82,83,84 ) [see 
(15)] and (r,8,5I,52,53) (Ref. 5) are as follows: 

51 = 5S2SI' 52 = 5S2CI' 53 = c2 , 5 = tan(83/2). (39) 

Thus the orientations of er and eo = eo. are unchanged, but 
its orthogonal three-dimensional subspace has to rotate the 
frame by R = R2(82 )Rd81), so 
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and we get 

dla]j= _w[I-5
2
[).+ 25;5j + 2Cijk5k), 

I 1+52 lj 1+5 2 1+52 
(40a) 

d I (:II j = W [1 - 5, 2 [) + 25i 5j + 2c ijk 5 k ] . 
I 1 + 52 lj 1 + 52 - 1 + 52 

(40b) 

The above formulas are just the same as in Ref. 5, but the way 
we have arrived at them is comparatively easier and simpler. 

IV. TOP OPERATOR IN FIXED FRAME AND SELF
ROTATION ANGULAR MOMENTUM UNDER THE 
GEODESIC GAUGE 

By virtue of moving frames the formulation of the top 
operator in a fixed frame can be easily obtained. Projecting 
PZ-~ i = - iJ/J8 Z ~ II to the left in terms of Jkj , we obtain 
the result as follows (for simplicity of notation, except for the 
differential operator P Z - I, we omit the superscript N - 1 
on8Z- I): 

k-I 

P N-I_Jlk-II_" Blk-IIJ, 
k - I - k,k - I-£.. I k,1 , (41) 

i= 1 

where the coefficients B )k - II are given by (32), Projecting 
J k _ I, j (j < k - 1) to the left 

J' _Jlkl - Jlk-II S Jlk-II (42) 
k - I,j - k - I.j - Ck - I k - I,j - k - I k.j , 

in which the first term can be reduced as in the case of(14), 
we get 

J lk-II=(pN-I_ k~2 AIi+IIJlk-ll) 
k-!'; ; £.. 1 I.; 

I=j+ I 

Sk_2'''Sj+ I (j <k - 2), (43) 

JLk_-I~L2 =pL~211, 

The second term of (42) can be reduced as follows: 

Jklk - II = Jkli+ II = C . .f. B lilJ., - s1k '+ I' 
,} J ) L I ,I J.J (44) 

i= 1 

Substituting (43), (44) into (42) we get 

o N-I 
J k _ I,k - 2 = Ck - I P k - 2 - Sk_ I 

(45a) 

C ( k-2 ) J= k-I p N - I _" AIi+IIJ, 
k-!,; ; £..' I,J 

Sk _ 2 '''Sj + I ,= j + I 

( 
j In ) - Sk __ I Cj .2: B i J ki - SjJk,j + I • 

1= I 

(45b) 

When (41) and (45) are put together, for a certain k, we have 
(k - 1) equations, and the determinant of the coefficients of 
Jki (when i < k, there are k - 1 components also) is nonsin
gular, which is the transformation matrix between J lk; - II 
and J.,I' so we can expressed Jki in terms of P f - I and J/j 
(l,j<.k - 1), For instance, combining (41) with (45a), we get 

(N;;.k;;.2), (46a) 
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~urthermore, combining (41) with the expression of 
J, _ t.k _ 3 (45b), we get 

-C C J +s J' ) ,. 2 , - 3 ,- I.k .- 2 k J k - I.k - 3 

By repeated application of these steps, we can obtain 
k - I " 

(46b) 

Jki = L D l'ilp~-I + L CI;iIJ,h' (47) 
'~i - I Ih 

where we stipulate that the coefficients D lkil equal 

Cj _ I 

Sk _ 2",si Cj_1 

k - 1 = 1 =j, 

k-l=l», 

Ck_.IC'C, lis, 1"'S'tl 

ck I CIS, . I ",sjcj I ISk - I ··,s, + I 

- C" _ Is,lsk I ···s, + I 

k - 1>/=), (48) 

k - 1> l>j, 

k - 1 >1 =) - 1, 

and that the coefficient citjl equal 

- Ck ... IC,ChSh _ 1",sjcj_llsk _I"'S, k - 1>I>h >j, 

- Ck_IC'ChCh . lis, _ I"'S, k - 1>I>h =j, (49) 

Ck_IC,Shls, .. I···S, k-I>I>h=j-l, 

(when 1 = k - 1, replace cx . I Cl by 1). 
Yang5 discovered that the self-rotation operator of 0(5) 

symmetry monopole, which leaves the 5th axis unmoved, 
equals the sum or difference of the isospin and orbital mo
mentum. This relation can be extended to any N dimensions. 
Noting that under the geodesic gauge the finite rotation op
erator has form like (28), with left and right factors nearly 
symmetrical, so as in the case of(41), we get 

j -
pi = TIi.jj . = '" B li)T . (J' <N - 2). 

J J+I.J £.. 1 J+I.I 
i= I 

Owing to the com mutability of R N _ I (ON_ I) with Tij 
(i,j <N - 1), the expressions oftij (i,) <N - 1) in the final 
moving frame are similar with Jij as in (45). In the case of 
(46), we obtained the expression of Tkj , only P r -I are re
placed by p;, and noting that in the south region the sign of 
ON _ 2 is inverse, we get 

'-I 0 

T- - '" D (kj(p' + '" c (kjlT kj - £.. ' , £.. 'h Ih 
'~i- I 'h (50a) 

T- - B IN- 21pN- 2 
N - I.) -) N- 2 

N-3 0 

± '" D(N-I·)Jp'+"'C(N-I.JIT £..' , _ £.. 'n 'h' 
'-j-I M 

(SOb) 

But by virtue of (15) the geodesic gauge condition 

p N _ 2 = P Z = i + p Z = L Pj = P r 1 - p} 

(j<N - 2), 

Jij = tii' 
and by virtue of (15) it may be easily proved that 

k _. I L D lkjlp, = - i(xkJj - xjJk) = L kj , 
'~j - I 

so we get 

Jkj - Tkj = L k) (k <N - I), 

and 

I N _ I,) + TN_I,j = LN. I,j' 

For example, N = 3, J I2 = LI2 ± T12 , 

N=4, J I2 =L I2 + T12, 

I n = L32 ± T32, J 31 = L11 ± T31 , 

N=5, JI2=LI2+TI2' 

J32 = L32 + T32 , J 31 = L31 + T'I! 
J41 = L41 ± T41 , 

J42 = L42 ± T42, J43 = L43 ± T4J' 

(27) 

(23) 

(51) 

(52a) 

(52b) 

By virtue of(38), which may be decomposed into Yang's 
SU(2) result. 

V. GENERAL GAUGE GROUP FOR N-DIMENSIONAL 
MONOPOLE AND GLOBAL SO(N) SYNCHRONOUS 
SYMMETRICAL GAUGE 

For N-dimensional monopole, the reduced SO(N - I) 
group H may be imbedded in group G. Here G may be any 
G::J T H' where THis equivalent to the matrix set on some 
representation space of H [e.g., when N = 5, H = SO(4) 
= SO(3) ® SO(3) T H may be SO(3)]. But only when there 

exists a G', such as G~G' ::JH, G 'IH _SN - I, can we find a 
global gauge without overlapping region for the monopole 
potential (cr. Ref. 9). [e.g., there exists no such gauge when 
the T H of H = SO(2) corresponds to the A. s in G = SU(3).] 

Now we will discuss the global SO(N) synchronous 
symmetrical gauge, corresponding to the case of 
G = G' = SO(N)::J H = SO(N - 1), which is frequently ap
plied. Namely, choosing the gauge bases 
I i) = D 't Vl ') - 11 i), the finite operator is given by 

R (N-I)(w)D 't- 1)(r)D 't)(.o ')-1. 

Let i kj and t kj , 

O~-1=8k' 8t- I =8" e/=8J((OklJ (k<N-l), 

so the finite rotation operator becomes 

(53) 

R (N - 1)(w)R 't- I)(W)-I = R 1(8d···R N_ 2(ON_ 2)RN- 1 (8N _ dR ~_ 1 ( - 8N_ I)R ~_ 2( - ON - 2)···R I( - Otl, (54) 
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then 

(55) 

The formulation (54) is similar to (28), only with an addition
al factor R ~ _ 1 ( - () N _ 1 ), so a similar relation can be gotten 
easily. As in the case of (47) we get 

k - 1 [k'] 1 [k'] 0 

Tkj = I D 1 J PI + L C 1/ T1h • (56) 
I~j-l Ih 

By virtue of (47), (49), (53), (55), (56), we get 

Jkj = L kj + T kj • (57) 

It may be written in the gauge covariant form with the SO(N) 
potential and field as follows: 

Jkj = xd - iJj - • .<1') - xj ( - iJk - .G'" d - Y kjr, 

(58) 

where the field Y kj = Y /!jTlh given the synchronous rota
tion of both the space-self and the isospin SO(N - 1 )-self-
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rotation, and the potential 

.G"'j = .G"'JhT1h , 

where 

.G"'lh = _ ~ (Xl{jh _ Xh{jl). 
J r J J 

(59) 

Including this gauge potential, the covariant derivative gives 
the synchronous transition along the surface of a sphere. 
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Scattering by slightly nonspherical particles in the high frequency limit. I. 
Impenetrable particles 
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The scattering of a scalar plane wave by a slightly nonspherical impenetrable particle in the high 
frequency limit is investigated using a combination of boundary perturbation theory and the 
modified Watson transformation. Boundary perturbation theory is used to find the perturbed S
matrix for the problem. The modified Watson transformation is then used to sum the perturbed 
partial wave expansion in the short wavelength limit. This method is applied to backscattering by 
a slightly dilated sphere and a sphere whose shape is perturbed by making the radius a function of 
() given by rp(()) = a[1 + 8P2(cos () )), where P2 is a Legendre function, a is the radius of the 
unperturbed sphere, and 8 is the perturbation parameter. This method will be valid for (ka)I/3» 1, 
where k is the wavenumber. 

PACS numbers: 11.20.Dj 

1. INTRODUCTION 

The scattering of a plane scalar wave by a large impen
etrable sphere was investigated by Nussenzveig. 1 In his pa
per he developed the modified Watson transformation 
which converts the slowly convergent partial wave series 
into an integral in the complex angular momentum plane. 
He approximated this integral, in the high frequency limit, 
by use of the saddle point method and the method of resi
dues. The result was found to converge rapidly for short 
wavelengths. 

In this paper the method used by Nussenzveig for the 
sphere will be extended to slightly nonspherical particles. 
This will be accomplished by combining the modified Wat
son transformation with boundary perturbation theory. 
Thus all the advantages gained by use of the Watson trans
formation for spheres will be extended to slightly nonspheri
cal objects. 

I will only consider impenetrable particles in this paper 
because this is the simplest case to treat and will allow the 
clearest presentation of the essentials of this method. In or
der to reduce the amount of algebra the examples treated will 
be limited to backward scattering by a particle with an axis of 
symmetry. The direction of the incoming beam will be paral
lel to this axis of symmetry. 

The effects of slight distortions from a sphere should be 
much more interesting for transparent particles, especially 
when considering such phenomena as the glory.2 The meth
od presented here for impenetrable particles will be applied 
to the transparent case in a future paper. 

In Sec. 2 the perturbed S matrix is derived using bound
ary perturbation theory. The conditions necessary for the 
application of the modified Watson transformation are con
sidered in Sec. 3. Section 4 contains the results of using this 
method backscattering by a sphere whose radius is increased 
slightly. This result is equal to the exact solution to first 
order in the expansion parameter, thus demonstrating the 
validity of combining boundary perturbation theory with 
the modified Watson transformation, at least for the spheri
cal case. In Sec. 5 the method is applied to backscattering by 
a sphere whose boundary is perturbed by adding P2 (cos ()), 

where P2 is a Legendre function. 
Since this paper is mainly an extension ofNussenzveig's 

work I will try to follow the notation of Ref. 1 as closely as 
possible. 

2. BOUNDARY PERTURBATION THEORY 

I will use a perturbation method based on a Taylor se
ries expansion of the boundary conditions similar to Y eh's, 3 

except I will consider a scalar instead of a vector wave. The 
perturbation series will be worked out only to first order, 
generalization to higher orders being straight forward. 

I begin by considering a surface defined by the points 
(rp ,e,ifJ ) in spherical coordinates, where 

rp(e)=a[l +8w(())], (2.1) 

a is the radius of the unperturbed sphere, 8 is the perturba
tion parameter, and w(()) is an arbitrary single valued, con
tinuous function of e. The wavefunction that is the solution 
for scattering by the perturbed sphere can be written 

w(r) = if/ol + 8t/J(I) + 82w(2) + ''', (2.2) 

where t/JIOI is the solution for the unperturbed problem given 
by 

t/J(OJ = ! (21 + 1) it [h \21(kr) + S \OI(f3)h \ll(kr) ]Pt(cos () ), 
t~o 2 

(2.3) 

where k is the wavenumber, (J = ka, and h (I) and h (21 are 
spherical Hankel functions. S \OI(f3 ) is the unperturbed scat
tering matrix determined by the unperturbed boundary con
dition t/J(OI (a,e) = 0 yielding 

(2.4) 

Since t/JIO) is a solution of the wave equation and t/J is a 
solution for arbitary values of 8, t/Jln l must be a solution for 
n> 1. t/J must also meet the perturbed boundary condition, 
that is 

t/J(rp ,e) = Q for Q<,() < 1T. (2.5) 

Expanding (2.5) to first order in 8 gives 
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I/-IO)(a) + 8aUJ(fJ )al/-IOII + 81/-(1)(a) = o. 
ar r~a 

(2.6) 

But tf;IO) (a) = 0 because tf;IO) satisfies the unperturbed bound
ary condition, so (2.6) becomes 

tblll(a) = - aUJ(fJ )-_'1' . 
a·I,IO) I 
ar a 

(2.7) 

There is also a boundary condition on I/- as r_ 00 • This condi
tion forces tf;1I)to be a purely outgoing wave. Combining this 
with the fact that 1/-111 is a solution of the wave equation 
implies 

1/-11I(r) = ,to (21; 1) i'SIII(I3)h \1 l(kr)P, (cos fJ), (2.8) 

where the S \11 (13) are coefficients that are left to be deter
mined. Combining (2.7) and (2.8), and utilizing the orthogon
ality of the Legendre functions, yields 

a II atf;lo'l S\II(I3)= - -- UJ(fJ)P,(cosfJ)dcosfJ 
i' h \11fj3) _I ar a 

= 2i _1_ ~ (2n + l)lin-')~, (2.9) 
/3 h \1)fj3) n~o 2 h ~II(I3) 

where 

UJ'n = r IP,(COS fJ )UJ(fJ)Pn (cos fJ)d cos fJ. (2.lO) 

The Wronskian relation, 

WI h ~II(I3), h ~)(13 II = 21i/3 2, (2.11) 

has been used in deriving (2.9). Finally UJ(r) to first order in D 
is 

tf;(r) ~ f (21 + 1) i' [h \21(kr) 
,~O 2 
+ (S \01(13) + 8S \II(I3))h \11(kr) ]P,(cos fJ). (2.12) 

Letf(fJ) be the scattering amplitUde. This quantity can 
be extracted from tf;(r) in the usual way to get 

f(fJ) ~fIOI(fJ) + 8f(l'(fJ). (2.l3) 

fIOl(fJ)= f (21:- 1) [S\O)(I3)-l]PI{cosfJ), (2.14) 
,~O 21k 

p"(fJ)= f (21:- l)SIIIfj3)PI(cosfJ). (2.15) 
I~O 21k 

Nussenzveig applied his modified Watson transformation to 
fIOl(fJ). I will now analyzef(ll (fJ) using the same method. 

3. NECESSARY CONDITIONS FOR APPLICATION OF 
THE MODIFIED WATSON TRANSFORMATION 

Equation (2.9) may be used to compute S \11(13) only for 
integer values of I. Before the modified Watson transforma
tion can be applied toP I) (fJ) a continuation, to complex I, of 
SIIIfj3) must be chosen. This continuation must satisfy three 
conditions. First, (21 + l)S 11)(13) can have no poles on the real 
I-axis so that Poisson's sum formula can be utilized. Second, 
S 11)(13) should have a simple reflection property as I goes to 
- 1- 1. Third, S \11fj3) should have the proper asymptotic 

behavior in the complex I plane so certain integrals can be 
reduced to sums over residues. I will now define a continu-
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ation of S \1)(13) and show that it satisfies each of these condi
tions. 

A. The continuation of Sf/WJ 
Before continuing S \11fj3 ) into the complex I plane a spe

cific function must be chosen for UJ(fJ). In order that UJ'n be a 
simple function of I the obvious choice for UJ( fJ ) is a Legendre 
function, 

(3.1) 

An arbitrary UJ(fJ) can then be represented by a linear combi
nation of Legendre functions. With the choice (3.1), (2.lO) 
can be easily evaluated in terms of Clebsch-Gordan coeffi
cients to get 

UJ
ln 

= __ 2 __ 1 (/nOOl/nmO) 1
2 , 

(2m + 1) 
(3.2) 

where (/nOOl/nmO) is a Clebsch-Gordan coefficient. Substi
tuting this in (2.9), using the selection rules for Clebsch-Gor
dan coefficients, and shifting the sum to make it symmetric 
around zero yields 

S\I)(13 ) 

4i 11 m
, (21 + 2n + l).n 1 

= (2m + 1) Ii h\II(I3) n~I..m 2 I h\ILfj3) 

xl(l+nlOOI/+nlmOW. (3.3) 

The notation 

n= -m 

means summation over n = - m, - m + 2, - m + 4, ... , 
m - 2,m. I now continue S \1)(13) into the complex / plane by 
using the same continuation of the spherical Hankel func
tions as Nussenzveig did in Ref. 1. I also choose the follow
ing continuation for the Clebsch-Gordan coefficient4

: 

I (I + nlOOl1 + nlmO) 12 

r(m-n+1)r(m+n+1) 

( 
2m + 1 ) 2 2 (3.4) 

- 21T r(m -; + 2) r(m +; + 2) 
r ( 21 + n ; m + 1) r ( 21 + n ; m + 2 ) 

x----------------
r ( 21 + n ; m + 2) r ( 21 + n ; m + 3 ) 

This function has simple poles at 

1= - (n + m + 1) 
2 

-(n+m-1) 

2 

- (n -m + 1) 

2 
(3.5) 

so it seems that my continuation of S 11)(13) has poles on the 
real I axis. This is not the case, however, as will be shown in 
the next section. 

B. No poles on the real! axis 

Since h \1)(13) has no zeroes for reali, Eq. (3.3) implies 
that any poles on the real I axis must come from the Clebsch
Gordan coefficient. I will now show that the continuation 
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given in Eq. (3.4) contributes no real poles toS)I)(j3). It will be 
simpler to work in the complex A plane, where 

A = l+!. 
Then what must be proven is that 

residue [AS(I)(A,/3)JA=p = 0, 

where 

S (1)(,1,/3 ) = S ~)_ 112 (j3 ) 

8i 1 {'-, (A + rn 1 
= r H~I(j3) n=~m n I H~I+ n(j3) 

(3.6) 

(3.7) 

x r(u+;-m) rCu+n;m+1), 

r(U + n ~ m + 1) r(U + n ~ m + 2) 
(3.8) 

and 

P = - m, - m + 1, ... , m - I,m. (3.9) 

I have used in (3.8), 

h (1)(j3) = (~)I12 HII) la). 
I 2/3 1+ 11211-' (3.10) 

All the real poles of AS 10(,1,/3 ) are contained in the 
r((U + n - m)/2) term of(3.8). First consider the residues 
of the poles at p;;'O. The fact that 

. {(U + n - m)} resIdue r 2 A =p 

forn>m - 2p 

for n<m - 2p (3.11 ) 

implies 

residue [AS (1)(,1,/3 ) t = p 

8i P m-p 'mim - 2P)_I_ 
= r H~)(j3) n= ?m+p H~)I.fJ) 

r(p + m; 1 + n) r(p + m; 1- n) 
x--------------

r (p + m ; 2 + n) r (p + m ; 2 - n) 

x (n + p ~ m + 1) (n + p ~ m + 3 ) .. 

x(n+m~p-3)(n+m~p-l). 
(3.12) 

In deriving (3.12) the summation has again been shifted to 
make it symmetric around zero. Using the facts that the sum 
is only over n + m + p even and that 

(3.13) 

it is easy to see that the summand of(3.12) is an odd function 
of n. Therefore that sum is zero and (3.7) is true. The same 
proof can be used to show that the residues equal zero for 
p<O. So AS(I) (,1,/3) has no poles on the reaU axis. 

C. Reflection property for $(1) (.;l.P) 

I will now show that the behavior of S (1)(,1,/3) under re
flection is 

(3.14) 

Using Eqs. (3.8) and (3.13), and changing the summation 
variable from n to - n gives 

r (m -; + l)r (m + ; + 1) 
r(m -; + 2)r(m +; + 2) 

( _ U - n ; m - 1)( - U - ~ + m - 3 }.{ - U - ~ - m + 1 ) 
X-----~-~~-~-----~~-~------~ (3.15) 

( - U ~ n + m)( - U - ~ + m - 2 }.{ - U ~ n - m) 
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Si e ~ 2ilTA m, 

= rr H~V3) n=~m 

(3.17) 

So (3.14) is true. 

D. Behavior S(I~A.J3) as IA.I---+oo. 

Appendix A contains the asympototic behavior of 
H ~ 1(j3 ) in the complex A. plane. These formulas will now be 
used to get the behavior of S 01(A.,,8) as IA. 1---+00. 

Using the fact that 

r(2A.+n-m) r(2A.+n+m+l) 
lim (A. + n) 2 2 

IAI-oo r(2A.+n;m+l)r(2A.+n;m+2) 
=1, (3.1S) 

and Eq. (3.S) gives the following asymptotic behavior SOl 
(A.,,8 ): 

S 01(A.,/3) 

1 1 x-- . 
H~I(j3) H~I+ n (j3) 

(3.19) 

The asymptotic behavior of 

H~I(j3) H~I+n (f3) 

can be obtained from Appendix A and is displayed in Fig. 1. 

o /3- n /3 

FIG. I. Asympotic behavior of [H~If.8)H~I+nf.8) ]-1 for n>O. The nota
tion is as in Appendix A. A similar figure will hold for n < O. 
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(3.16) 

In the following sections it will be seen that this behav
ior for SOl (A.,/3) is sufficient to allow application of the modi
fied Watson transformation. 

4. SOLUTION FOR BACKSCA TTERING BY A SLIGHTLY 
DILATED SPHERE 

To obtain/ol (-IT) for a slightly dilated sphere UJ(O) must 
be 

UJ(O) = Po (cos 0) = 1, 

giving 

'p = a(1 + {)). 
This choice implies n = 0 in (3.3) so that 

S)II(j3) = 2i [h)II(j3)]~2. 
/3 

(4.1) 

(4.2) 

(4.3) 

Evaluation of Eq. (2.15) using the modified Watson 
transformation is very similar to the procedure used by Nus
senzveig in Sec. IXD of Ref. 1. First the Watson 
transformation, 

! g(/ + ~) = ~ ig(A. )e ~ ilTA~, 
1=0 2 c cos 1TA. 

(4.4) 

is applied to Eq. (2.15). The contour C is displayed in Fig. 2. 
This gives 

j!1I(1T) = - -1-iSOI(A."B) A.dA. , 
2k c cos 1TA 

(4.5) 

1m A 

c 
---5~/~2-----3*/2-----~1/~2-0~,-~·1~/-2~-_-_-_~~3~/~2~-~-_~5~/~2!~ReA 

FIG. 2. Contour of integration C. 
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where PI (cos 1T) has been continued to complex I using 
PI ( - 1)=ei1T(A - 112). In Eq. (4.5) 

S(1)(A,P)= 4i [H~)(P)]-2. (4.6) 
1T 

By changing A to - A in the in tegral over the lower half of C 
and using Eq. (3.14), Eq. (4.5) becomes 

f(l)(1T) = _1_ ( S(1)(A"B)e - 2i1TA AdA 
2k Je cos 1TA 

__ 1_ ( S(1)(A"B) AdA , 
2k Je- cos 1TA 

(4.7) 

where the contour C " is the upper half of C and the contour 
C' is displayed in Fig. 3. Using the fact that 

e - 2i1TA = - 2ie - i1TAsin (1TA ) + 1, (4.8) 

Eq. (4.7) can be rewritten 

f(1)(1T) = f~')(1T) + f~~s (1T), (4.9) 

f(1)(1T)= _l...( S(l)(A"B)e- i1TA tan(1TA)AdA, (4.10) 
kJe 

f~~(1T)= - _1_J"'+ia S(1)(A"B) AdA, (4.11) 
2k _ 00 + ia cos 1T A 

where a > O. The integrand ofEq. (4.11) can be simplified by 
utilizing 

1 '" 
-- = 2 I (- lrexp[i(2m + 1)1TA], 
cos1TA m=O 

(4.12) 

to get 

This gives 

.,,-rr/2 
I 
1 

1m). r I 
I 
I 
\ 
\ 
I 
\ 
\ 
\ 

C' \ 

0 
Re ). 

FIG. 3. Contours of integration C' and r. The notation for the curve 
'r/--->1T/2 is in Appendix A. 

f~~~(1T) = - ~ m~o( - lim 

X F'''",S(l)(A,P)ei(2m+ IJ 1TAAdA. (4.13) 

The saddle point method can now be used to evaluate 
f~')(1T). The integrand of (4.10) goes to zero at least exponen
tiallyas 1..1 1-00 in the upper half-plane to the left of the 
curve 'T/-1T12 in Fig. 3, thus the contour C' can be shifted to 
the contour r. The main contribution to the integral is from 
the region 1..1 I S P 1/2. Expanding e - i1TA S (1 )(A"B ) to order 1/ P 
in this region using (A9) yields 

e- i1TAS(l)(A"B) = _ 2pe-2ii3e-iA'lfl 

X 1 + _1 ______ 1_ + 0(,8-2) 
[ 

. ..1 2 1l,4 ] 

4P 2p 2 12p 3 

forIAISpl/2. (4.14) 

f(')(1T) = 2iae- 2ifl (e-iA2Ifl[1 + _1_' - ~ - ~ + 0(,8 -2)]tan(1TA )AdA 
s Jr 4P 2[32 12[33 (4.15) 

= 2[3ae - 2ifl (00 e - X2[ 1 + _1_' + ix
2 

+ ix
4 

+ 0 (,8 -2)]tan(1Tax)xdx 
Jo 4P 2[3 12P 

(4.16) 

where 

..1= e3i1T14p 1/2x = ax. (4.17) 

This integral can be evaluated by the method set forth in 
Appendix B to yield 

f~')(1T) = ipae - 2ifl [1 + ilP + 0 IfJ -2)] . (4.18) 

The residue method can be used to evaluate f~~~ (1T) if a 
series of paths C n' shown in Fig. 4, can be found such that 

lim ( S(l)(A,p)ei(2m+ ')1TAAdA = O. (4.19) 
TI-oo)c" 

The contours C. must avoid the poles of S (1) (A"B) located 
along the curve h I' I choose C n to be of radius R n passing 
halfway between consecutive poles An of S(1)(A"B), then 

R.lnC~ ) = n1T +: for IAn I>P2. (4.20) 

It can be seen from Fig. 4 that the integrand of (4.19) goes to 
zero at least exponentially as 1..1 1-00 in the upper half-plane, 
except possibly near the curve hI' Near hI S(1)(A"B) takes the 
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form 

SIlI(A,P) = ; [sinh(A In( ~) - i:) r 2..1 2. (4.21) 

ImA 
-7r 

7]-+ -
~-t--_ Cn I 2 

x 
I h, 

x 

~----------------4--------L------~Re A 
o f3 

FIG. 4. Contour of integration C,. Thex's are the poles of Sil'(t!,.B) for the 
dilated sphere. 
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On Cn, andhl,A = Rnexp[i(1T12 - E)], so the absolute value of (4.21) becomes 

ISIII(A,,8 )ei(2m + I I ""A I = ~ - 12m + II"R'R 2!Sinh[R Eln(2R n
) _ ~R + i(n1T + ~)] 12 

2 n n e(3 2 n 2 (4.22) 

where (4.20) has been used. Using the fact that 

Isinh(a + ib)1 = (sinh2a cos2b + cosh2a sin2b )1/2>cosh alsin b I 

and Eq. (4.22) gives 

(4.23) 

ISIIl(A,(3)ei(2m + 1)""AI<1Te- 12m + IITrR'R ~ [COSh(RnE1nC~n ) _ ~ Rn)] -2. 
(4.24) 

So the integrand ofEq. (4.19) goes to zero at least exponen
tially along Cn as n-+oo. Thus (4.19) is true, and (4.l3) is 
reduced to the residue series, 

21Ti OX> • 

f~~~ (1T) = - - I ( - l)m Iresidue [S (l1(A,(3 )e,(2m + IITr"A ]" d,' 
k m =0 n 

(4.2S) 

where A n are the poles of S (l1(A,(3). These poles are of the 
second order. If only the highest order in (3 is kept and An is 
near (3 then using (A 10) 

residue [SIII(A,(3 )Aei(2m + II"" L, 

i"/3(2 + 1)f3 2 
= e m ei(2m + II"", + lower order, 

2r[Ai'( -xnW 
(4.26) 

where 

r = (ZI(3 )1/3, (4.27) 

Ai(x) is the Airy function, and - Xn is its nth zero. Only the 
poles An near (3 will contribute significantly to (4.2S) because 
of the /(2m + II"", term in (4.26). So combining (4.2S) and 
(4.26) gives 

f~~~(1T) = - ei"/3!l.- ! ( - 1tI{i1T(2m + 1) 
r m =0 n 

x(3 [Ai'( - xn)] - V(2m + II""" + lower order} . 
(4.28) 

Finally, combining (4.9), (4.18), and (4.28) gives 

fOi(1T) 

= i(3ae - 2iB [1 + ~ + 0 If3 -2)] - ei"/3!l.- ! ( - It 
(3 r m=O 

X I {i1T(2m + 1),8 [Ai'( -Xn)]-2 (4.29) 
n 

X eil2m + II"", + lower order}. 

The unperturbed solutionJlol (1T) can be obtained from 
Eq. (9.S4) of Ref. 1 and is 

f<DI(1T)=- !!...-e- 2iB (1 + _i_)_eiTr/3!l.- ! (_l)m 
2 2(3 rm=O 

(4.30) 

Of course (4.30) could have been used to find the solution for 
the dilated sphere by letting a go to a (1 + 0 ) and (3 go to 
P(l + 8). Then 
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I 

f(1T) = _ a(l ~O)e-2iB(IHI[1 + + 0If3- 2 )] 

2(3(1 + 8) 

- ei"/3~(l + 8)4/3 ! (- l)mI{[Ai'( -Xn)]-2 
r m=O " 

X ei(2m + II"" ~ + lower order}, (4.31) 

where A ~ are the poles of l/H~IIf3(l + 8)). Equation (All) 
implies 

A ~ = An + (38 + lower order. (4.32) 

Expanding (4.31) to first order in 0 gives 

f(1T) = f<DI(1T) + o[IPae - 2iB(l + i/(3 + 0 (f3 -2)) 

- e11T13!!...- f ( - 1tI{i1T(2m + 1)f3 [Ai'( - x n )]-2 
r m=O n 

X e,(2m + II"", + lower order} ] 

= fIOI(1T) + 8flll(1T). (4.33) 

This is the same answer as obtained by combining boundary 
perturbation theory and the modified Watson transforma
tion. This proves the validity of the combination of these 
methods at least for the case of the dilated sphere. 

5. SOLUTION FOR BACKSCATTERING BY A P2 
CONDUCTING PARTICLE 

In this section I will consider the scattering by a particle 
with its surface defined by 

rp =a[l + OP2(COS 8)]. (S.l) 

This choice of liJ(8) implies m = 2 in (3.8), which gives 

Sill A,,8 __ _ 1_' _1_[ 3 (A- ~)(A- !) 
( ) - 21T H~IIf3) H~I_ 21f3) (A - I)(A ) 

2 (A2_1) ___ 4 

H~IIf3) (A 2 
- 1) 

+ . 3 (A + ~)(A + ~)] 
H ~ 1+ 21f3 ) (A )(A + 1) 

(S.2) 

Evaluation ofJlII( 1T) for this case proceeds almost the same as 
for the dilated sphere. Equations (4.9)-(4.13) are still valid 
for the P2 particle since they were derived using only the 
general properties of SIII(A,(3) discussed in Sec. 3. 
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Evaluation off~11 (1T) is about the same as in Sec. 4 except 
that now instead ofEq. (4.21) the following is used: 

e- '1TAS i1l(A"B) = 2/3e- 21/3e- 'A 'I/3 

[ 
lli U 2 iA 4 1 ] 

X 1-------+0(13--). 
4/3 /3 2 12{33 

(5.3) 
The integral in (4.19) can be evaluated using the same meth
od as Eq. (4.22)-(4.25) to get 

_2 a - 21/3100-X'[I IIi 2ix2 ape e - - +--
o 4/3 /3 

iX4 ] + 12/3 + 0 (13 -2) tan (1Tax)x dx 

- ia/3e - 21/3 [1 - i12/3 + 0 (13 -2)]. (5.4) 

The residue method can be used to evaluatef~~~ (1T) just 
as in Sec. 4. The paths Cn that ensure that (4.19) is true are 
shown in Fig. 5, sof~~~ (1T) is reduced to the residue series 

(I - 21Ti 00 

fre~(1T) = -k- m'2;o( - l)m~residues 

(5.5) 

If only the results to highest order in /3 are retained in the 
residue series, then the only poles that contribute to (5.5) are 
the second order poles at An' The result is 

residue[i..[H~I(I3)] - 2(,1 2 - A)Ae'(2m + 111TA] 
1T (A 2 - 1) A" 
11T13/3 2(2m + 1) [A"( )] -2 1(2m + 111TA" = e 1 - Xn e 

Sy 
+ lower order. (5.6) 

So finally, 

- e'1T13~ ! (- I)m I {i1T(2m + 1) 
4y m ~o n 

x/3 Ai/( - Xn)] -2e'(2m + 111TA" + lower order}. (5.7) 

This gives 

JlII(1T) 

= _ ia/3e - 21/3 [1 - i12{3 + 0 (13 -2)] - e'1T13~ ! ( - l)m 
4Ym~o 

X I{i1T(2m + 1)/3 [Ai/( - xn)] -V2m + 111TA
n 

n 

+ lower order} . 
(5.S) 

6. CONCLUSION 

I have shown, in this paper, that it is possible to extend 
the modified Watson transformation method of Nussenz
veig to slightly nonspherical impenetrable particles. This 
was accomplished by combining the modified Watson trans
formation with boundary perturbation theory. The method 
was applied to the cases of back scattering by !i dilated sphere 
and a sphere perturbed by adding P2 (cosO). The results for 
the dilated sphere were found to be consistent with the exact 
result. 

The examples in this paper can be easily extended to the 
entire angular domain of 0 by using the same methods as in 
Ref. I. Higher order solutions in 8 can be obtained by using 
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1m A I I x x x 

Cn 
I I I 

x x x 

x x 
I I 
x x 
I I 

x x 
I I 

o /3-2 /3 (3+2 

FIG. 5. Contour of integration en' The x's are the poles of S°'(J,,,B) for the 

sphere perturbed by P2 Icos ()). 

methods similar to those presented here. It should also be 
possible to treat particles without an axis of symmetry by 
letting (U(O) be a function of tP and substituting spherical har
monics for the Legendre functions in (2.12). 

In a future paper I will discuss the problem of a slightly 
nonspherical transparent particle. The groundwork for the 
transparent problem is contained in this paper and in Ref. 2. 
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APPENDIX A. ASYMPTOTIC BEHAVIOR OF H~I)(/3) 

The asymptotic behavior of the cylindrical function 
H ~ 1(13 ), /3 > 0, in the complex A plane is graphically present
ed in Fig. 6. 5 The notation is as follows: 

A (,1,/3) = (2/1T) I 12(,1 2 - /3 2)-114, (AI) 

a(A,/3)1/2=(A2-/32)1/2-Aln[~ + (A
2
-:

2
)1/2],(A2) 

where the branch of (A 2 - (3 2) I 12 to be taken is specified by 

j' 

~ 
(11- A Q-2i"X x - - e 

"1 ....... -..! 
2 

A Re a = 0 

~ - - - AS -
-8 

Re (a -I". A) = 0 

FIG. 6. Asymptotic behavior of H~I(j3). 
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the condition 

(A 2 - (3 2)1/2_,.1, = 1,.1, lexp{i¢ )( - 1T < ¢ < 1T) for 1,.1, 1-00. 
(A3) 

Thus, 

A--( 
2 )112 

1TA ' 
(A4) 

The asymptotic behavior of H ~)({3 ) changes (Stokes' phe
nomenon) across certain branch lines, shown as thick lines in 
Fig. 6. For H~)({3) the curves areh j (Re a = 0, 1m A > 0) and 
h -I [Re(a - i1TA ) = 0, 1m ,.1,< 0]. These curves are symmet
rical with respect to the origin and the zeros of H~)({3) are 
asymptotically located on them. The curve h I cuts the real 
axis as A = (3 at an angle of 1T/3. The tangent to this curve 
tends to the vertical direction for 1,.1, 1-00. Asymptotically, 
the curve approaches A = 0'1,.1, I, 1/- - 1T/2, where 0' and 1/ 
are defined by 

0' = exp[i(1T/2 + E)], 1/ = E Inl2,.1, le(3l. (AS) 

These results have to be modified in the neighborhood 
of each of the branch lines, when the two representations for 
the same function become comparable in order of magni
tude. Then the functions must be taken to be the sum of the 
two representations. This is indicated by the shaded regions 
of Fig. 6. Thus, 

H~)({3):::::2Ae'1T/4sinh(a - i1T14) inAB, (A6) 

H~V3):::::: - 2Ae -11TAe - 11T/4sinh(a - i1TA + i1T14) in Be. 
(A7) 

The angular widths of the shaded regions are 

<1E= 2e/iA lin I ~~ I, (AS) 

where C is a constant such that e2C
) 1. The corresponding 

arc length 1,.1, I<1E tends to zero like (In 1,.1, I) - I. 
It must be noted that, due to the choice of phase (A3),A 

goes to - A and the phase of a changes by 2i1TA on crossing 
the linej' so that, in spite of appearances to the contrary, the 
representation of H ~)({3 ) given in Fig. 6 is continuous across 
j'. 

The asymptotic expansions of Fig. 6 should be em
ployed for 1,.1, 1 )(3. For smaller values of 1,.1, I additional results 
are required. In region AB, in the neighborhood of the real 
axis, the Oebye asymptotic expansion may be employed, 

H~V3) = (! y/2(/3 2 _ ,.1,2)-1/4 

xexpH ({32 - A 2)1/2 - A cos- I ~ : ]} 
X 1- ... [ i ] 

S(/32 -A 2)1/2 + , (A9) 

where (/3 2 - ,.1,2)-1/4> 0,0 < cos-irA 1(3) < 1T/2 for 
- (3 <A <(3. These expansions fail in the neighborhood of 

,.1,= ± (3. IfIA -(3 1 becomes comparable with 1,.1, II/3 usethe 
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expansion 

H~)(/3 ) 

= 2e -11T13(~ y/3 Ai[ e2"T/3(~ Y/3(A _ (3)] + 0 (A -I), 

(A 10) 

where Ai (z) denotes the Airy function. From (A 10) it can be 
seen that the poles A n of 1/ H ~)(/3 ) are 

An =(3+ ({3/2)I13xne'1T/3 + 0({3-I/3) (All) 

when An is near (3. In (All) - Xn is the nth zero of Ai (z). 

APPENDIX B. EVALUATION OF )0 e - X2tan(1Tax)x"dx 

To evaluate foe - X'tan(1Tax)x dX,5 employ the 
expansion 

tan (1Tax) = i + 2i ! ( - lj"exp(2in1Tax), (Bl) 
n=1 

which gives 

100 

e - X'tan(1Tax)x dx = i L" e - x'x dx 

+ 2in~/ - I)"L'" exp( - x 2 + 2in1Tax)x dx. (B2) 

By partial integration 

100 

exp( - x 2 + 2in1Tax)x dx = 

so that, finally, 

L'" e - X'tan(1Tax)x dx = 2 + 2:a2 + 0 (/3 -2), (B4) 

where the formula 

00 (_1)"+1 
I 2 

n ~ I n 

has been employed. 

12 
(BS) 

It is clear from the above calculation that, since terms of 
order(3 -2 are being neglected, tan(1Tax) may be replaced by i 
in all the remaining integrals of (4.23). Thus the rest of the 
integrals are simple to compute. 
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'H. M. Nussenzveig, 1. Math. Phys. 10,82 (1969); 10, 125 (1969). 
'c. Yeh, Phys. Rev. 135, A 1193 (1964). 
4D. M. Brink and G. R. Satchler, Angular Momentum (Oxford University, 
Oxford, England, 1968), p. 34, Eq. (2.35). 

'Appendices A and B of this paper have been taken, more or less, directly 
from Appendices A and F, respectively, of Ref. I. 
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Scattering by slightly nonspherical particles in the high frequency limit. II. 
Transparent particles 

Jerome Krebs 
Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706 

(Received 5 May 1981; accepted for publication 2 September 1981) 

The scattering of a scalar plane wave by a slightly nonspherical transparent particle is investigated 
using a combination of boundary perturbation theory, the Oebye expansion, and the modified 
Watson transformation. Boundary perturbation theory is used to find the perturbed scattering 
matrix for the problem. The Oebye expansion is then substituted into the perturbed S matrix and 
the modified Watson transformation is used to sum the resulting partial wave expansion in the 
short wavelength limit. This method is applied to backscattering by a sphere whose shape is 
perturbed by making the radius a function of () given by rp (()) = a[1 + OP2(COS () )], where a is the 
radius of the unperturbed sphere, 0 is the perturbation parameter, and P2 is a Legendre function. 
This method will be valid when both (ka)1/3> 1 and IN - 111/2 (ka)1/3> I, where k is the 
wavenumber and N is the index of refraction of the particle. 

PACS numbers: 1l.20.0j 

I. INTRODUCTION 

In a previous paper l I investigated the scattering of 
plane scalar waves by slightly nonspherical impenetrable 
particles in the high frequency limit, using boundary pertur
bation theory and the modified Watson transformation de
veloped by Nussenzveig. 2 In this paper I will consider the 
same problem except that now I will work with transparent 
instead of impenetrable particles. I will again use a combina
tion of boundary perturbation theory and the modified Wat
son transformation to get an expansion for the scattering 
amplitude in the high frequency limit. 

The main difference between this analysis and the anal
ysis for the impenetrable particle is that the modified Wat
son transformation can no longer be applied directly to the 
perturbed partial wave expansion, because direct application 
results in a residue series that does not converge. Instead, the 
perturbed scattering matrix must first be expanded in a form 
similar to the Oebye expansion given in Ref. 3. The modified 
Watson transformation can then be applied to the resulting 
partial wave expansion. 

This method will be valid when both (ka)1/3>1 and 
IN - 111/2(ka)1/3> 1, where k is the wavenumber, a is the 
radius of the unperturbed sphere, and N is the index of re
fraction of the particle. In order to simplify the problem I 
will only consider real N such that 1 < N < 112, which in
cludes N = 1.33, the index of refraction of water. Also, in 
order to reduce the amount of algebra, I will only treat the 
example of back scattering by a particle with an axis ofsym
metry. The direction of the incoming beam will be parallel to 
this axis of symmetry. 

In Sec. 2 the perturbed S matrix is derived using bound
ary perturbation theory. The Oebye expansion for the per
turbed S matrix is formulated in Sec. 3. The conditions nec
essary for the application of the modified Watson 
transformation are considered in Sec. 4. In Sec. 5 the method 
is applied to the problem of back scattering by a sphere whose 
boundary is perturbed by adding a term oaP2(cos ()) to the 
radius, where P2 is a Legendre function. 

Since this paper is mainly an extension ofNussenzveig's 

work I will try to follow the notation of Refs. 3 and 4 as 
closely as possible. 

II. BOUNDARY PERTURBATION THEORY 

I will work out the perturbation series for the transpar
ent particle using the same method as was used in Paper I for 
the impenetrable particle. The series will be evaluated only 
to first order in the perturbation parameter, generalization 
to higher orders being straightforward. 

The wavefunction that is the solution for scattering by 
the unperturbed sphere is given in three parts: the incoming 
wave 

tPi = f (21 + l)iidkrJP,(cos ()), 
'=0 

(2.1) 

the transmitted wave inside the sphere, 

tP~O) = f (21 + l)i'T~O)(/3 jj,(NkrJP, (cos ()), (2.2) 
'=0 

and the scattered wave outside the sphere, 

tP~O)= f (2/+ 1) i'[S\O)(/3)-I]h,II)(kr)Pdcos()), (2.3) 
'=0 2 

where the superscript (0) indicates the solution to the unper
turbed problem. The notation in the above is as follows: 

T\01(/3) = h \21(/3) [ (1{3) - (2{3) ], (2.4) 
2i,(a) (1{3) - N (a) 

h 121'R) [ S 101(/3) = __ , _VJ_ 

, h \11(/3) 

(x) = _1_ ai/Ix) , 
i,(x) ax 

(2{3) -N(a) ] 
(1{3) -N(a) , 

1 h/III(X) 

(Ix) = h/I)(x) -----a;-' 
1 h/21(x) 

(2x) = h/21(X) -----a;-' 
a =Nka =N{3. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

2502 J. Math. Phys. 23(12), December 1982 0022-2488/82/122502-09$02.50 @ 1982 American Institute of Physics 2502 



                                                                                                                                    

In the abovejl and h/1.21 are spherical Bessel and Hankel 
functions, respectively. 

To solve the perturbed problem I begin by considering 
the surface defined by r p (8 ) = a [1 + 8m( 8 ) ]. The wa vefunc
tion that is a solution for scattering by this particle can be 
written as a Taylor series in 8, 

¢s = ¢~Ol + O¢~11 + '" (2.10) 

for the scattered wave outside the particle and 

¢, = ¢\Ol + 8¢\11 +... (2.11) 

for the transmitted wave inside the particle. In order to find 
the perturbed scattering matrix, ¢~II must be determined in 
terms of the unperturbed wavefunction. The method used to 
accomplish this is the same as was used in Sec. 2 of Paper I, 
except that now the boundary conditions are different. Two 
of these conditions are that ¢~11 be a purely outgoing wave as 
r-+(1;) and that ¢~11 be finite at the origin. There are also two 
boundary conditions at the surface of the particle 

¢j(rp,8) + ¢s(rp,8) - ¢,(rp,8) = 0 for 0,8 < 1T, (2.12) 

lip'V [¢j(r, 8) + ¢s(r,8)- ¢, (r,8)]r = rp for 0,8 < 1T. 
(2.13) 

The unit vector lip is normal to the surface so using Eq. (2.1) 
of Paper I 

np'V =!.... - ~ dm(8)..!..- +OW). (2.14) 
ar r d8 a8 

By writing out these boundary conditions in terms of partial 
wave expansions for ¢p ¢s' and ¢" utilizing the orthogona
lity of the Legendre functions, and extracting the scattering 
amplitUde from ¢ the following is obtained: 

f(8) =!,01(8) + Oflll(8) + "', (2.15 

f I01(8)= f (2/~ 1) [S\01(8)-1]PI(cos8), (2.16) 
1=0 2/k 

!,1)(8) = ,to (21
2
; 1) S \11(8 )P,(cos 8), (2.17) 

where 

S\II(8) = i
P3(N; - 1) [h \21(8) + h \1)(8)S\O)(8)] 

X n~o (2n: 1) in - 'w'n [h ~21f.8) + h ~11(8)S ~01(8) ],(2.18) 

WIn = f~/,(COS8)W(8)Pn(COSO)dCOSO. (2.19) 

In simplifying S \11(8) to the form given in Eq. (2.18) both the 
Wronskian relation and the differential equation for the 
spherical Hankel functions were utilized. 

Just as in Paper I, w(8) must be specified before the 
modified Watson transformation can be applied to Eq. 
(2.17). I will again choose w(8) to be a Legendre function 

w(O) = Pm (cos 8); (2.20) 

then Win can be computed in terms of Clebsch-Gordan coef
ficients to get 

2503 
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(2.21) 

Equation (2.18) is only useful for computing S\II(/3) for 
integer I. I will continue S \1)f.8) to complex 1 by using the 
same continuation of the spherical Bessel and Hankel func
tions that were used in Paper I. The Clebsch-Gordan coeffi
cients in m'n will be continued to complex / as was done in 
Eq. (3.4) of Paper I. Writing out this continuation of S \11(/3) 
in terms of A., where A. = 1+ !, 
S II I (A. , P) = S ~I_ 1/2 (8) 

i1T/32(N
2 

- 1) [H~I(8) +H~I(8)SIOI(A.,/3)] 
4 

m 

X L'e n (A. ) [H ~)+ n (8) + H ~ 1+ n (8 )S 101(A. + n, /3 ) ]. 
n = - m 

(2.22) 

In Eq. (2.21) I have made use of the selection rules for 
Clebsch-Gordan coefficients, Hil. 21(8) are cylindrical Han
kel functions, 

SIOI(A. a) = SIOI la) = _ H~I(8) [ [2{3] - N [a] ] 
,/J '\-112'1-' H~I(/3) [l/3]-N[a] ' 

(2.23) 
en(A.) = (A. + n)i"w,\ +n-1/2.n 

r(m-n+l) r(m+n+1) 
(A. + n) 'n 2 2 

=--/ 
1T r(m-;+2) r(m+;+2) 

r( U+;-m) r(U+n;m+l) 
X . (2.24) r(U+n;m+l) r(U+n;m+2) 
The notation in Eq. (2.23) is 

[x] = _1_ aJ,\(x) , 
J,\(x) ax 

(2.25) 

1 aH~I(x) 
[ lxJ- -- ---

- H~I(X) ax ' 
(2.26) 

1 aH~I(x) 
[2xJ = H~21(X) ax ' (2.27) 

where J,\ and H~' 21 are cyclindrical Bessel and Hankel func

tion. Also the notation ! I means sum over n = - m, 
n= -m 

- m + 2, ... , m - 2, m. 
In Sec. 4 I will show that this choice of continuation of 

S \1)f.8) to complex / is the right choice for use in the modified 
Watson transformation. 

3. THE DEBVE EXPANSION FOR S(/)(A, [3) 

In Ref. 3 Nussenzveig has shown that the modified 
Watson transformation cannot be applied directly to Eq. 
(2.16) because S (01(A., /3) has an infinite number of poles near 
the real A. axis, as can be seen in Fig. 1. These poles contribute 
a residue series which does not converge, unlike the residue 
series for the impenetrable sphere. NU8senzveig "cured" this 
difficulty by using the Debye expansion for S(O)(A., [3). 

The Debye expansion for S (OI(A., [3) is 
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/3 a 

FIG. \. The poles of S'O'(A, 13) for a >13> \. The x's mark the location of the 
poles. The Appendix contains the definition for 1],. 

S (01(,1,,13) = ! S ~I(A, 13 ), (3,1) 
p=o 

where 

Sfl(A,13) = U(A,13)[p(A,13W- I forp>l, (3.3) 

H~I(a) 
p(A,13) = -12-1 -R II (A,13). 

HA(a) 
(3.5) 

R II and Rn are external and internal spherical reflection 
coefficients, respectively. T21 and TJ2 are spherical transmis
sion coefficients. These coefficients are given by 

[113] - N [la] 

[ 113] - N [2a ] 

[213] - N [2a] R 22(A,13) = - --":"'---"-~ 
[ 1{3 ] - N [2a] 

T21 (A, 13) = 1 + R 22(A, 13), 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The Debye expansion solves the nonconvergent residue se
ries problem because R II, R 22, T21 , and TJ2 do not have a 
large number of poles lying near the real A axis, as can be seen 
in Fig. 2. Of course this advantage is gained at the expense of 
introducing another summation into the solution which may 
or may not converge quickly, depending on the values of N 
anda. 

It can be seen from Eq. (2.22) that S (01(,1,,13) will also 
have an infinite number of poles near the real A axis because 
S (01(,1,,13) containsS (01(,1,,13) in it. The obvious solution to this 
difficulty is to substitute the Debye expansion for S (01(,1,,13 ) 
into S (II(A, 13). 

The Debye expansion for S (11(,1,,13 ) can be written 

S(II(A,13) = !S~II(A,13), (3.10) 
p=o 

where 

S~I(A, 13) = i : 13 2(N 2 - l)qtJ [H~V3 )Dq. 0 + H~V3 )S~OI(A, 13)] 

Xn=~m'Cn(A )[H~I+n(t3)Dp_q,o + H~I+n(t3)S~O~q(A + n,13)]}. (3.11 ) 

and Da, b is the Kronecker delta. I have chosen the Debye 
expansion for S (11(,1,,13 ) so that corresponding terms of the 
Debye expansions for S 101(,1" 13 ) and S 111(,1" 13 ) have the same 
reflection properties as A goes to - A. These are 

S fl( - ,1,,13) = e2i
1T{p - liAS fl(A, 13), (3.12) 

S ~II( - ,1,,13) = e2i1T{p - liAS ~II(A, 13). 

The identity (3.12) can be proved using 

H(~A(t3) = eirrAH~V3), 

H I:! A (f3 ) = e - irrAH ~1(t3). 

(3.13) 

(3.14) 

(3.15) 

Equation (3.13) can then be proved using the same method as 
was used in Sec. 3C of Paper I. 

4. NECESSARY CONDITIONS FOR APPLICATION OF 
THE MODIFIED WATSON TRANSFORMATION 

I will now show that the continuation S (11(,1,,13 ) given in 
Eg. (2.21) meets the conditions that are necessary for appli
cation of the modified Watson transformation. These condi
tions are that AS 111(,1" 13) have no poles on the real A axis, so 
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that Poisson's sum formula can be used, and that S(l)(A.,,8) 
have the proper behavior as IA. 1-00, so that certain contours 
of integration can be deformed. Actually these conditions 
must be met by each term of the Debye expansion for 
S(1)(A.,,8) since the modified Watson transformation will be 
applied to each term separately. 

A. No poles on the real A. axis 

It can seen from Eq. (3.11) that the only place where 
poles on the real A. axis could come from is the C n (A. ) term. 
The Cn (A. ) term does have poles on the real A. axis, but these 
poles cancel when the summation over n is performed in Eq. 
(3.11). 

This can be proved in the same way it was shown for the 
impenetrable particle in Sec. 3B of Paper I. The main ingre
dient of that proof was that H (~ n (f3) = ( - 1 tH ~11(f3), for 
integer n, so that the summand ofEq. (3.12) of Paper I is an 
odd function of the summation variable and therefore the 
sum is zero. The same sum will hold here, for the transparent 
case, except the [H ~11(f3 ) ] - I is replaced by [H ~)(f3 )8 pO 

+ H~)(f3 )S~OI(n,,8)]. It is easy to see that this factor has the 
same reflection property, when n goes to - n as H ~)(f3) has. 
Therefore the same proof as was used in Sec. 3B of Paper I 
will work here, so H ~I )(A., ,8 ) has no poles on the real A. axis. 

B. Behavior of sr;)(A., ,8) as IA.I- 00 

The asymptotic behavior of S ~11(A.,,8) can be derived in 
the same way as for the impenetrable particle in Sec. 3D of 
Paper I. Again C n (A. ) approaches a finite constant as IA. 1-00 

so the asymptotic behavior of S ~11(A.,,8) is given by 

Sp(A.,,8)-i~,82(N2-I) I' Cn f 
4 n~-m q~O 

X [H~)(f3 )8q. 0 + H~)(f3 )S~O)(A.,,8)] 

X [H~)+n(f3)8p_q.o H~)+n(f3)S~O~q(A. + n,,8)], 

(4.1) 

where 

Cn = lim cn(A.). 
A~", 

(4.2) 

The asymptotic behavior of the summand can be derived 
from the formulas given in the Appendix. In Sec. 5 it will be 
seen that this is sufficient for application of the modified 
Watson transformation. 

5. SOLUTION FOR BACKSCATTERING BY A 
TRANSPARENT P2 PARTICLE 

In this section I will evaluate the amplitude for back
scattering by a particle with its surface defined by 

rp(O) =a[I + 8P2(cos 0)]. (5.1) 

This choice of w(O) implies m = 2 in Eq. (3.11) and Cn (A. ) ij 
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given by 

1 (A. 2
_ ~) 

co(A. ) = 4" (A. 2 - 1) , 

3 (A. 2 ± HA. ± !l 
C ± 2 (A. ) = - "8 A. (A. ± 1) 

(5.2) 

(5.3) 

I will now evaluate the first three terms of the Debye 
expansion for/(I)(1T) using modified Watson transformation. 
Higher terms in the Debye expansion are calculated using 
similar methods. 

A. The first term of the Oebye expansion 

The first term of the Debye expansion for /(1)(1T) is 

/~I(1T) = Ito (2/
2
: 1) S~.)I(f3) PI( - 1), (5.4) 

where 
S~.)I(f3)=S~)(l+ 1,/3). (5.5) 

Using the Watson transformation, 

! g(/+ !l=~f g(A.)e-;,rA~, 
I~O 2 c cos 1TA. 

(5.6) 

/bll(1T) can be written 

/bll(1T) = - _1_ f S~I (A.,,8) A. dA. , 
2k c cos 1TA. 

(5.7) 

where PI ( - 1) has been continued to complex 1 using 
PI ( - 1 )==eirrjA 

- 112). The contour of integration C is dis
played in Fig. 3. It can be seen from the Appendix that the 
lower half of the contour C can be deformed to the lower half 
of the contour r, shown in Fig. 4, and the upper halfofCcan 
be deformed to the upper half of r. 5 These deformations give 
rise to residue series contributions from the poles A.n , A.n ± 2 
and A. ~ and A. ~ ± 2, where A. n and A. ~ are given in Appendix 
A of Ref. 3. SO/~)(1T) can now be written 

/~)(1T) =/bl.ls(1T) + /~.~(1T) + f'~.)r(1T), (5.8) 

fll) (1T)= - -1-f Sill (A. ,8) A.dA. (5.9) 
o. s 2k r 0 , cos 1TA. ' 

/~.)r(1T) = _ 1Ti Lresidues[s~)(A.,,8) _A._] , 
k n cos 1TA. A". A" ± 2 

(5.10) 

f'~.lr(1T) = - 1Ti Lresidues[S~I(A.,,8) _A._] . 
k n cos 1TA. A;.A;±2 

(5.11) 

The integral/~.ls(1T) can be simplified by letting A. go to 
- A. on the lower half of r and using Eq. (3.13) to get 

/bl.)s(1T) = ~ L. Sbll(A.,,8)e-i1TAtan(1TA.)A. dA., (5.12) 

where r' is the upper half of r. The main contribution to this 
integral is from IA. 1 S,8 1/2. Expanding e - i1TA.S~I(A.,,8) to or
der 1/,8 in this region yields 

(5.13) 
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Substituting this into Eq. (5.12) and changing variables to 

A = e311r/4f31/2x = ax 

gives 

f~,)s(1T) = lof3 ( Z ~! )e - 2i111OO e - x' 

(5.14) 

[ 
1 11 i ( 2N - 1 ) . X

Z 
i X4 ] 

X - 4 7i + N I /3 + 12 /3 + 0 (,8 -Z) tan (1Tax) x dx. (5.15) 

This integral can be evaluated using the method given in Appendix B of Paper I to get 

In evaluatingfbl
,) r (1T) it is useful to employ the expansion 

1 00 

-- = 2 I (- l)mexp[i(2m + 1)1TA]. 
cos1TA m=O 

(5.17) 

Substituting this in Eq. (5.10) yields 

(I) 21Ti 00 • 

fo, r(1T) = - - I ( - l)mIresldues 
k m =0 n 

[Sb11(A, /3) ei(2m + II"." A. k.,,"± z. (5.18) 

If only the highest order in f3 is kept in the residue series then 
only the second order pole atAn will contribute tof~,)r(1T). 
These residues can be computed using Appendix A of Ref. 3 
to get 

f~.lr(1T) = - ei
"./3 a/3 I (- ItI \i1T(2m + 1) 

4r m =0 n 

X [Ai'( - x n )] -2eil2m + I)"'''" + lower order], 

(5.19) 

where r = (2//3 )1/3, Ai(x)is the Airy function, and - Xn isits 
nth zero. It should be noted that the sums in Eq. (5.19) con

verge very quickly due to the eil2m 
+ I)"'''" term. 

In evaluatingl'~.)r(1T) it is useful to employ the 
expansion 

1 00 

-- = 2 I (- l)mexp[ - i(2m + 1)1TA.]. 
cos 1TA. m =0 

1m >.. 

c 

FIG. 3. The contour C. 
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(5.20) 

'SUbstituting this in Eq. (5.11) yields 

1'~,)r(1T) = - 21Ti f ( - ItIresidues 
k m=O n 

[Sll)(A. (3)e-iI2m+I)"'''A.] 
o , "~."~±Z' 

(5.16) 

(5.21) 

Again if only the highest-order term in f3 is kept in the resi
due series then only the second order poles at A. ~ will con
tribute tOI'~.\(1T). These residues can be computed using 
Appendix A of Ref. 2 and Appendix A of Ref. 3 to get 

I'll) (1T) = ei1r/3 1T/3a e-Z(JINcosh 'N-MI ~ (_ I)m 
o. r M m"=O 

X I [i(2m + 1)1T + 2cosh- 'N + 2iMN] e - il2m + Il"'''~ 

X exp [ - 2{3cosh - 'N ~~:~; ]. (5.22) 

where M = (N 2 - I) 1/2. It should be noted that the sums in 

Eq. (5.22) converge quickly due to the e - ilZm + II"''' ~ term. 
Also, for the range of values of N being considered here, 

I'bl\(1T) is negligible when compared withf~.lr(1T)· 
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FIG. 4. The contour r. The x's are the poles of S~)()., (3) for any p. 
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B. The second term of the Oebye expansion 

The second term of the Debye expansion for pi I( tr) is 

1111(rr) = 'f i21 + 1) SI1I,!J3 )Pz( - 1), 
1 k 2'k I. 

1=0 I 

(5.23) 

where 

(5.24) 

Using the Poisson sum formula 

1\1)(17') can be written 

n)(rr) = Ili,l,(tr) + /,\1\(17'), 

/\II(tr) = _.l.- ! (_ 1)m r"" S\II(A, {3) e il2m + 111TAA dA, 
k '" = _ <X> Jo 

(5.26) 

whereP,( - 1) has been continued to complex I using 
PI ( - 1)= e - injA - 1121. Changing A to - A in the sum from 
m = - 1 to - 00 and using Eq. (3.13) gives 

1\II(tr)= _.l.- f (_1)mJ"" S\Ii(A,(3) ei(2m+I)IT"AdA. 
km=o -00 

(5.27) 

It can be seen from the Appendix that this integral can be 
reduced to a pure residue series by closing the path of inte
gration at infinity in the upper half-plane. 5 This residue se
ries is 

1\1.1,(17') = - :17'i m~o (-It,fresidues[SII)(A,{3)eiI2m
+ IllTAA k.".±2' 

(5.28) 

(5.29) 

/,11\(1T) = - 2
k
tri ! {-1)mrresidues[S\II(A,{3)eiI2m + IhrAA LA~. -A;:t:2" 

rn = 0 It 

(5.30) 

These residues can be computed using Appendix A of Ref. 3 
to get 

/(/.1,(17')= _e- i1T/ 6 ~e2iMp ! (-ltl:[Ai'(-x n )]-2 

217'My m =0 n 

'f)';' { 3i 8 J xe" " 4' [cos(2er ) + 2M sin (2 r) 

+ ~ [O~ + 2MOm - 2M2) + lower order}, (5.31) 

where 

Or 1 
cos- =-, 

2 N 
Om = [(2m + 1)17' - 0,]. 

(5.32) 

(5.33) 

The sums in Eq. (5.31) converge quickly, for the range of N 

values being considered here, due to the elO",A. term. The con
tribution from/tl,(17') is negligible when compared with 
Pi,', (17') for the range of values of Nbeing considered here, so I 
will not write it out here. 

C. The third term of the Oebye expansion 

The third term of the Debye expansion for 1(1)(17') is 

In1T) = Ito (2/
2
; 1) S~~),IfJ)PtI- 1), (5.34) 

where 

(5.35) 

Applying the Watson transformation, given in Eq. (5.6), to 
Eq. (5.34) yields 

f~ll(rr) = - _1_ J S ~1)(A,.8) ~ , (5.36) 
2k c cos rrA 

where PI ( - 1) has been continued to complex I using 
P/( - l)==einjA - 1121. Changing A to - A in the integral over 
the lower half of C and utilizing Eq. (3.13) gives 
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r ----------------------------
l(lj(1T) = - _1_ Joc> + iCl S}II (A, /3) AdA 

2 2k 0 cos 17'A 

__ 1_ fO S ~I)(A, {3 )e2i1TA AdA . (5.37) 
2k _ <X> + ia cos rrA 

Using the fact that 

1 = e 2i1TA 
- 2ieitrAsin(rrA ), 

Eq. (5.37) can be rewritten 

I~'(tr) = 1~1.'s(tr) + 1~1.~e. (17'), 

(5.38) 

(5.39) 

The integral for Ih~ I, (17') can be evaluated using the sad-

... " .. -I 2 

\ \ \ 

iii 
, , i \ \ 

-~" .. -.>..,,:t2lCXX 

\ \ \ 
\" \ 
\\\ ... 

" 

.. !. 
2 2 

\ 
\ 
\ 
\ 
\ 

1m A 

\ 

\ 
\ 
\ 
\ 

\ 
! 

I 
1 

"i"} 

FIG. 5. The contour r·. The x's are the poles of Si'I(A. f3). 
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1~.ls(1T) = ~ J r" S~I(A, p)eim'tan(1TA)A, dA 

21T" 'd - -..::.,resl ues 
k n 

dIe point method. It can be seen, from the appendix, that the 
path of integration can be shifted to the contour r " shown in 
Fig. 5. This deformation gives rise to a residue series from the 
polesatA. andA. ± 2. The number of poles that contribute 
to this residue series depends on the shape of r " in the region 
near the poles A •. However, since the poles far from the real 
axis give negligible contribution, I will add all the residues 
from A. and A. ± 2 to the residue series to give 

[Sill(A, p )ei1TA tan(1TA )A, ]A A+-2' (S.42) 

Along the contour r " the main contribution to the integral 
in Eq. (S.42) is from 1,.1, 1 Sp 1/2. Expanding ei1TASill(A, p) 
about A = 0 gives 

ei1TAS(II(A Q) __ SQN(N - 1) 2i(2N-IIf3 [ . (N - 2) ,.1,2] 
2 ,p - p e exp - 1 -

(N + 1)3 N P 
X[I- ~ (N-2) _ ~ (SN2_2SN+2S) ,.1,2 (N 3-2) ,.1,4 (I)] 

413 N 2 N 2 (j2 - 12 N3 fj3 + 0 fj2 for 1,.1, 1 Sp 1/2. (S.43) 

Substituting this into the integral in Eq. (S.42), changing var
iables to 

iThe residue series in Eq. (S.4S) can be simplified by using 

A = ei1T/4( Nf3 ) 112 x, 
2-N 

(S.44) 

and performing the resulting integral as in Appendix B of 
Paper I gives 

tan(1TA ) = i - 2i ! ( - I )meil2m +- 2111"A (5.46) 
m=O 

to get 

I 111 ( ) 4' Q N
2
(N - I) 2i(2N-IIf3 

2, s 1T = - Lap e 
(N - 2)(N + 1)3 

li1Is(1T) 

_ 4iaf3 N
2
(N - 1) e2i(2N-IIf3[1 + _1_ 

X[I _1_ (N3+30N2_42N+40) +0Ij3-2)] 
+ 12 N(N-2f 

(N - 2)(N + 1)3 12{3 

X (N
3

+30N
2
-42N+40) O(-f3- 2)]-!:!!... 

N(N-2)2 + k 

X Iresidues [S (11(,.1" f3)e i1TA tan (1TA)A, L".A"±2' 

• (5.45) 

- 21Ti "residues [S 111(,.1" P )ei1TA A 1 k ~ A".A"±2 

41Ti 00 + - I ( - l)mIresidues 
k m =0 n 

[SIII(A Q)ei(2m + 311TAA, ] . 
2 , JJ An,A" ± 2 
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FIG. 6. The asymptotic behavior of H~I(j3) + H~'(j3 )S~OIIA, f3) = H(21(j3 )T2 .IA, f3). 
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Equation (5.41) can be simplified by utilizing Eq. (5.17) 
to get 

fil.~es(1T) = - ~ % (- l)m f'" S~II(A,P) eiI2m+311TAA dA. 
k m - 0 00 (5.48~ 

It can now be seen from the Appendix that fil.' res (1T) can be 
reduced to a pure residue series by completing the contour of 
integration in the upper half-plane5 to get 

(5.49) 

fil.',(1T) = - :1Ti m~ 0 ( - l)m~residues [Sil'(A, P) eil2m 
+ 311TAA k. A" ± 2' (5.50) 

rill (1T) = - 21Ti I (- 1tIresidues [Sili(A, P) eil2m + 311TAA LA' _ A' + 2' 
. , k m = 0 n ". " -

(5.51) 

Finally, combining Eqs. (5.47), (5.50), and (5.51), 

flli(1T) = _ 4iap N
2
(N - 1) e2iI2N-IIf3[1 + _1_ (N

3 + 30N
2 

- 42N + 40) + 0(/3 -2)] 
2 (N _ 2)(N + 1)3 12/3 N(N _ 2)2 

_ 21Ti ~ (_ l)m~residues[SIII(A a) eil2m + 111TAA ] 
£.. £.. 2 ' fJ A". A" ± 2 

k m=O n 

- 21Ti I (_1)mIresidues[Sill(A,P)eiI2m+311TAA LA~. -A"±2' 
k m =0 n 

(5.52) 

I will not write out the expression for the residues here since 
it is complicated. As was the case for the first and second 
terms of the Debye expansion, the contribution from the 
poles at - A ~ and - A ~ ± 2 is negligible in comparison 
with the contribution from An and An ± 2. 

6. CONCLUSION 

I have shown in this paper that it is possible to extend 
the modified Watson transformation for spherical transpar
ent particles to slightly nonspherical transparent particles. 
This was accomplished by combining boundary perturba
tion theory, the Debye expansion, and the modified Watson 
transformation. This method yields for the scattering 
amplitUde 

(6.1) 

wherefI01(8) is the scattering amplitude for the unperturbed 
sphere. The functionfol( 8 ) is given by an expansion similar to 
the Debye expansion for fI01(8), 

fOWl = If~W). (6.2) 
p=O 

A - PLANE 

I 
The functionsf~II(8), which are obtained using the Debye 
expansion for SOI(A, P) given in Eq. (3.11), are evaluated us
ing the modified Watson transformation. This method was 
applied to the problem of back scattering by a sphere with its 
shape perturbed by adding [)aP2 (cos 8) to the radius. 

The example in this paper can be easily extended to the 
entire angular domain of 8 and to any value of N which 
satisfied IN - 111/2(ka)1/3> 1, by using the same methods as 
were used in Refs. 3 and 4. Higher-order solutions in [) can be 
obtained using methods similar to those presented here. 

In the example treated in Sec. 5, I have only calculated 
the first three terms of the Debye expansion. Higher-order 
terms can be calculated using methods similar to the ones 
used in Sec. 5. The contribution from these higher-order 
terms may not be negligible, depending on the value of N. 

It should be possible to treat particles without an axis of 
symmetry by letting cu(O) be a function of rp and substituting 
spherical harmonics for the Legendre functions in the partial 
wave expansion. This case should be more interesting than 
the particle with an axis of symmetry, especially when con
sidering the glory. The reason for this is that the glory occurs 
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FIG. 7. The asymptotic behavior of H~1(j3)SI,OI(A., f3) = H~'(j3 )U(A., f3). 
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FIG. B. The asymptotic behavior of H~V3)SIOI(A, /3) = H\II(/3 lUll, /3 )p(A, /3). 

partly because surface waves, after traveling around a 
sphere, add up in phase in backward direction. This would 
no longer be the case for a particle withou t an axis of symme
try; therefore the glory should be strongly affected. 

In a future paper I will use the solutions generated in 
Paper I and in this paper to investigate the effects of particle 
shape on scattering cross sections. I will also look at the rate 
of convergence of the Debye expansion forl ll(1/'}. 
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APPENDIX: ASYMPTOTIC BEHAVIOR OF SJ1)(..i, {3) 

The asymptotic behavior of S~I()., (3) can be derived 
from the asymptotic behavior of H~' 21(fJ) and S~OI(A., (3) giv
en in Refs. 2-4. The results are displayed in Figs. 6-8. 
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a 

The notation is the same as in Appendix B of Ref. 2. For 
I). 1-+00 along directions approaching the positive or nega
tive imaginary axis the notation is 

A. = ± 0'1). I, 
(7' = exp[i(1/'12 + E)), 

171 = E InlU leal, 

172 = E InlU le(3l· 

The results given here are all for N> 1. 

(AI) 

(A2) 

(A3) 

(A4) 

I J. Krebs, J. Math. Phys. 23, 2494 {1982), "Impenetrable particles" (preced
ing paper, hereafter referred to as paper I). 
'H. M. Nussenzveig, Ann. Phys. (NY) 34,23 (1965). 
'H. M. Nussenzveig, J. Math. Phys. 10, 82 (1969). 
4H. M. Nussenzveig, J. Math. Phys. 10, 125 (1969). 
'When completing contours of integration at infinity, the contour at infin
ity must be chosen to be the limit of a series of contours that pass halfway 
between the poles of the scattering matrix, as was done in Sees. 4 and 5 of 
Paper I. 
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The complete asymptotic expansion of the Feynman amplitudes for large values of the scale 
parameter is derived in the t/J: -theory for Euclidean and Minkowski metrics. 

PACS numbers: 11.20.Dj, l1.lO.Jj, 11.l0.Gh 

I. INTRODUCTION 

The large-momentum behavior of Feynman amplitudes 
has attracted attention since the early days of renormaliza
tion theory. 1 Weinberg's power counting theorem,2 proved 
for convergent graphs and Euclidean metrics, found innu
merable applications in Lagrangian field theory. In 1968, 
Fink3 obtained more detailed information concerning the 
logarithms which accompany the leading power ofthe scale 
parameter A. In 1973, Slavnov4 showed that every (inverse) 
power of the overall scale parameter A in the asymptotic 
expansion of the Feynman amplitude is accompanied by a 
polynomial in In A-and nothing else. In 1974, Bergere and 
Lams determined all the coefficients going along with the 
leading power of A. 

In the context of local gauge theories and chiral dyna
mics the transition from massive to massless propagators is 
of interest. On the other hand, the behavior of a Feynman 
amplitude when all masses in the propagators shrink to zero, 
the mass ratios (and the external momenta) being kept fixed, 
is intimately related to that of the same Feynman amplitude 
when all (external) momenta are rescaled by a common fac
tor A tending to infinity, the masses in the propagators being 
kept fixed. Hence, there is additional motivation for the 
analysis of the large-momentum behavior of individual 
Feynman amplitudes. In particular, our analysis includes 
Feynman amplitudes of massless theories. 

The present work gives the complete large-momentum 
(and small mass) behavior of Feynman amplitudes for indivi
dual vertex graphs and thereby for arbitrary individual 
graphs in the t/J : -theory to which we restrict ourselves for 
the sake of transparency. 

It should be pointed out here that no restrictions are 
imposed on the momenta carried by the external lines of the 
graph in question, either linear ones (of the kind of vanishing 
partial sums of the momenta) or quadratic ones (mass shell 
conditions). Restrictions of this or a similar kind require spe
cial consideration because we view the asymptotic expansion 
in the context of distributions and not for every configura
tion of the external momenta separately. This distribution
theoretical formulation of the problem turns out to be both 
adequate and helpful for Minkowski metrics. 

The appropriate frame for the derivation of the asymp
totic expansion of the Feynman amplitudes appears to be the 
analytic renormalization scheme6-8 (and possibly the renor
malization formalism which is based on dimensional regu
larization9

). In this scheme integrations over contours in the 
complex plane achieving analytic continuation take the 

place of the cumbersome Taylor operator in the Bogoliu
bov-Parasiuk-Hepp-Zimmermann renormalization for
malism (cf., e.g., Ref. 5). Also, the concept oflabeled (singu
larity-) s-families (lE,u) in the analytic renormalization 
scheme7 corresponding to the resolution of the ultraviolet 
singularities of the Feynman integrand10 lends itself in a na
tural way to a generalization: the concept oflabeled s 00 -fam
ilies (lE oo ,u"" ) (explained below in Sec. IV) corresponding to 
the resolution of the combined ultraviolet and infrared sin
gularities. In order to derive the complete asymptotic expan
sion for the scale parameter A tending to plus infinity, the 
degeneracies of the quadratic form of the external momenta 
entering the Feynman integrand need to be extracted com
pletely. This is achieved by diagonalization of the quadratic 
form (Sec. III), subdivision of the integration domain of the 
Feynman parameters (Sec. IV), and parametrization of the 
resulting subdomains (Sec. V). Section VI recalls the analytic 
renormalization procedure. In Sec. VII the asymptotic ex
pansion is derived and stated in a form which allows one to 
read off the error committed when it is truncated after a 
finite number of terms. 

Actually, if one is interested only in the first few terms 
of the asymptotic expansion and the error committed when 
truncating the asymptotic expansion already after those, a 
partial diagonalization of the quadratic form and a less de
tailed subdivision of the integration domain of the Feynman 
parameters will be sufficient. 

For the co~venience of the reader some basic notations 
and definitions of the theory of Feynman graphs-so far as 
they are relevant in the present context-are collected in Sec. 
II. The material is taken from Refs. 11 and 12. 

The present article reports work done in 1974. 13 This 
work has not been published up to now with the exception of 
a short introduction to the problem and an announcement of 
the results. 14 Nevertheless, meanwhile the basic ideas and 
methods have been applied in the literature (cf., e.g., Ref. 15). 
The actual presentation differs from the original one by the 
incorporation of Trute's graphical rules for the diagonaliza
tion of the relevant quadratic form, very appealing and effi
cient rules, indeed, which replace the author's own less ele
gant diagonalization techniques. 

Since August 1974, several articles 16-19 appeared deal
ing with the (pointwise) asymptotic behavior of Feynman 
amplitudes. On the one hand, they carried the analysis of the 
asymptotic behavior beyond the limitations of the present 
paper establishing, e.g., the (pointwise) asymptotics when an 
arbitrary subset of the invariant momenta is scaled 17.18 or the 
Regge pole behavior of the four body scattering amplitude 
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for the <P ~ -theory. '9 On the other hand, the procedure de
scribed there for constructing a required number of terms of 
the asymptotic expansion and for determining the error 
committed by truncation is in general much more time con
suming than the algorithm presented here, where the coeffi
cients of the asymptotic expansion are expressed in terms of 
subgraphs and reduced graphs; only the minimal amount of 
partial ordering of the Feynman parameters is employed and 
the dimension ofthe multiple Mellin transformation is inde
pendent of the order of perturbation theory. Moreover, the 
analysis of Refs. 1 ~ 19 requires Euclidean metrics. It applies 
to Minkowski metrics only in special situations. 

It is recommended that the reader look up Ref. 14 for a 
general orientation before going through the following de
tailed analysis. 

II. BASIC GRAPH-THEORETICAL NOTATIONS AND 
DEFINITIONS 

A graph G is a triplet consisting of a (finite) collection 
l'(G) of 1l'(G)1 vertices v, a (finite) collection 2"(G) of 12"(G)1 
(internal) lines I and a mapping <Po :2"(G )---+if(G) X l'(G), 
~G 

1---+ (<Pi (I ), <p/(1 I), where <Pi (I), <PI(/) are the initial and final 

vertices of the line /. 

G= HG),2"(G),<po). 

The union G of two graphs G 1 and G2 : G = G,uG2 de
fined by l'(G) = l'(G,) u l'(G2 ), 2"(G) = 2"(Gd u 2"(G2 ), 

<Po(l) = {<Po, (l) if IE2"(GIl, 
<Po,(!) if IE2"(G2), 

provided <Po, (I) = <Po, (I) for every IE2"(G,) n 2"(G2) is again 
a graph. 

Asubgraph H ofagraph Gis a graph (l'(H), 2"(H), <PH) 
such that l'(H)C l'(G), 2"(H)C 2"(G), <PH = <Po 12"(H) [in 
words, <Po restricted to 2"(H)]. 

A subgraph F of a subgraph H of a graph G is a sub
graph ofG. 

If H is a subgraph of G we shall write H C G. 
Let v be an element of l'(G). We define sets oflines Y(v) 

and 2"(v) according to 

Y(v) = \fE.5t'(G )1<pi(/) = v or <PI(l) = v J, 
2"(v) = ! IE.5t'(G )/<pi(/) = v = <pI(/) l· 

Two distinct vertices v and v' are called adjacent if 
Y(v) n Y(v')#0. Two vertices v and v' are connected if there 
is a sequence of vertices v = vo, v" ... ,vk = v' such that Vj and 
v ,(j = O,I, ... ,k - 1) are adjacent. 
J+ f' A graph G is said to be connected if any two 0 Its ver-

tices are connected. Otherwise, G is said to be disconnected. 
A graph G can uniquely be decomposed into a union of 

connected subgraphs Hi of G i = 1,2, ... , p(G): 
P{O) 

G= u Hi' 
i= 1 

TheH;'si = 1,2, ... , pIG )arecaUed the connected components 
ofG. 

For any subset J of 2"(G) we define the subgraph 
G - J of the graph G according to 
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G - J = (l'(G), 2"(G )'\J,<po 12"(G )'\J). 

For an arbitrary line 10E.5t'(G) consider the subgraph 
G - ! 10 l obtained from G by deleting the line 10, The line 10 is 
said to be a cut-line if pIG - (10 l\ > p(G). 

A graph G is called one-line-irreducible (or strongly 
connected) if it is connected and if it does not contain a cut
line. Otherwise, G is called one-line-reducible. 

Any connected component Hi of a graph G can be de
composed uniquely into C(Hi) one-line-irreducible compon
entsjoined by (C(Hi) - 1) cut-lines. 

A vertex VEl'(G) is said to be a cut-vertex of the graph G 
if a connected component H of G has two subgraphs F, and 
F2 such that 2"(Fd#0, .5t'(F2)#0, .5t'(F,)n2"(F2) = 0, 
2" (F,) u 2" (F2) = 2" (H ), and if(F,) n if(F2) = ! v l. 

A graph G is said to be one-vertex-irreducible if O'(G) 
contains no cut-vertex. Otherwise, G is said to be one-vertex
reducible. 

Any connected component Hi of G can be decomposed 
uniquely into k (Hi) one-vertex-irreducible components 
joined by (k(Hi) - 1) or fewer cut-vertices. 

A graph G is said to be irreducible if it is both one-line
irreducible and one-vertex-irreducible. Otherwise, G is said 
to be reducible. 

Let h be a subset of l'( G ) containing more than one ele
ment. We define G (h) to be the graph ((l~(G )'\h) u ! [h] l, 
2" (G), <Po 1"'1) obtained by identifying the vertices in h 

if <Pi (I ),<P/(/)El'(G )'\h, 

if <Pi (I)El'(G )'\h, <PI(l)E h, 

if <Pi (I )E h,<Pf(1 )Eif(G )'\h, 

if <Pi (/),<p/(1 )E h. 

If VEif(G), then v'" will denote the corresponding vertex in 
G(h). 

Let h' = ! v""A""1 l be a subset of l'(G) such that It v1, 
... ,vt""1 II ;>2. Then the symbol G (hlk') denotes the graph 

(G (h))( t v1,···,vt""1 l), 

obtained from the graph G (h) by identifying the vertices v1 
, ... ,vt""I' We define similarly G (hlh'IP), and so on. 

Let HC G be a subgraph of G. For any VEl'(G) define a 
number 

D(v,H) = IY(v) n 2"(H)1 + 12"(v) n 2"(H)I· 

A path P between two distinct vertices v, and V2 is a minimal 
connected subgraph of G such that for any VEl'(G) 

{
o or 2 if v# v"v2, 

D(v,P) = 1 l'f V V = v, or v = 2' 

A loop C is a minimal connected nonempty subgraph of G 
such that for any VEl'(G) 

D(v,C) = ° or 2. 

Let G be a graph. The number of independent loops of G 
will be denoted by N(G). The numbers 1l'(G )1, 12"(G )1,p(G), 
and N (G ) are related by the equation 

N(G) = 12"(G)1 +p(G) -1l'(G)I· 

From now on, the graph G will always denote a connected 
graph. 
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A subgraph TI = T of G is called a I-tree or a tree of G if 
if(T) = if(G), 12'(T)1 = lif(G)1 - 1,p(T) = 1; i.e., if Tcon
nects all vertices of G to each other, and if 2' (T) does not 
form loops (N(T) = 0). 

The set of all trees of G will be denoted by T G • 

A subgraph Tr of G is called an r-tree of G if if( T,) 
= if(G), 12'(T,)1 = lif(T,)1 - r,p(T,) = r, i.e., if T, effects a 

partition of the vertices of G into r mutually disjoint sets any 
two vertices of the same set being connected in T" and if 
2'(T,) does not form loops. 

The set of all 2-trees of G effecting a partition of the 
disjoint subsets ...1 l' h z of if( G) from each other will be denoted 
by TG (hllhz). 

A subgraph T; of G, related to some r-tree T, of G as 
follows: 

if(T;) = I vlv = ¢Ji(l) or v = ¢Jr(l) for some 

IE2'(G )'\2'(T,) J, 
2'(T;) = 'y(G}'\.Y(T,), 

¢J T ; = ¢JG/fIT ;) , 

is called a co-r-tree of G. Among the various subsets of if(G) 
we distinguish the set 9'G of alll9'G I external vertices. If k" is 
a subset of 9'G' k~ will denote the complementary subset 9'0 

'\k" of 9'0' 
Next, following Trute, 12 we introduce the concept of an 

m-family of subsets of 9'G (the latter m stands for "momen
tum"): 
A collection IIG of subsets ...1 of 9'G is called an m- family if it 
meets the following requirements: 

(al If hi' hzEIIG, then either ...11 Chz or hzCh l or 
...11 nhz =0; 

(j3 )0EtIlG· If F C IIG' then 9'G '\ U hEiIlG; 
"EF 

(y) If hEllo, then 1...11 = I U ...111 + 1; 
h,EHa, hl~hl 

(8) IIG is maximal. 
Given an m-family IIG' then the following statements are 
true: 

(i) IlIol = I9'GI; 

(ii) 9'GEIIG; 

(iii) Each hEIIG can be labeled by the unique vertex 
v" E9'G' which is contained in h and is not contained in any of 
its proper subsets from IIG. 

(iv) Each v = v,,, hEIIG, ...1 =/= 9'G possesses a unique pre
decessor V4 such that 

...1 C h' EIIG' h' is minimal. yo 

III. DIAGONALIZATION OF THE RELEVANT 
QUADRATIC FORMS 

The integrand of the Feynman-parametric integral cor
responding to the (connected) Feynman graph G involves the 
external momenta by means of the quadratic form 

VG=U(iIX ! WGIA'IA'·)X(LPvY. PvEIR4, 
(A'jl=?G VEA' 
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Here the quantities UG and WGIA'I"<-') are defined by 

UG = I ITa" 
T1ETG lET~ 

The quadratic form V G can be diagonalized. In this context, 
Trute12 derived the following important statement. 

Let IIG be an arbitrary m-family of G. Let the elements 
ofllG; hi' i = 1,00', I9'G I; h lyGI = 9'G be ordered (in some 
arbitrary fashion) according to the index i. Define G (VA'" VA',,) 

to be the graph G, denote the vertices of G (vh, v)', 
oo.v V4 ) by vh

,,.;, , and let Wi stand for the following h, I ~, 1 'J 

function (in the definition of W~(I.II) the sum extends over 
all 2-trees separating the indicated sets of external vertices) 

( 
;;J ... 4, lV11···h, l1 v>i,"'/', 

_ W vh , h, h, 

G(vh,v4,1-oolvh, ,v4, ,) 

Then the following formula is valid: 

with 

The transformation 

lJEvc; 

. . 1 l' . f 1R41 "G I - 4 t 1R41?G I - 4 IS a nonsmgu ar mear mappmg 0 on 0 

depending smoothly (e 00), on the Feynman parameters a in 
the range a, > 0 for allIE'y(G). 

In the preceding, we have employed a shorthand nota
tion by writing, for instance, G (VA', V4, 1 .. ·lv n', V4, ) instead of 
G (\ v'" ,v~, 11· .. 1 {vn', .v)', lJ. In the sequel we shall continue to 
use this shorthand notation. 

IV. SUBDIVISION OF THE INTEGRATION DOMAIN OF 
THE FEYNMAN PARAMETERS 

Given a (connected) graph of G, I9'G I =/=0. Along with G 
consider the graph G (9'G) 

G(9'G) = (t'(G)'\9' G ul [9'G])' 2'(G). ¢JG("G))' 

obtained from G by identifying all external vertices. We shall 
write 

Voo = [9'G]' 

Consider also the graphs G (9'G '\ { v I ). VE9'G' 

G (9' G '\ ( v I ) = (if( G ) '\ (9' G '\ I v I ) U ( [9' G '\ I v I ] I, 
2'(G). ¢Jol"G,(vll)' 

obtained from G by identifying all external vertices but one: 
v. We shall write 

[9'G'\ Ivll = Voo (v) if 9'G'\ (v) =/=0. 
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A subgraph H of G is said to be irreducible "in view of infin
ity" (I"" ) if the subgraphs H (9'G) and H(9'G \ ( v ] ) 
(VE9'G n o-(H)) of G (9'G) and G (9'G \ (v]) (VE9'G n o-(H )), re
spectively satisfy 

o-(H (9'G)) 

and 

and 

= {o-(H)\(9'G no-(H))n [v",,] 

o-(H) 

if 9'G n o-(H) =j:.0, 

if 9'G n o-(H) = 0, 

o-(H(9'G\{v])) 

and 

= {o-(H )\((9'G \ (v]) n if(H)) u (v", (v)], 

o-(H), 

if (9'G\[v])nif(H)=j:.0, 

if (9'G \ ( v ]) n if(H) = 0, 

have the following properties: 
(i) H (9'G) is one-line-irreducible, 
(ii) none of the vertices contained in if(H (9'G)) \ [ v""] a 
cut-vertex of H (9'G)' 
(iii) H (9'G \ ( v]), VE9'G n o-(H) is connected, and 
(iv) no vertex VE9'G n if(H) is a cut-vertex of 
H (9'G \ ( v] ). 

Otherwise, H is called reducible "in spite of infinity" (R"" ). 
Next, we define an s"" -family IE", for G as a maximal collec
tion of I", -subgraphs H of G with the following properties 
(cf. Ref. 13): 

(S"" - 0) .2"(H)=j:.0. 

(S", - I) If H, H 'EIE"" , then either HCH', H' CH, 

or .2"(H) n .2"(H') = 0. 
(S", - 2) If HI, ... ,HrEIE", and .2"(H;) n .2"(Hj) = 0 

for any i=j:.j, then u/= IH; is R",. 

Moreover, we define a labeled s '" -family for G to be a pair 
(IE", ,(7", ) where IE"" is an s "" -family for G and (7"" a mapping 
(7", :IE"" -.2"(G) satisfying 

(S", -3) (7",,(H)E.2"(H). 

(S"" - 4) If H'EIE"" is a proper subset of HEIE"" 

then (7", (H )Ei.2"(H '). 

The following statements can be proved along the lines of 
Ref.20. 

(i) For every HEE", there exists a line IE.2"(H) not con
tained in .2"(H ') for any H 'EIE", ,H' SH. 

(ii) I[H'EIE""IH'CH]I =N(Hl9'G))' 
(iii) Every s "" -family IE '" for a (connected graph G may 

be labeled, i.e., there exists a mapping (7 "" :E"" -.2"(G) such 
that (IE", ,a 00 ) is a labeled s 00 -family for G. 

(iv) If (IE 00 ,a"" ) is a labeled s 00 -family for G, then T IYG I 
= TIS'" I (IE""a",);(if(G), .2"(G)'\ {(7", (IE",lj, 
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<PGIJIG I, lu. IE. Ii ) is a I9'G I-tree of G, each of the I9'G 1 con
nected components of Tinl containing exactly one external 
vertex. Consequently T 
= T(IE"" ,ax) = (,.(G)\9'G u{v", j, .2"(G)'\{a", (IE",,)1. 

<PGIVI,II fiG I, I u, II'., II ) is a I-tree of G (9'G)' 
(v) Consider the domain of integration of the Feynman 

parameters a" IE.2"(G): {go = (al, ... ,a'L'IGII )/a,>O for all 
lEX(G)]. 

If (IE"" ,(7 "" ) is a labeled s 00 -family for G we define fi) 00 

= goo (IE", ,a dO) to be the subset of the above integration 
domain given by fi) '" = [qla, >0 for allIE.2"(G), a, 
~a".. (H 1 for alllE.2"(H), HEIE", ]. 

Then it is true that: 
(a) ufi} "" = ufi} "" (IE"",a "" ) = (a/a, >0 for all 

IE.2"(G)], where the union extends over all labeled s "" -fam
ilies for G. 

(b) fi) '" (IE",,(7 '" 1 n fi) 00 (E:" ,(7:" ) has Lebesgue mea
sure zero for any two distinct labeled s dO -families for G: 
(IE", ,(7", ) and (IE:" ,a:" ). 

(vi) Set H", = IH IHEIE oo ' N(H) = N(H - l(7oclH)]) 
and N(H (9'G)) = N(H (9'G) - f (7 x (H) J ) + 1]. There exists a 

T 

mapping 7: HEH oc +-+ .hEHG \ ! 9'G I for some m-family HG 
T ' 

such that the partial sum of external momenta that flow 
through the line (7 "" (H) in the tree (o-( G), .2" (G ) '\ ! (700 

(IE"" \Hoo)), <PGI ... ) can be written as 'I.VE"Pv' The elements 
of HG are totally ordered.h; i = 1, ... , I9'G 1 - 1, .h lv" I = 9'G: 
j>iif~ =7-

1 (.hj);JH, =7-
1 (.h;). 

V. PARAMETRIZATION OF THE SUBDOMAINS OF a
INTEGRATION 

For any line lE.2"(G) we define H, to be the minimal 
element of IE"" containing the line I. With this notation the 
subset fi} 00 of the domain of a-integration can be parame
trized as follows: 

if I = a"" (H) for someHEIE"", 

if 1 =j:.(7 "" (H) for any HEIE"" , 

where O~tG < 00, O~;tH~ 1 for any HEIE oo ' H =j:.G, O~.8I~ 1, 
I =j:.(7 "" (H) for any HEIE"" or, writing the symbol t for 

(tH)HEt:. 'H#G andthesymboI~ for(.8tl'#u"'III,'!I~EEoc 
O~tG < 00, ~ ~)E I IY'IGII - 1 with I = [0,1]. 

Now, arguing along the lines of Ref. 20, one finds in 

fi) 00 ' 

(i) UG = II tN(Hld't,o,U"I(!,~), 
HEE 

UGlv/"v;;,I"·lvh.v;,,1 U Gilu4" ... ,u/"" II 

UGlu/"u;;,I-"lv/, ,v;', ,I UGllv/", ... ,v/,,11 

where 

d IE~ u" l(t,.8) 
it .8) G,I 1:_ 

eH , I:J - = d IE~ ,u" I(t .8) 
G,l- 1 \!!_ 
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and where 

d~i .uoo )(!.? /!} = d~n~:.7).v;;,II(!.? /!}, i = 0, ... ,190 1 - 1 

are polynomials in !.? /! larger than or equal to one for (!, /! ) 
El1Y(G)i ~ I; 

(ii) the transformation 

[PI"",PIYGljl L Pv = (h[qH = qH(!,../!}]HElil oo 

vE 'Fe 

= '1.(!,../!) = '1., 

qH = q .. where h = r(H}, HeR"" is a nonsingular linear 
mapping ofR4 1"G I ~ 4 onto R4 1"G I ~ 4 depending smoothly (i.e., 
in an infinite differential manner) on the parameters t, (3 for 
(!, /! ) for (t, (3}e I IY(G)I ~ I. - -

Thus the quadratic form Va in fP "" is 

Va = - toE!.f!('1.(!.?/!),'1.(!.?/!}}' 

E!.f!('1.''1.} = + } ( II tw)eH (!.? /!)( - q~}. 
Htrt~ H'EE~" I a I 

H'-::JH 

VI. ANALYTICALLY RENORMALIZED FEYNMAN 
AMPLITUDES 

For the sake of simplicity and definiteness, we shall re
strict our discussion to Feynman amplitudes occurring in 
the perturbation expansion of a P (t/J )4 Lagrangian field the
ory describing a polynomial self-interaction of one sort of 
neutral scalar massive (m) particles in one time and three 
space dimensions. The generalization to theories involving 
massive particles with spin and derivative coupling in one 
time and arbitrarily many space dimensions is straightfor
ward (cf., e.g., Ref. 12). 

Consider a vertex graph G. Without loss of generality it 
may be assumed that G is irreducible. Set 

v(G) = V, Po = p, 2'(G) = 2', N(G) = N. 

With Speer6 we associate with every line I of the vertex graph 
G a complex variable AI' ~ = (AI }/EY , and modify the propa
gators according to 

i 1 e
j1r

)"F (A) [k 2 2 '0] ~" 
(21T)2 k 2 _ m 2 + iO --+ i(21T}2 - m + I , 

..1F(X j(/) - xf(l);m}-..1 :;(xj(l) - xf(l);m) 

=.'7 I [k2-m2+iO]~'" {
ei1r",r(A) } 

k i(21T}2 

X (xi(l) - xf(I)}. 

This modification of the propagators results in the re
placement of the amplitude 

which in general is ill-defined, by the analytically regular
ized amplitude 

07 ((x) 'm} _ iH ~ I (4r}I..Y1 + 1 .. 14N 

" VVE,,' - "--(4....;.r-:"""}I,-.I-+-I-

xf .. ·f II d 4x v ij..1:;(x j(l) -Xfll);m) 
ve/'''9' Ie.!/' 
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which is well-defined for AeJJ2 = [A If!/t eAI > Uor all Ie 2' j. 
In fJ 2 the Fourier transform of 07" can be expressed 

with the help of the parameters! and/! as follows (cf. Ref. 7) 

.r~(e;m) = LjTr~(e;m), 

where 

v(H) = l:/eY(H) (AI - 1) + n(H},n(H} = 12'(H)I- 2N(H), 
v = v(G), n = n(G) and where the sum extends over all la
beled s", -families (lE", ,a"" ) for G. 

Usingthefactthat [E!,~ (q(!,../! ),q(!,../!)) + m 2l:/eY (all 
aU_1G)} - iO] ~"is an infinitely differentiable distribution
valued function of t and (3 as long as m is larger than zero, we 
may convince ourselves that 

II F(v(H})~I.rr~(e;m) 
HeE_ 

is an entire distribution-valued function of A for every la
beled s"" -family. Hence the distribution-valued function of.&. 

IIr( '5' (AI - I) + n(H}}-ljT~(e;m) 
H le!?fHI 

is an entire distribution-valued function of A for every la
beled s"" -family. Hence the distribution-valued function of 1-

Speer's generalized evaluator 'lr = ['lrLIL = 1,2, ... 1 
is applicable to the amplitUdes Y,,(e:m}. The result of the 
application 'lrly I Y J. (e:m ) is the analytically renormalized 
Feynman amplitude of the vertex graph G contributing in 
Ivlth order perturbation theory to the vertex function of the 
momenta carried by the "external lines" of G. 

VII. ASYMPTOTIC EXPANSION OF ANALYTICALLY 
RENORMALIZED FEYNMAN AMPLITUDES 

Now we are in the position to determine the complete 
asymptotic expansion of the (..1-) parameter dependent dis
tribution 

,q A(e;m} = 'lrIYljT~(~;m} 
for A tending to plus infinity. By contrast to other authors 
having contributed to this SUbject, we do not discuss the 
asymptotic behavior in A of !t A (e:m) pointwise, i.e., for a 
fixed configuration of the external momenta (pv )vep' In
stead, we establish the asymptotic behavior ofthe complex
valued function of A 

(,q A'~) = f d41 .. lp~ (e},q A (e;m) 

for any 4'eY(R4 1 .. 1). At the first sight, this seems to compli· 
cate matters unnecessarily. For Minkowski metrics, how
ever, the latter formulation of the problem turns out to be 
both adequate and helpful. 
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In order to establish the asymptotic expansion of the parameter-dependent distribution !i A te:m) for A tending to plus 
infinity, it suffices to determine the asymptotic behavior of 

[A 2r+
2
!i,::"-(e;m) = [A 2]n+2J'rIYIYf-(1£;m) = J'r"',IYIYf-(e;m/A) = b( L PV)J'rIYI 

X{[A 2]-,];(A'-llr (V) II [LdPtlJ1,-I] II [(ld;~:~H)-IJ 
'EY"lv~IE_II 0 HEE';;IGI )0 

X [E!,(l(q(!> ~ ),q(!> ~)) + e!!., ~ )m2
/ A 2 - iO] - V/[d!!.. ~)J'} 

for every labeled Soo -family where we have set 

e(!> ~) = elE
- ,v_ I(!> ~) = I (a,/avoo(GI» 1 

'EY' 

and 

- I lA, -II 
J'r"',IJI = J'rIJ1 [A 2] Icy • 

Without loss of generality we may assume that 19'1 is larger than or equal to two. 
The limit A~ + 00 corresponds formally to the transition from the Feynman amplitude with massive lines to the 

Feynman amplitude (for the same vertex graph G) with massless lines, In the zero mass case, however, we are dealing with a 
complex power of a homogeneous quadratic form: [E" f3 (q!!.. ~ ), q(!, ~)) - iO 1 - v which fails to be an infinitely differentiable 
function of! whenever and wherever the quadratic form E" f3 (q,q) degenerates. It is this lack of infinite differentiability which 
prevents us from finding the answer to our problem right away, and, moreover, forces us to introduce the subsets of a-space 
!iJ 00 =!iJ '" (E=,O" 00 ) instead of!iJ (E,O") (cf. Ref. 7). 

In order to control the formation of the singularity under consideration, we convert the additive occurrence of - q2 H 

and m 2/A 2 in 

[
+ I ( II tH')eH(!>~)(-qH2)+e(!,~)m2/A2-iol'-v 

HEClI, H 'EE. "I G 1 
H'JH 

into a multiplicative occurrence with the help of Mellin transforms, The result is 

r(V)-t[ 2A2 ]"II [_1.f-YH"-dSHr(_SH)(eH(!>~)A22 II tH')'u(-q~-iorH]r(v+ ISH)' 
m e(!,~) HEH~ 2m -YH ,_ e(!>~)m If'EE';IHI,,IGI HEiI. 

where the rH'S, HElHIoo are real numbers between zero and two. 
Moreover, we have partly employed the following notation: 

Let Goo be an arbitrary family of subgraphs of G, Then for a subgraph H of G we define 

G;;;(H) = IFIFEGoc,FCHj, 

G~ (H) = IF IFEG oo ' FCf-H I, 
G~ (H) = IF /FEG oo ' F-:JH j, 

G,: (H) = 1 F / FEG = , F;; H I· 
For ~ contained in a compact subset of il211vl- II = IA. /171 eA., > 2(19'1 - 1) for all lEX 1 and for (!> ~) contained in! 1./1 I, the 
integrations over SlJ converge uniformly, In order to prove the uniform convergence, we note the identity 

(-q2-iO)'= (_q2_iO)'+1 (_~)j 
[Is + l) ... (s + j + l)][(s + 2).··(s + j)] 4 

for any j = 0,1, ... , In view of this identity and the above Mellin representation we obtain 

( II tI1HI-I)[E,,(!(q,q)+e(~,{?)m2/A2-iO]-V 
HEE;:(GI 

= II - ds H H H '- II t, (_q2 _iO)Su+lu [ 1 f- YJJ
+

iOC r(-s -j -1) (A 2
e (t P) )SII ,] 

HEH. 21Ti -Yll-ioo H (SH +2)"'(SH +jH) m2e!!..~) H'E E';;(GlnE"; (HI H H 

Xr v+ Is II tv(FI-t - IT ~ ( )( 
)( 1)1;'1-1[ A2 ]" (D )lH 

HEll. H FEE;: (G) F r (v) m2e(tl.,{?) HEll,., 4 ' 

where the following estimate for rH i= - 1,jH>2, HElHIoc can be used 
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for SH = - YH + iT/H' 

In the pointwise discussion for Minkowski metrics, on the other hand, even in the case that all q1 > 0, HElH oo ' the 
corresponding s-integrations would not converge uniformly in -i, !.? and 11. provided that Yl eV is larger than or equal to zero. 

For -iE il211'/1 .. II we have shown the following representation to be valid 

2 

gJ;~ Le;'!!), 

where 

gA).e;m) =g'Ii ,<T. I(.e;m) = II [T(V(H) + I SH)]hJ;~(.e;m) 
HEK. H'EIl;If{1 

with the entire function of A and s 

hJ;~(.e;m) = h'Ii ,<T. I(.e;m) = II [ tdf3lJ1' - I] 
IEI,I", IE, II Jo 

[ 

-I I IvIFI+ I SF'-II] 

X II r(V(F) + I SF') 1 dtFt F r.floclfl [d(!'?I1.)]-2 
FEE';;'IGI F'EH';;WI 0 

X[m 2e(!.?I1.)]-" II [( e~(!.?I1.) )S"r(2+sH)-I(-qf{(t,f3f- iOY"] 
HEH. m e(!.? 11. ) - -

and where thes-integrations converge uniformly for -i: contained in any compact subset of il211vl- II' We defineK = K(lEoo,a ex ) 

to be the minimal element of lH 00 with the property n(H) > 0 for every HEIE ~ (K). Specializing to the quartic self-interaction 
and to vertex graphs "with more than two external lines" we notice that n(H) is larger than or equal to zero for all HEIE ";. (F), 
FElH 00 • We shift some of the s-contours to the right and obtain 

II [r( I (AI-l)+n(H))-I]Yf'(AP;m) 
f{EE. IE flH I 

I 5" - 2 _ I 

X[A2]"dl"flf'l {II [r( I (A I -l)+n(H')) ]g.J.,~(.e;m)} , 
H 'EE. IE flH 'I /s" = O,f{Eli oc IFI 

where 0 < YH < 1, 0 < };f{EHOC IFI yf{ <SF < 1 for FElH: (K) 

and 0 < };f{EIlOC IKI yf{ - SK < - SK < 1. The s-integrations 
converge uniformly not only when A varies over any com
pact subset of il2(1,,1 _ I I but also after 7malytic continuation of 
the integrand when A varies over any compact subset of 
il l _. = l-i:IYleA I >-I-cforallIEX}. Thus, for the quar
tic self-interaction and vertex graphs "with more than two 
external lines" -we shall restrict the subsequent discussion 
to this case-we may continue Yf oc ~;m) analytically 
from il211vl- II to a neighborhood of Al = 1, lEX. Again in 
view of the uniform convergence of the above s-integrations, 
the generalized evaluator ~~Ijl operates directly on the in
tegrand: 

~"'IYIY'{oc(Ap;m) = I YXfF(Ap;m). 
FEII~ IKI 

The terms .7}jf (~;m) stand for 
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( ) 
1 IP"" + ioo lIP' + ioo lIP' + ioo 

6 V" -. dZO(FI···-. dz2-. dZI 
VEV 21Ti P.", - ioo 21Ti p, - ioo 21Ti p, _ ioo 

oWl -, I 

X II [T(z) + I - z) ) 
)=1 

Xr(2 + z) - z)+ I )]r( - zolFI )r(2 + Zo{FI)[A 2]z, - 2 

Xf~~~I. z"" (e;m) 

with o(F) = IlH";. (F)I and, further, with 1 >Po{FI 
> ... >P2 >PI > 0 for FElH: (K) and 0 >PO(KI 
> '" > P2 > PI> - 1 for F = K. We replaced the integration 
variables Sf{ and SF by the new variables z)' I <,j<,o(F), de
fined by 

o{FI 
Z = ~ Sf{ } £.. ' 

i=j 

after having enumerated the elements of lHoc according to 
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the inverted previously introduced order, i.e., 

HI = maximal element oflflI"" 

Hj = maximal element oflflIO: (Hj~ I) j = 2, ... o(F). 

Finally ,J~~).z,,) .e;m) stands for 

71/"./1 !g~;s(.e;m)/,,, ~O.HEH;;(F) J, 

a distribution-valued meromorphic function of Zj' 
1 <J;:;:o(F), with poles at Zj = - nj , - nj - 1, - nj - 2, ... , 
nj =nj (lE""O'",)=min!n(H)/HElEjJj= 1,2, ... o(F) and 

00 _ {lE"';. (Hj ) n E;;(Hj~ I) forj = 2, ... ,o(F), 
lE .-

J IE~ (HI) forj= 1. 

The order of the pole at Zj = -Ilj' f--Lj = nj , nj + 1, 
nj + 2, ... , for every j separately, is at most equal to 

IlEj:" 1+ I IH'/H'EE.;,:(H)'.lE": (F) 

for some 

HEEt;",n(H')<Oll, 

where 
lEi .ll , = \H /HElEr, n(H)<f--Lj)' 

We move the zl-contour to the left and obtain 

!j7J/(Ap;m) 

~ 1 f "2 ((-'l L.. -. dzl[A "]Z,~ .'7 F)i"'(.e;m) 
l' ~ I-'"IF) 21Tl Iz, + 1-'1 ~ € 

1 1P + I", [' , ~~,. + -. . dZ I A -J" .. ""<t ~J,tz'(.e;m) 
2'm p~IOO 

for FElflI~ (K), any integer M>flo(F), - (M + 1) <P < - M, 
€ > 0 sufficiently small. Here, for every FElflI: (K), 
!/j. it ;Z,( p;m) is a distribution-valued meromorphic function 
of z, with poles at z, = -fl, f--L = -flo(F), -flo(F) - 1, 
- f--Lo(F) - 2, .... 

flo(F)=flo(lE""O'",;F)= min lllj +2(j-l)J 
1.;J.;;oIFI 

of order ml-'(F) 

ml,(F) = ml,(lE""O' = ;F) = 1;)~:lEDI' .- 21}- III 
for some + I!H'IH'ElE;;(H)'\E':j' (F) 

oiFl 

HE u lEj:', . 2(j .. ,pll(H };:;:O 11 
}~, 

{

I iffl>2(o(F) - 1) for FElflI;; (K), 

+ 1 iffl>2o(K) for F= K, 
o otherwise. 

For -fl > YteZ, > -(fl+1),.7Xit;Z'(.e;m)isgivenby 

8C~~ Pv r%,I~,~t:l( - 1)1-"( fl2 - 1) ... 1-' - 9Irl--:f2' r ~l')JI-" 
1 iP., , + i", 1 iP.,,, l- i= 

X(f--Lr - 1~. dzr + 1"'-. dzolFI 
21T1 p •. , -·ioo 21Tl p.".,-i oo 

X l' (( 2 + f--L2 + ... + f--L r + Z d - Z r + , ) 

X1'(zr+' - [fl2+"'+flr +zd) 
oiFl- I 

X IT [1'(2 + Zj - z}+ tl1'(z}+ I - Zj)] 
j ~--=:: r + I 

Zc. = 1-1-2 -t- ZI 

X T(2 + Zo(FI)T( - ZolFI )f~~--).z", (.e;m)/ : 
z, = J..l:2 + ... + fL, + Zl 
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with 

B (j) = {I ifj<o(~) 
o otherwlse 

and 

o < B (r + 1) + P r +, < 1 + f--L + :!I? eZ l' 

O<B(r+ l)+Pr-r' < ... <O(o(F))+PoiFl < + 1. 

This formula may be proved by induction on f--L. As to the 
possible values of flo(F) we note the inequality 

p(H)<j for HEEt 

and take into account the following relation valid for the rp : -
theory 

1 pili) 

Il(H) = - I {# [external1ines of Hi) - 4}, 
21~' 

where the Hi'S denote the connected components of H. 
From this we infer for the rp : -theory 

III = 11, Ilj ;;.n + 2 - j, j = 2,3, ... ,o(F). 

Actually, these relations are true for all monomial interac
tions apart from the cubic one. Hence f--Lo(F) = f--Lo (lE 00 ,a", ;F) 
is equal to n for all r'ElflI: (K ) and all labeled soc-families 
(E""O' ~) for G. Moreover, the order of the poles at 
z, = -fl = - n, - n - 1, - n - 2, ... of 

Ii) I .7i,J/ :z,( .e;m) is equal to m
l
, (lE""O' 00 ) 

fHfi.: IK I 

Max ml-' (lE"",O' oc ;F) 
Rlfi;,IKI 

(ii) I I Yi,J'i ;Z'(.e;m) = 5-~/(.e;m) is equal to 
l~:, ./T. I fEll'; IK I 

mil = Max mil (E"" ,a co ). 
(E, ,(T, ) 

Now, we have all the necessary information at hand to write 
down the asymptotic expansion for the analytically renor
malized Feynman amplitude r ifl Y). (-:!.e;m) of the vertt:x 
graph G: .. 

Min" -- t I I [A2]-1-'-2[1nA2r,7~::KI(.e;m)+,':Ilm 
JL --'- n If = 0 

with 

CO-Il/)(. _ 1 1 f d ( )K ((-Z, ( . ) ,/ 1-'." .e,m) - ,-. ZI ZI + fl Y 1/' .e,m 
K. 21Tl Iz, + IIi ~ < 

and 

. 1 1p
+

ioo 
-fYl =- dz[A2]Z,-2,'j~z,,(p'm) 

M 2' . I 71 _, , 
1Tl p'-' co 

where - (M + l)<p< -M. 
If the number of "external lines" is equal to two (and 

19' I = 2) we adopt the same procedure as before with the only 
difference that in the beginning we push the s-contour 
further to the right. In this way we obtain 

rP'·!j-,:d-:!.e;m) = [A 2]~18(PI +P2) 

x_l_J. ds 1T(S + 1) 
21Ti J;s - II ~ € sin 1T(S - 1) 

! [A 2]'- I ~rg-:!;s(.e;m) - JFg-:!;1 (p;mll _ [A 2].2 

X8(PI +P2)' 
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+ IL~ ID( PI + h} 2~iis +- IL! ~ € ds T(2 +s)r ( -s)[A 2]'- 2 

X ?Fg~;s(e;m) 

1 fP
+-

iOO 

+ D(PI + P2}-. _ dsT(2 + s)r( - s}[A 2]'-- 2 
217"1 p- 100 

X 7IgJ:;s (r:.;m) 

for any positive integer M, - (M + I) <p < - M and E> 0 
sufficiently small, 

7/
0 '= 7f'l / I' 

The order of the pole of the integrand at s = - fl, 
fl = - 1,0,1,2, ... is equal to 

1-15".1 + I!HIHEf.oo,~CtY(H), n(H)<flll 
+ I!H IHEf.oo ,~ct:{F(H}, n(H)<Oll. 

Now, the asymptotic expansion in powers of A -2 and InA 2 

of the Feynman amplitude corresponding to G which con
tributes in It-Ith order perturbation theory to the two point 
vertex function can be read off easily. 

An arbitrary number j of mass insertions can be incor
porated into the above scheme by partitioning j in all possi
ble ways into a sum of 12'1 non-negative integersjl, ... ,jlfl 
replacing the propagator of the line I in the amplitude 
YJ:(:!£;m) 

ei1r).,r(A) 
____ I [k 2 -m2 +iO]-).; 

i(217")2 ' 

by 
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y'1' I. 
X [k 7 - m2 + iO]- ,~I"I, 

mUltiplying subsequently by the combinatorial factor]1/ 
jl!"1,!, summing over all different partitions and applying 
finally an appropriate generalized evaluator 7r~ J +- j" 
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Representation of the active Lorentz transformation for particle dynamics 
David M. Fradkin 
Department of Physic:. and Astronomy, Wayne State University, Detroit, Michigan 48202 

(Received 9 December 1981; accepted for publication 23 July 1982) 

The rank-2 tensor representation of a passive Lorentz transformation constructed by Krause 
solely from the four-velocities of two inertial observers is shown to lack sufficient generality to 
describe unambiguously the active Lorentz transformation completely specifying the dynamic 
change of a classical particle from an initial state to a later state. This lack of uniqueness is traced 
to an arbitrary three-parameter little group transformation. For states described both by their 
four-vector momentum and polarization, we construct a rank-2 tensor representation of the 
active Lorentz transformation, connecting initial and later states, which is constructed solely 
from initial and later momenta and polarizations. This representation now contains a single 
arbitrary parameter. A unique active Lorentz transformation is achieved by further specification 
of an additional four-vector associated with the initial and later states. 

PACS numbers: 11.30.Cp 

I. INTRODUCTION 

Recently, Krause 1 has displayed a proper orthochron
ous Lorentz transformation connecting an initial four-vec
tor velocity P" with a final four-vector velocity PI"' such 
transformation being a rank-2 tensor constructed solely 
from these four-vectors themselves. The Krause transforma
tion, which satisfies Lin' (P,p) p" = P", may be written 

L,,,,(P,p) = gil' - [1 + (pP)]-1 

X{PI"P" +PflP, +Pfl P" (I) 
- [I + 2(pP)]P'1 p,j, 

where the metricg
l
", has a signature ( - 2), the notation (pP) 

signifies p" P" where Greek indices run over the range 0-3, 
and (pp) = (PP) = 1. Krause further went on to show that 
his transformation could be factorized into two Lorentz 
space-time reflections, 

L I", (P,p) = R'l "( P <--" P ):'Y? '" (P) , 

where 

,'YI""(P)=g,,, -2[1-(pPf]-' 

X[P,,-(pP)p,,] [P,-(pP)p,,], (2) 

so that ,~? "" (P)p' = p" and 

Rlu,(p~P)=gl"" - [1-(pP)]-' 

X(P" - p,.)(p" - P,,), (3) 

so that Rim (p~P)P"'=P", 
For particle dynamics, instead of consideringp,P as 

four-velocities of different inertial observers, one may take p 
as the particle's initial dimensionless four-vector energy/ 
momentum (hereafter called simply the four-vector momen
tum) and P (possibly space-time dependent) as the particle's 
later dimensionless four-vector momentum. In this case, one 
might be tempted to interpret the Krause transformation as 
the active local Lorentz transformation which contains all 
the relevant dynamic information. However, the change in a 
single timelike four-vector,p -- P does not uniquely specify 
a Lorentz transformation, so the Krause transformation is 
too restrictive to play the role of the required active dynamic 

transformation. In this paper, we investigate forms of rank-2 
tensors that may serve as the active dynamic transformation, 

II. LITTLE GROUP TRANSFORMATION 

Before describing dynamical changes of momentum 
four-vectors in terms of the associated Lorentz transforma
tion operator, we will briefly discuss those proper Lorentz 
transformation operators t"v, known as the "little group" 
operators,2 that leave the four-vector momentum invariant: 

t",p"=pil. (4) 

As is well known, such operators are just the compounded 
result of an initial Lorentz transformation without rotation 
to the rest system (accomplished with a relative velocity 
!J = - p/po between the lab and rest frames of refer~nce), 
followed by a pure spatial rotation about some axis Wrest in 
the rest system, after which another Lorentz transformation 
without rotation is performed that is the inverse of the initial 
one. This procedure yields the result 

(1-"( W,w;p) = gI'" + (1 - cos w)( pilp' - WI" W" - g"') 

+ (sin w)e"""'PA W" . (5) 

The four-vector W" is the lab four-vector whose rest-system 
representation is (0; Wrest) and whose significance is that 
Wrest is the axis of the ~patial rotation. The parameter w is 
the angle of rotation about that axis in the rest system, and 
e"'Arr is the completely antisymmetric tensor with t02l1-1 
satisfying the relation 

(

gfl" gfl rr 

g" gA" 
t t vrra

/3 = - det " 
~~ ~v ~" ~a 

g71 v g,/ rr g71 a 

(6) 

From its definition, the "rotation axis" four-vector WI" is 
spacelike and orthogonal to the four-vector momentum, 

Wfl~, = -1, WI"P/l =0, 

and is also an eigenvector of the little group operator 

f1'v W" = WI'. 

(7) 

(8) 
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[Here, we have suppressed the functional dependence of 

f1\ ]. 
For completeness we present the additional two eigen

vectors of the little group operator. Defining the unnorma
lizing nonidentically 0 four-vectors 

XA=~Tr5T/dTrP5WT/ ' 

yA d A + WA(Wd) _pA(pd), 
(9) 

where dTr is some four-vector that is not a linear combination 
ofpTr and WTr (SOXA#O) but is otherwise arbitrary, it follows 
that these together with p Tr and W Tr constitute an orthogonal 
vierbein 

p AXA = WA X A = 0, 

PA yA = WA yA = 0, X A yA = 0 . 

It is easily shown that 

e'-va/3pv Wa X/3 = - Y'" , 

e'-va/3pv Wa Y/3 = X'" , 

e'-va/3pvXa Y/3 = oW"', 

e'-va/3WyX a Y/3 = op'" , 

where 

(10) 

(11 ) 

o=(dd)+(Wd)2_(pd)2=XAXA = yAyA . (12) 

The linear combinations, X A ± iY"', which are null-vectors, 
are the other two eigenvectors of the little group operator, 

(13) 

Finally, we note that instead of using the "rotation 
axis" four-vector W"', the little group operator may be para
meterized in terms of the antisymmetric tensor3 

The little group operator becomes simply 

{l"v = gl"v + (1 - cos W)N"'ANA v - (sin w)N"'V . (15) 

It can be directly established that N a /3 satisfies the following 
relations 

€",VATr N",vNAs = 0, 

NJ.."'N NV"= _N A" ",v , 

Na/3Na /3 = 2 . 

(16) 

The most general proper orthochronous Lorentz trans
formation A",,, that carries p - P may be constructed by 
compounding the Krause transformation with the little 
group operator 

(17) 

since it is obvious that A ",v p v = P",. This transformation 
contains three additional parameters: the two independent 
parameters of W", (note the constraints W", W'" = - 1, 
W", p'" = 0), and the rotation angle w. 

In the next section, for nonzero spin particles, we con
struct an alternative active Lorentz transformation that car
ries the particle from some initial state to a later state. 

2521 J. Math. Phys., Vol. 23, No. 12, December 1982 

III. LORENTZ TRANSFORMATION CONNECTING 
INITIAL AND LATER MOMENTUM AND POLARIZATION 
STATES 

Consider a particle whose initial state is characterized 
by a four-vector momentump", and a four-vector polariza
tion4 s"" which satisfy constraints 

(pp) = - (ss) = 1, (sp) = O. (18) 

[Note: It is the little group transformation ~v (W,w;p) that in 
general changes the four-vector polarization leaving the 
four-vector momentum invariant]. Now, suppose at some 
latter time the four-vector momentum and polarization are 
P", and S"" respectively, where 

(PP) = - (SS) = 1, (SP) = O. (19) 

Using just the four-vectorsp, s, P, andS, we will now attempt 
to construct a rank-two tensor that represent an active Lor
entz transformation connecting initial and final states. In 
formulating this tensor, we will assume that these four-vec
tors are linearly independent. [Upon obtaining our results, 
this condition may be relaxed by a suitable limiting process.] 
Thus, we take 

€IH'P" :t'P" SP P"-k #0. (20) 

Using the product algebra of two uncontracted epsilons, this 
linear independence condition may alternatively be written 

k 2 = (SS)2 + (pp)2 _ (spf - (pS)2 - 1 

- [(pS)(sP) - (pP)(sSW>O. (21) 

We now take the desired Lorentz transformation to be of the 
form 

L",v = ! g",y + A I P", py + A2 P", Pv + A 3s",sv + A4S",Sv 

+ Asp", Pv +A6 P",sv +A7 P",Sv +A g PJ1Pv 

+A 9 P",sv +AIOP",Sy +AlIs",Pv +AI~'" Py 

+ A 13S",Sv + A 14S", Pv + A ISS", Py + A 1~"'Sy J , 
(22) 

where the sixteen A coefficients are to be determined. For 
convenience, a factor of g",v has been explicitly written, al
though it could be subsumed into a redefinition of the A 
coefficient since it may be shown that 

g,l> = k -21 [(sSf - (SP)2 - 1] P", p,. 

where 

+ [(SS)2 - (pSf - 1] P", P,. 

+ [1 + (pSf - (pp)2]S",S" 

+ [1 + (SP)2 - (pP)2]S"S" 

+ [(pP) +.:1 (sS)](p", P,. +P"p,.) 

+ [(sP)(pP) - (sS)(pS)](PI'S" + s,' Pv) 

- [(pS) +.:1 (sP)](p",Sv + S,' p,.) 

- [(sP) +.:1 (pS)](P"s" +s,' P,,) 

+ [(pS)(pP) - (sS)(sP)]( P"S" + SI' P,,) 

+ [(sS) + .:1 (pP) ](s" S" + S'i s,.)j , 

.:1 (pS)(sP) - (pP)(sS). 

Substituting Eg. (22) into the necessary relations 
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(24) 

(25) 
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as well as into the inverse relations 

(26) 

and equating the coefficients of the independent basis vec
tors to 0, after considerable algebraic manipulation these six
teen equations yield ten independent linear relations among 
the A coefficients: 

AI = - 1 - (pP)A, - (pS)A7' 

A2 = - 1 - (pP)As - (SP)A 12' 

A, = 1 + ( sP)A 12 + (sS)A 13 , 

A4 = 1 + (pS)A7 + (sS)AI3' 

An = ( sP)A, + (sS )A7' 

AR = [1 + (pP)[l + (pP)A5 + (sP)AI2] 

+ (pS )[( pP)A7 + (sP)A 13] J, 

A<) = ! - (sP)[1 + (pP)A5 + (SP)A12] 

- (sS)[(PP)A7 + (sP)AI3]J , 

AIO = - (pP)A7 - (sP)AI3' 

All = - (pP)A12 - (pS)AI3' 

A14= [-(pS)[1 + (pP)A5 + (pS)A7] 

- (sS)[(PP)A12 + (pS)A13]j, 

A 15 = (pS)A5 + (sS)A 12' 

AI6 = [ - 1 + (sS)[1 + (SP)A12 + (sS)AI3] 

+ (pS ) [(sP )As + (sS )A 7] I . 

(27) 

From these relations, all theA coefficients are given in terms 
of the four coefficients As, A7, A 12' and A 13' Additional qua
dratic relationships are derivable from the quadratic condi
tion gV1T = L I'v LI'1T which is symmetric in its free indices. 
Substituting Eq. (22) into this quadratic condition, and 
equating the coefficients of the independent tensor basis 
(which are direct products of the four-vectors p, s, P, and S), 
we obtain ten additional quadratic relations among the A's. 
Upon substitution of the linear equations given in Eq. (27), 
one finds after much algebra that the ten quadratic equations 
yield just three independent quadratic relations among the 
coefficients As, A7, A 12 and A 13' These independent quadratic 
relations are 

[[(pS)As + (sS)Ad 2 - [(pP)As + (SP)A12 + If 
+ (AS)2 - (A12fl = 0, 

[[( pS)A7 + (sS)A 13 + If - [( pP)A7 + (sP)A 13]2 

+ (A7)2 - (A,,)2) = 0, 

[[( pS)As + (sS)A 12][(pS)A7 + (sS)A 13 + 1] 

- [( pP)A7 + (sP)A 13][(pP)As + (o5P)A 12 + 1] 

+AsA7 -A12A131 = O. 

(28) 

Thus, we see that the requirement that the Lorentz transfor
mation connect the initial four-vector momentum and four
vector polarization with later specification of these quanti
ties [Eq. (25] does not uniquely determine the coefficients of 
the Lorentz transformation, but leaves one parameter still to 
be chosen. This nonuniqueness of the Lorentz transforma
tion will be discussed in the next section. 

We now display one relatively simple set of coefficients 

2522 J. Math. Phys., Vol. 23, No. 12, December 1982 

that are consistent with Eqs. (27) and (28) and involve the 
choice of an additional relationship. This special set is 

A5 =As = -AI = -A2 = [1 + (sS)]/D, 

A3=A4= -AI3= -A ln =[l-(pP)]ID, 

An = A 10 = - A7 = - A9 = (sP)I D, 

All =Als= -AI2= -AI4=(pS)/D, 

where 

D -1 - (pP) + (sS) + L1 , 

(29) 

(30) 

in which L1 has the same definition given in Eq. (24). Via Eq. 
(22), the Lorentz transformation involving this special set of 
coefficien ts is 

L ,ll. = gl''' - D -I [1 + (SS)](P" - P" )(Pv - P,,) 

+D-I[l-(pP)](s" -S")(S,, -S,,) 

+ D -ii SP)(P" - p,J(s,. - S,,) 

+ D -1(pS)(S" - SI' )(p, - P,,). (31) 

One may explicitly verify that this indeed is a proper trans
formation (det = 1), by showing that £I'VP1T L I'°L vlL p2L 1T3 
= £0123. 

The Lorentz transformation displayed in Eq. (31) leaves 
invariant the four-vector 

[1 + (sS)](PI' + pIl) - (sP)SI' - (pS)5'" , (32) 

as well as the four-vector 

(pS)PI' + (sP)pIl + [1 - (pP)](S'I + sl'). (33) 

Thus, this Lorentz transformation represents a "rotation" in 
the two-flat orthogonal to these four-vectors. 

It will now be shown thatL,IV [Eq. (31)] reduces tog"v in 
an appropriate limiting process as P" ---> PI' and SI' ---> 051" If 
we write 

PI' = PI' + £ql' + £2rl" 

S,' = sl' + Atl' + A 2W,I , 
(34) 

where £, A are infinitesimals, and ql" rl" til' WI' are finite, 
then the constraints (PP) = 1 = - (SS), (PS) = 0, imply the 
relationships 

(pq) = 0, (st) = 0, 

2( prj + (qq) = 0, 2(sw) + (tt) = 0, (35) 

A (pt ) + £(sq) = 0, £A (qt) + A 2( pw) + errs) = 0 . 

Thus, it follows that 

[1 - (pP)] = - £2(pr) , 

[1 + (sS)] = A 2(SW), 

(sP) = £(sq) + £2(sr), 

(pS) = A (pt ) + A 2( pw) , 

(36) 

D = - e A 2( pr)(o5w) + £A [(sq) + £(sr)] [( pt) + A (pw)] . 

We see that if (sq) #0 [so that also (pt )#0], then D is second 
order in infinitesimals, but the numerator for Ll'v - gl'v is 
either third order [(sP) and (pS) terms] or fourth order [the 
other terms], hence as £ ---> 0, A ---> 0, Ll'v ---> gl'v' 
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IV. FREE PARAMETER DESCRIPTION AND 
SPECIFICATION 

As already mentioned, the Lorentz transformation L 1-'1' 
[Eq. (31)] involving the special set of coefficients is not the 
most general one connecting initial and later momentum 
and polarization states. The most general transformation ef
fecting this connection involves an additional free param
eter. A simple way of introducing such a parameter is by 
employing the little group operator {'fL1' (W,CtJ;p) displayed in 
Eq. (5). If, consistent with the constraints (WW) = - 1, 
( P W) = 0, one takes the initial polarizations as Witself, then 
adopting the notation {'fL1' (s,CtJ;p)={'fL1' (CtJ) in which the initial 
state specification is suppressed, it trivally follows that 

{'fL1'(CtJ)p1' = pI-', {'fL1'(CtJ)s1' = sf'. 

Thus 

[LI-'7T t'7T1' (CtJ) j p1' = PI' , 

[LI-'7T t'7T1' (CtJ)JS1' = SI-' ' 

(37) 

(38) 

where (in this section) L refers to the transformation dis
played in Eq. (31). Hence, by the group property of Lorentz 
transformation, the product ILI-'7T ('7T1' (CtJ) J, involving both a 
free parameter CtJ and tensor products of the initial and later 
four-momentum and four-polarization components, pro
duces an active Lorentz transformation that connects initial 
and later momentum and polarization states. 

One may tie down the parameters CtJ by requiring that 
the active transformation connects an independent initial 
four-vector b to its later state B, i.e., 

[LI-'1T i"1'(CtJ)jb v = BI-' ' (39) 

or equivalently, 

~1'(CtJ)b v = BI-'LfLA . (40) 

For convenience, we take 

(bb) = 1, (pb ) = (sb) = 0, (41) 

so that 

(BB) = 1, (PB) = (SB) =0. (42) 

Then, substitution of the explicit forms of ~1' (CtJ) and L 1-'1' into 
Eq. (40) yields the relation 

[(cos CtJ)b", + (sin CtJ)f", ] 

2523 

= IB", -D- 1 [1 + (sS)](pB)[PA -P",] 

+D- 1[1-(pP)](sB)[s", -S",] 

+D-l(SP)(pB)[s", -S",] 

+ D -1(pS)(sB)[ PA - P",]l , (43) 
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where 

f", €"'1'apb vpasP (44) 

andD has been defined in Eq. (30). Invoking the basisPA, s"" 
b",,/;., we may write 

B", = (pB)PA - (sB)s", + (bB )b", + LIB )f", , 

P", = (pP)PA - (sP)s", + (bP)b", + (fP)h , 

s'" = (pS)PA - (sS)s", + (bS)b", + (lS)f",. 

(45) 

Substituting this into Eq. (43), we may verify that the coeffi
cients of the basis components p", , s '" vanish on the right
hand side, and the parameter CtJ is given via the expressions 

(cos CtJ) = (Ba raPbp) , 

(sinCtJ) = (Ba raP fp). 

In the preceding, the tensor raP is defined by 

raP __ g"P + D -lpal [1 + (sS l]PP - (sP )SPj 

-D-1sa[[I-(pp)]SP+(pS)pf3j. 

Alternatively, we may write the results in the form 

(cos CtJ) = 1 + D -l€"'1'ap(B v _ b V) 

X(pa _ pa)(sP - sP)fA, 

(sin CtJ) = - D -'€"'1'ap(B v _ b V) 

X (P a _ pa)(s f3 _ sP)b A . 

(46) 

(47) 

(48) 

It is straightforward, but tedious, to verify that these expres
sions satisfy the necessary condition (sin CtJ)2 + (cos CtJ)2 = 1. 

In conclusion, we see that the active Lorentz transfor
mation connecting the initial and later states is uniquely 
specified if the transformation of an additional four-vector 
attribute, besides the four-vector momentum and polariza
tion, is given. 
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The unitary transformation to the helicity form and the limit of zero mass are examined in terms 
of the position, spin, parity and time-reversal operators for an irreducible unitary representation 
of the Poincare group for positive mass. The position, spin, parity and time-reversal operators do 
not change as the mass goes to zero, but if the space of particle states becomes smaller as the 
Poincare group is reduced to a separate representation for each helicity, the position and spin 
operators, which are not reduced, will no longer be defined on the particle states. Since the parity 
operator connects states of opposite helicity, it will be defined on the particle states if they have 
paired plus and minus helicities. 

PACS numbers: 11.30.Cp, 11.30.Er 

1. INTRODUCTION 

The way we describe a particle changes as we move 
from classical mechanics and nonrelativistic quantum me
chanics to relativistic quantum mechanics, and the change is 
most evident when we get to particles with zero mass. In 
nonrelativistic quantum mechanics, the position variable 
still plays a central role, in the wave functions and in defining 
operators such as the orbital angular momentum, the corre
sponding spin part of the angular momentum, and the parity 
operator. In relativistic quantum mechanics, the Newton
Wigner position 1-3 can be made to playa similar role for 
particles with positive mass, but for particles with zero mass 
there is no Newton-Wigner position operator,I.2.4.5 no spin 
operator,6-8 and the parity operator hardly resembles reflec
tion of the position variable in a wave function. 9 

To see how this happens, we examine two equivalent 
descriptions of a particle with positive mass in relativistic 
quantum mechanics. In the form developed by Foldy,1O an 
irreducible unitary representation of the Poincare group for 
positive mass consists of operators on wave functions of the 
Newton-Wigner position variable and spin. The position, 
spin, parity and time-reversal operators are all the same as in 
nonrelativistic quantum mechanics. The nonrelativistic lim
it is directly available. We call this the position form. 

We examine in some detail the unitary transformation 
from the position form to the helicity form developed by 
Moses, II focusing on the transformation of the position, 
spin, parity and time-reversal operators. From the helicity 
form we can see immediately what happens in the limit of 
zero mass. 

The position, spin, parity and time-reversal operators 
are not changed as the mass goes to zero. In the generators 
for the Poincare group, there is no change in the momentum 
or angular momentum, and only the obvious change in the 
Hamiltonian, but there is one important change in the Lor
entz generator which causes the representation of the Poin
care group to be reduced to a separate representation for 
each helicity. If the space of particle states is then a smaller 
space corresponding to fewer helicity values, the position 
and spin operators will no longer be defined on the space of 
particle states, because they are not reduced to separate op
erators on any such subspace. Thus, what is needed for a 

particle with zero mass to have position and spin operators 
the same as for a particle with positive mass is simply that the 
particle states include the same helicities for zero mass as for 
positive mass: for example, for spin 1, helicities 1,0, - 1; for 
spin 1/2, helicities 1/2, - 1/2. That this is not so for the 
particles with zero mass found in nature suggests that posi
tion and spin are not as important as earlier ways of describ
ing particles have made them appear. 

The situation is similar for parity. The parity operator 
connects states for opposite helicities, so what is needed for 
the parity operator to be defined on the space of particle 
states is simply that the particle states have paired plus and 
minus helicity values. 

2. POSITION FORM 

We consider an irreducible unitary representation of 
the Poincare group with positive mass m, spin s, and positive 
energy.6 We use units such that c and fz are 1. 

Let P denote the generator for space translations. The 
generator for time translations is 

H = (P 2 + m2)112. (2.1) 

In the position form developed by FoldylO the generators for 
rotations and Lorentz transformations are 

J= Q XP +05, (2.2) 

K = (1/2)(HQ + QH) + (H + m)-Ip xo5. (2.3) 

We use wave functions t,b(x) with 2s + 1 components on 
which P and Q act as - iV and multiplication by x and 
SI,S2,S3 are the usual (2s + 1) X (2s + 1) irreducible spin ma
trices for spin s. The 2s + 1 components t,b '" (x) of t,b(x) are 
labeled by the eigenvalues A = - s, - s + 1 , ... s of the diag
onal matrix S3' The inner product is 

(t,b,l/J) = '" t_ s f d 3x t,b", (x)*l/J", (x). (2.4) 

The parity and time-reversal operators are given by 

(Pt,b)(x) = 1]t,b( - x), 

(Tt,b)(x) = eirrS,t,b(x)*, 

(2.5) 

(2.6) 

where the "intrinsic parity" 1] is a phase factor (that is a 
complex number such that 11]1 is 1). These operators are 
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unique to within phase factors because, to fit in with the 
transformations of the Poincare group, P must be linear, 
commute with Hand}, and anticommute with P and i, and 
Tmust be antilinear (anticommute with i), commute with H 
and i, and anticommute with P and J 12 ... 

The Newton-Wigner position operator l
-

3 is Q. It is the 
unique Hermitian operator with commuting components 
that transforms as a position operator should for space trans
lations and rotations and time reversal and allows Lorentz 
transformations that are at least not completely wrong in the 
nonrelativistic limit. 3 

With this form for the generators of the Poincare group, 
the position, spin, parity and time-reversal operators are the 
same as in nonrelativistic quantum mechanics. The nonrela
tivistic limit yields rather directly3 the generators of the Ga
lilei group used in nonrelativistic quantum mechanics. The 
relativistic Hamiltonian (2.1) becomes the nonrelativistic 
Hamiltonian 

... 2 
H=m +P 12m, (2.7) 

and the Lorentz generator (2.3) becomes the Galilei gener
ator 

... .. 
G=mQ. (2.8) 

Everything else remains unchanged. 
We use the Fourier decomposition 

¢(x) = "~_5f d3p/,,dp)(21T)-3Ize ,p,xl,1) , (2.9) 

where/A (,0) is a complex function representing 1/J and the 1,1 ) 
are the orthonormal eigenvectors of S3 that are the basis 
vectors for the spin matrices, specifically 

We write Ip.A) for (21T)-3IZe'PXI,1), and 

P Ip.A ) = plp.A ), 
S3Ip.A) = A Ip.A ). 

In terms of these we have 

P Ip.A ) = 111 - P.A ), 
T Ip.A ) = e

itTS
, I - P.A ) 

= ( _ 1)" + 51 - ,0, - A ). 

3. HELIe/TV FORM 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

By making a unitary transformation, which we will dis
cuss in more detail later, we can change each operator from 
the position form to the helicity form develol'ed by Moses. II 
The unitary transformation commutes with P, so the transla
tion generator P and the Hamiltonian H given by (2.1) are 
not changed. The generators for rotations and Lorentz 
transformations are changed to 

ut}U=QXP + MS3 , (3.1) 

utiu = (l/2)(HQ + QH) +HIPI- INS3 
~ 1 ~ ~ 

- m IP 1- (E2S1 - E IS2 ), (3.2) 
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where 

M = (PI/[IPI +P3 ],P2/[IPI +P3 ],1) 

= (IP 12 + P)I[ IP 1+ P.2], (3.3) 

N = (P2/[ IP 1+ P3 ], - PI/[ IP 1+ Pj],O) 
= P XZi[jP I + P.2], (3.4) 

EI = (PIP2/IP I [IP I + P3 ], 

- Pi liP I [IP I + P3] - P3/1P I,P2/IP j), (3.5) 

E2 = (P;/IP I [IP 1+ P3 ] + P3/1P I, 
- PIPz/IP I [IP I + P3 ], - PiliP I)· (3.6) 

The vectors El , E2 and P = P liP I are orthonormal and 
P X E I is E2, etc. Since 

(3.7) 

we have 
" .... "t .... 

utp·JU=p·U JU=S3' (3.8) 

The unitary transformation diagonalizes the helicity by 
changing it to the diagonal matrix S3' 

The position is changed to 

UtQU=Q + IPI-INS3-IPI-I(E2SI-EIS2)' (3.9) 

This is the Newton-Wigner position operator in the helicity 
form. The spin is changed to 

UtSU = EISI + E2S2 + PS3 • (3.10) 

Since the generators} and i are the functions (2.2) and (2.3) 
ofQ, p, HandS, the transformations (3.1) and (3.2) of} and 
i can be calculated from the transformations (3.9) and (3.10) 
of Q and S and the fact that P and H are not changed. For this 
it is helpful to use 

NxP=M-P (3.11) 

together with the properties of EI ,E2 } already mentioned. 
Conversel~ g and S can be written as functions of the gener
ators P,H,J,K and the unitary transformations of Q and S 
can be calculated from the transformations of the genera
tors. 3 

For the parity and time-reversal operators we get 

utpu jp.A ) = 11( - I)" - SeitTAeI2~(PJA 1 - p, - A), 

(3.12) 

utTU jp.A ) = e - i7TAe - i2~(PIA I - P.A ), 

where 

¢ (p) = tan-I(pylpx) 

is the usual cylindrical angle of p. 

4. ZERO MASS 

(3.13) 

(3.14) 

The limit as the mass m goes to zero is easily obtained 
from the helicity form. The Hamiltonian (2.1) becomes 

H = (P 2)1/2 = IP I. 

The last term in the formula (3.2) for utiu goes to zero. 
There are no other changes in the operators we have written 
in the helicity form. 

The representation of the Poincare group is reduced to a 
separate representation for each helicity ,1. None of the gen
erators P,H,ut}u,utiu connects states with different he-
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Ii cities. They are all diagonal as far as the helicity is con
cerned because they depend only on the diagonal matrix S3 
and not on the nondiagonal matrices SI and S2' The same is 
true for the time-reversal operator U+TU. 

The parity operator utpu connects states with oppo
site helicities,.1, = ± 1,.1, I. If parity is important, as it evident
ly is for photons, the space of particle states includes two 
irreducible unitary representations of the Poincare group for 
opposite helicities so the parity operator is defined on the 
space of particle states. If parity is not important, as is evi
dently the case for neutrinos, the space of particle states may 
include just one irreducible unitary representation of the 
Poincare group for just one value of helicity so there is no 
parity operator on the space of particle states. 

The position and spin operators utQU and UtSU are 
not reduced at all. They depend on the nondiagonal matrices 
SI and S2' They connect states will all the different helicities 
A = - s, - s + 1, .. .s. The irreducible unitary representa
tions of the Poincare group for all these helicities have to be 
included in the space of particle states to have the position 
and spin operators defined on the space of particle states. 

This would be true in a trivial way if s were zero. A 
particle with zero mass and zero helicity would have a New
ton-Wigner position operator the same as for a particle with 
positive mass. This is the only possibility for a particle with 
zero mass to have a Newton-Wigner position operator when 
the space of particle states includes just one irreducible uni
tary representation of the Poincare group for just one heli
city value. 

There is another unique possibility when s is 1/2. If 
both helicities A = ± 1/2 are included in the particle states, 
the position and spin operators are defined on the space of 
particle states. A particle with zero mass and spin 1/2 would 
have position and spin operators the same as for a particle 
with positive mass ifit had both plus and minus helicity. This 
is the only possibility for a particle with zero mass to have a 
Newton-Wigner position operator wh~n the space of parti
cle states includes just two irreducible unitary representa
tions of the Poincare group for two opposite helicities. 1.2.5 

For every kind of particle with zero mass that has been 
found in nature, the particle states evidently do not include 
all the helicities ,.1,= - S, - 5 + 1, ... 5 so the position and 
spin operators are not defined on the space of particle states. 
Mathematically, there are possibilities for particles with 
zero mass to have position variables the same as for particles 
with positive mass, but these possibilities are not realized in 
nature. This may be an indication that position variables are 
not as important in nature as they have been in our concept 
of a particle. 

What happens to the position, spin, and parity opera
tors when the mass goes to zero? Nothing. They are not 
changed at all. But the space of particle states is pulled out 
from under them and reduced to a smaller space that is 
sometimes too small for the parity operator and evidently 
always too small for the position and spin operators. 

5. UNITARY TRANSFORMATION 

The transformation from the position form to the heli
city form is made by the unitary operator l3 
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(5.1) 

where 

e (P) = cos-I(P3/IP I), (5.2) 

is the usual spherical coordinate of P and zAP is the unit 
vector in the direction of z X P. 

We can see that U commutes with p, so P and H are not 
changed by the unitary transformation. 

Let R (P 1 be the rotation through the angle e CP) around 
the axis zAP, so that 

R (P)2= P. (5.3) 

We will use the fact that 

R (PlX = E2(P), 

R (P)Y = - EI(P). (5.4) 

This is easy to verify. We know, or can easily check, that EI 
and E2 are orthogonal unit vectors perpendicular to p, with 

EI XE2 = P. (5.5) 

Th~ same is true for R (t lX and R if)Y. Therefore R (P lX and 
R (P)Y can differ from E2 and - E I only by rotation around 
P. T-;hey are the same if they have the same components in the 
zXP direction. Using 

zxp = ( - P2,PI,O), 

we can check that in fact 

E,.zxP= -Po=x,zXP=R(P)x.zXp 
.... -l> ....... -+ A ... ' 

(5.6) 

-E,'zXP=P, =y.zXP=R(P)y.zXP. (5.7) 

For the transformation of the spin operator we get 
eiOIP)Z 1\ p,sSe - iOIP)z 1\ p.S = R (P)S 

= R (PlXSI + R (P)yS2 + R (P)2S3 
= E2S1 - E1S2 + PS3 , (5.8) 

e - i(1T!2)S'(SI,S2,S3)ei(1T!2)S, = (S2' - SI,S3)' 

UtSU = EIS, + E2S2 + PS3 • 

(5.9) 

(5.10) 

In the last step of the transformation, the factor ei(1T/2)S, 
of U just rotates (SI,S2) as a two-dimensional vector. This 
rotation by - 1T!2 corresponds to a convention for the x-y 
axes in the helicity form. For a different choice of x-y axes we 
would rotate through a different angle. 

One can calculate the result (3.9) for utQU directly. 
However, it is more instructive to get the result (3.1) for 
U+JU. Then we get U+QU from 

Q=P X(Q XP) + (p.Q)P 

as follows. From (2.2), (3.1), (5.10) and (3.11) we have 

utQ XPU = UtJU - utsu 

(5.11 ) 

= Q xP + MS3 - E1S1 - E2S2 - PS3 

= Q XP + N XPS3 - E,S, - E2S2.(5.12) 

For a function/of P 
[Q.P,f(P)] = iP. V/(P) 

= ilP la/(p)la IP I· (5.13) 

From this we see that Q..P commutes with U so P . Q com
mutes with U and is not changed by the transformation. 
Thus from (5.11) and (5.12) we get 

Thomas F. Jordan 2526 



                                                                                                                                    

utQu = P x(UtQ XPU) + (p.Q)P 

= P X(Q XP) + IP I-Ip X(N xPs3 - EISI 
- E2S2 ) + (p. Q )P 

= Q + IP I-INS) - IP 1-I(E2S1 - EISz), (5.14) 

because p.N is zero, P XEI is E2, and P XE2 is - E I. 
Let R denote the rotation through the angle 10 I around 

the axis in the direction of O. For the unitary operator that 
represents this rotation in the position form we have 

(e - ie.] ¢)(x) = ((e - in·s e- in.Q x P ¢(x) 

= eili .';.; w(R- I x), 

which corresponds to 

e - ;Ii.] Ip, A) = e- 18Se - ,8.1) XP IP,A ) 
= e- lo.s I Rp,A ). 

(5.15) 

(5.16) 

For the unitary transform of this operator, which represents 
the rotation in the helicity form, we get 
e -1(1T!2IS'eIB (Piz f\ P.se -Ie']e -IB(P)z f\ p,se'(1T12)S'lp,A ) 

= e - 1(1T12IS'eIB(PIZ f\ P.se - 18.Se -18.1) XP 

X e - ,B( plz t, P·Sel(1T12IA Ip,A ) 

= ell1T12lAe - 1(1T12)S'eIB(Rplz f\ RP,Se - io.s 

X e - ,B( p)ZfI p.s IRp,A ) 

= el(1T12IAe -1(1T12IS, e - iDS, I Rp, A ) 

= e -- I15S'e - 18.1)" P Ip,A ), 

where [) is the angle of 

R -1(Rp)RR (p), 

which is a rotation around the z axis since 

R -1(Rp)RR (p)Z = R -1(Rp)Rp = z. 

(5.17) 

(5.18) 

(5.19) 

For an infinitesimal rotation R of a vector x we have 

Rx =x + 0 Xx, (5.20) 

to first order in O. We can calculate [) from 

R -1(Rp)RR (p)(zXp) =zXp + 8ZX(zXp), (5.21) 

by taking the dot product of both sides with z X (z X Rp) to 
first order. From the left side, after rotating the vectors in the 
dot product first by R (Rp) and then by R -I and recognizing 
zXP and zXRp as the axes of R (p) and R (Rp), we get 

zX(zXRp).R -1(Rp)RR (p)(zXp) 

= Rpx(zXRp).R (zXp) 

=pX(R -IZXp)·Zxp 

= ((0 XZ)Xp)Xp·zXp 

= O.p - (O.z)( p.z). 

From the right side we get 

2X(zXRp)·[2Xp + [)zX(2Xp)] 

= [)lzX(zXpW + 2X(2X(e Xp))·2Xp 

= [)[ 1 - (p'Z)2] - 0.2 + (O.p)(p.z). 

Equating the two results (5.22) and 5.23) yields 

[) = (O.p + 0.2)(1 - p.z)/[ 1 - (p.2f]. 

Then from (5.17) we have 
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(5.22) 

(5.23) 

(5.24) 

.. 
to first order in e, or 

utJu = Q XP + (P + z)(1 + p.2)-IS3, (5.26) 

which is the same as the formulas (3.1) and (3.3) that we have 
used for utJu in the helicity form. 

As we already mentioned, the result (3.2) for utku can 
be easily calculated from (2.3), (5.10) and (5.14), using (3.1 I). 

From the formula (2.12) for the parity operator Pin the 
position form, and the facts that P commutes with S, and 

we get 

UtpU Ip,A ) 
= e - i(1T12)S'elll (Piz f\ P.sPe - ill ( plz f\ P,Sei(1T12)A Ip,A ) 

(5.27) 

= ei(1T12)Ae - 1(1TIZ)S'eill (P)z f\ P'Se - iB( p)z f\ P'S7] I - p,A ) 

= 7]ei(1T12)Ae - '(1T12)S'eill( - p)z f\ 1- Pi·S 

Xe -IB(p)z f\ P·Sel1TS,( _ I)A - sl _ .0, - A) 

= 7]( - 1 )A- Sei(1TIZ)Ae - 1(1TIZ)S'e - 124> (p)S, I - p, - A ) 

= 7]( - 1)'" - se i1TAe124> (PIA I - .0, - A >, 
with 2ifJ (p) the angle of 

R -It - p)R (p)Ry( - 1T), 

(5.28) 

(5.29) 

where Ry( - 1T) is the rotation through the angle - 1T 
around the y axis. We can see that the combination of rota
tions (5.29) is around the z axis because 

R -It - p)R (p)Ry( -1T)Z = R -II - p)R (p)( - z) 

= R -It - pH - p) = 2. (5.30) 

Thus we obtain the formula (3.12) for the parity operator 
U t PU in the helicity form, only with a different definition of 
ifJ (p). A similar calculation produces the formula (3.13) for 
the time-reversal operator UtTU in the helicity form from 
the formula (2.13) for T in the position form and the facts 
that Tis antiIinear (anticommutes with i) and commutes 
with is. The factors e ± I1TA come from the factor ei(1T12)S, of U 
which corresponds to a convention for x-y axes in the helicity 
form. 

It remains only to show that the two definitions of ifJ (p) 
are equivalent. Let ifJ (p) be the cylindrical angle (3.14) of p. 
We shall show that 2ifJ (p) is the angle of the combination of 
rotations (5.29). For this we can use the two-dimensional 
faithful representation of the rotation group generated by 
the Pauli matricesa l,aZ,a3. SinceR -I( - p)R (p) is the rota
tion by 1T around 2 1\ p, and 

2 1\ P = - x sin ifJ (p) + Y cos ifJ (p), 

the matrix representing R - I( - p)R (p) is 

e- 1m 
f\ p.;}/2 = ial sin ifJ (p) - ia2 cos ifJ (p). 

The matrix representing Ry( - 1T) is 

(5.31) 

(5.32) 

(5.33) 

so the matrix representing the combination of rotations 
(5.29) is 

(5.34) 
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which represents the rotation by 21> (jJ) around thez axis. The 
full range of 21> (jJ) from zero to 41T is used in the formulas 
(3.12) and (3.13) for UtpU and UtTU for half-integer spin. 
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We have found all irreducible, anomaly-free and complex representations ofSU(N) up to 
dimension 4 X 109 and SU( 16). None of these representations are asymptotically free. For each 
SU(N), we have given a complete list of complex reducible representations which satisfy both 
asymptotic and anomaly freedom. Applications of such solutions are briefly discussed. 

PACS numbers: 11.30.Ly 

J. INTRODUCTION 

To construct a gauge model unifying the strong, elec
tromagnetic, and weak interactions, one needs several con
straints to be satisfied by the representation. Georgi and Gla
show,1 Georgi,2 and Gell-Mann, Ramond, and Slansky3 

have suggested the existence of complex representations as a 
criterion for grand unified theories. Complex representa
tions can be found in gauge groups SU(N), SO(4N + 2), and 
Eo· 

Renorma1izability of gauge theories necessitates use of 
anomaly-free representations.4 Among the groups with 
complex representations, SO(4N + 2) and E6 are free of ano
maly. For SU(N) one usually needs to combine several repre
sentations to cancel anomalies with each other. Actually 
there are two different ways of getting anomaly-free and 
complex representations in SU(N). One method is to find 
anomaly-free, irreducible, and complex representations 
(AFICR), and the other is to form anomaly-free combina
tions with several complex representations. 

The highly reducible nature of the fermion representa
tions is cited5 as one of the least attractive features of the 
SU(N) models. For this reason, it may be interesting to find 
AFICR in the SU(N) group. Okub06 and Cox 7 have already 
observed that none is known with dimensionality below 
D = 3X 105 for SU(N) with N<6. 

On the other hand, recent developments of grand uni
fied theoriesH and preon dynamics9 require comprehensive 
list of the anomaly-free, reducible, and complex representa
tions (AFRCR) for model building. 

In this paper, AFICR and AFRCR are presented. A 
thorough search for AFICR has been carried out with di
mensions less than D = 4 X 109 in SU(N) for N less than 17. 
The smallest AFICR occurs in SU(6) withD = 374 556. The 
next lowest AFICR is in SU(5) with D = 1 357824. Alto
gether, 28 AFICR are presented in Sec. II. These representa
tions are only of mathematical curiosity and do not have any 
practical use due to their awesome dimensionality. In addi-

.) Alfred P. Sloan Foundation Fellow. 
b, Supported in part by the U.S. Department of Energy under Contract DE· 

AC02·76ER03130.AOO7·Task A. 
"Senior Fulbright Fellow. 

tion, they usually contain color exotics, i.e., those represen
tations other than L~, and ~* of the color group SU(3). 
Furthermore, a close examination of the branching rules 
contained in Sec. III reveals that the SU(6) representation 
with D = 374 556 can accomodate only one generation of 
quarks and leptons, along with many exotic particles. 

In Sec. IV, we obtain for every SU(N) all AFRCR which 
also satisfy the asymptotic freedom condition. The require
ment of asymptotic freedom is needed here to limit the num
ber of dimensions of reducible representations. 

TABLE I. Anomaly free irreducible complex representations in SU(N). 
Weight is given by (A ",1" ... ,,1,'1 _ I ), where A, equals the number of Young 
tableau with i boxes. This notation agrees with the Cartan labels for the 
highest weight of an irreducible representation. 
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TABLE II. Branching of the smallest anomaly-free complex representation 
(40050) ofSV(6) into SV(5) X va (1). SV(5) weight is given by (A 1, ... ,A4 ) in 
Cartan labels. 

-. ,J 

- I': 

I I 

I I 

I I 

< I, I I 

.1 I ,;_ 

I I ,_ 

il \' _ . 

I" 

11 

11·; 

I I:, 

-J" 1'-' 

cl 1: ,')1" I u' III c,i, 

\llll .:1 

_:-, I 

1.'(\1 

-1"1]1 -.\-\ I~, -J'; 

--I:"(I() 

-1_' 

I.' 

'~I 'i' I: 
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II. ANOMALY-FREE IRREDUCIBLE COMPLEX 
REPRESENTATIONS (AFICR) 

Irreducible representations ofSU(N) will be specified by 
asetofintegers(AI,A2, ... ,AN~ I), whereA, equals the number 
of columns of the Young tableau with i boxes. 10 This nota
tion agrees with the Cartan labels for the highest weight of an 
irreducible representation. 

Complex representations in SU(N) satisfy 
(A 1,A2, ... ,AN ~ I )#(AN ~ I , ... ,..1, d· Only very few of them are 
anomaly-free and irreducible. There are no complex repre
sentations in SU(2). For SU(3) and SU(4), no AFICR exist 
below D = 4 X 109

. Table I summarizes all AFICR in SU(N) 

I I 11 J 
I I I I I 

(0) 

1 b) 

FIG. I. (a) (0,5,0,0,4) ofSV(6) with D = 374 556; (bl (0,7,3,31 of SV(5) with 
D = I 357 824. These are the two lowest dimensional AFICR. 
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with dimensionality up to D = 4 X lOY and N <; 16. Conjugate 
representations are not repeated in Table I. 

The smallest AFICR mentioned before corresponds to 
(0,5,0,0,4) of SU(6) in the Cartan labels. The next lowest 
AFICR is (0,7,3,3) ofSU(5). For clarity, we show the corre
sponding Young tableaux in Fig. 1. 

III. BRANCHING RULES 

To study the branching rules of the smallest AFICR 
(0,5,0,0,4) ofSU(6), we follow the method of elementary mul
tiplets suggested by Patera and Sharp. II 

For SU( 6)~SU( 5) X U( 1), there are ten elementary mul
tiplets. We use the notation (AIA03A4As;a lap3a4'Y"), 
where it, and a, are the Cartan labels for SU(6) and SU(5) 
respectively, and Y" is the hypercharge ofua (1) label. 

They are 

A : = (10 000;0000, - 5, (1 ) 

Ai = (10 000;1000, 1 ), (2) 

A ~ = (01000;1000, - 4), (3) 

A ~ = (01 000;0100, 2), (4) 

Ai = (00 100;0100, - 3), (5) 

A ~ = (00 100;0010, 3), (6) 

Ai = (00010;0010, - 2), (7) 

Ai =(00010;0001, 4), (8) 

Ai = (00001;0001, - 1), (9) 

A ~ = (00001;0000, 5). (10) 

Table II shows the branching rules of SU(6) to SU(5) 
with dimensions, anomaly in SU(5), and Ua (1) hypercharge. 
The anomaly and hypercharge in Table II add up zero as 
expected. 

To reduce SU(5) further into SU(3)XSU(2)XUb (I), 
there are ten elementary multiplets [the notation is 
(A IA2AJA4;a la2,a, yo), where A,ai and a are the Cartan la
bels for SU(5), SU(3), and SU(2), respectively; yo is the hy
percharge ofUb (l) normalized to have integer value]: 

A: = (10000;10,0,2), (11) 

A ~ = (1000;00,1, - 3), (12) 

Ai = (0100;01,0,4), 

A~ =(0100;10,1,-1), 

A ~ = (0100;00,0, - 6), 

A ~ = (0010;00,0,6), 

Ai = (0010;01,1,1), 

A ~ = (0010;10,0, - 4), 

Ai = (0001;00,1,3), 

A j = (0001;01,0, - 2). 

(13) 

(14) 

( 15) 

( 16) 

( 17) 

( 18) 

( 19) 

(20) 

In addition to those listed above, three more composite 
elementary factors are necessary and they are 

A 13 = (1010;01,0, - 2), 

A 14 = (1001;00,0,0), 

A 24 = (0101;10,0,2). 

Eichten. Kang, and Koh 

(21) 

(22) 

(23) 
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TABLE III. The nine irreducible and complex representations ofSU(N) which satisfy the asymptotic freedom constraint. The first and the second columns 
define the representations and the corresponding Young tableaux. The dimension of the representation. the second index (Tz). the value of the quadratic 
Casimir operator (ez). and the anomaly (A ) are given in the next four columns. The final column gives the maximum allowed value for N consistent with 
asymptotic freedom. 

Representation Young Tableau Dimension T
Z 

C2 
A N 

max 

RI ~ N(N-1) (N-Z) (N-3) (N-Z) (N-3) (N-4) ~(N-4XN+IJ (N-B) (N-3) (N-4) 
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R2 EEl ..l.. N
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(N
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N(N
2
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12 --6-
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R) § ~(N-I) (N-2) 
(N-Z) (N-3) 3(N-3) (N+l) (N-) (N-6) 

26 4 2N 2 

R4 N-1lr ~(N-l) (N+Z) 
(N+2) (3N-l) (3N-l) (N+l) (N

Z 
+7N-Z) 

4 ZN Z 

RS N-Z l [f ~(N+l) (N-Z) 
(N-2) (3N+l) (3N+l) (N-I) (-N

Z
+7N+Z) 

1 Z N2_3 
K6 S:J 3N(N -1) -2-

R7 IT] N(N+l) N+Z 
-Z- ;;-

RS El N(N-ll N-Z 
2 ;;-

Py 0 1 
N '2 

The following pairs of elementary factors are incom
patible ' I: A '3withA~ orA 24; A '4withA~ orA~;andA24 
with A i or A 13. 

The electric charge generator 12 can generally be a linear 
combination of Tv YU, and F: 

(24) 

where A and B are to be determined to give correct charge 
assignment. An exhaustive search was made for possible val
ues of A and B which give correct charges for 15 chiral fields 
(ud)L ,uc L ,de L ,(ve)L e,c L' Correct charge assignment for one 
generation can be made with nine different choices of A and 
Bin Eq. (24), but there are huge numbers of exotic states. 

IV. ANOMALY-FREE REDUCIBLE COMPLEX 
REPRESENTATIONS (AFRCR) 

All of the AFICR in Table I are of enormous dimen· 
sions and therefore are only of mathematical interest. In 
physically interesting theories, the dimensions of representa
tions can be limited by the constraint of asymptotic free
dom. ' ] This condition gives the following group theoretical 
constraint 14: 

I Tz(R,)<4 Cz(G), (25) 
Rj 

where R, is the irreducible representation offermions; C2 is 
the quadratic Casimir operator; G is the adjoint representa
tion; and T2 is defined by 

(26) 

There are nine irreducible and complex representations of 
SU(N ),R I,R 2 , ..• ,R9 , which satisfy the asymptotic freedom. 
They are defined in Table III along with the associated pro
perties of the representation such as the dimension, T2 , the 
value of the Casimir operator C2 , the anomaly A, and the 
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4 ZN 2 

' 2 
(N

Z 
-9) f (N N- 3) 11 

(N-l) (N+Z) 
N 

N+4 None 

iN+]) (N-21 
N 

N-4 None 

N2_1 
2N None 

maximum allowed value of N for asymptotic freedom. 
Among simple groups, the only complex irreducible re

presentations, which are both anomaly-free and asymptotic
free, are the following: 16-, 126-, 144-dimensional represen
tations of SO( 10); the lowest-dimensional spinorial 
representations ofSO(14) and SO(I8); and 27-dimensional 
representation of £6' The maximum mUltiplicities of these 
representations bounded by the asymptotic freedom are: 22, 
1,1; 8, 2; and 22 respectively. There are no complex irreduci
ble representations which are both anomaly-free and asymp
totic-free in SU(N). 

Relaxing the condition of irreducibility, 15 we have con
sidered reducible complex representations ~ n,R"n, being 
integers, which are both anomaly-free and asymptotic-free. 
Anomaly-free complex representations which satisfy 
asymptotic freedom are greatly constrained, and a complete 
list of such representations in SU(N) is reported here. We 
give a separate list of AFRCR with asymptotic freedom that 
contain tensor representations of rank at most 2 for the ob
vious reason of simplicity. 

Tables IV and V show all anomaly-free and asymptotic
free combinations of the following form: 

(27) 

where n7, nx, and n9 are integers, whose magnitudes are con
strained by asymptotic freedom as 16 

(28) 

Negative values of n, are to be interpreted as the appearance 
of n, times of the associated complex conjugate r",:presenta
tions. Table IV contains all AFRCR with asymptotic free
dom for arbitrarily large values of N, whereas Table V in
cludes only those for finite range of N. 

Except for the solutions in Tables IV and V, all other 
anomaly-free and asymptotic-free representations contain at 

Eichten, Kang, and Koh 2531 



                                                                                                                                    

TABLE IV. Complex representations ofSU(N) of the form ofEq. (26) which 
satisfy the constraints of anomaly cancellation and asymptotic freedom for 
arbitrary large N. The representations R7, RH, and R9 are defined in Table 
III. In a given row, the representation n7R7 + nKRK + noR: is denoted by 
the integer n7, nH, and no. If ni <0, n,R, is to be interpreted as In, IR~. f3 
gives twice the sum of the T2(R ) for given anomaly-free combinations. The 
last column gives the maximum multiplicity of the representation (denoted 
by I) consistent with the constraint of asymptotic freedom and its depen
dence on N. Except for the first row, N is greater than or equal to 5. 

" , Il
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-4 N+36 lON+38 ;°1 (N c36) 

least one term whose tensor representation has the rank 
greater than 2. Such solutions, however, exist, only for 
N<; 17, and are listed in Table IV for 3 <;N<;7, in Table VII for 
8 <;N <; 10, and in Table VIII for 11 <;N <; 17. Again the nega
tive n i 's in these tables represent the occurrence of the asso
ciated complex conjugate representation. 

It is to be emphasized that all anomaly-free and asymp
totic-free complex representations for N~ 18 are only of the 
type listed in Tables IV and V. 

Since there are a number of representations which differ 
only in the number of occurrence of Rg and R9 , we group 
these different possibilities collectively by P. The variable P 
takes integer values between finite limits as shown in the last 
column of Tables VI, VII, and VIII. The I appearing in the 
tenth column of these tables is the maximum magnitude of 
the multiplicities of the associated representation consistent 
with the asymptotic freedom. 
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TABLE V. Complex representations of SU(N) of the form n7R7 ff! n.RK 

ff! noR : which satisfy Eq. (25) but only for a finite range of N. The notations 
for the first three columns are the same as in Table IV. Column 4 gives the 
range of N for which an asymptotic-free solution exists. The maximum 
multiplicity of each of these solutions is I = I. Nis greater than or equal to 5. 

- .'1 

II: 

" :... 1·1 

11 -111\+ ;,' 

"\-1': 

·'h+·\·' 

II 

-"))\+\.) 

\ + ) ~ Ir. 

V. COMMENTS ON RESULTS 

We have found both irreducible and reducible represen
tations which are complex and anomaly-free. Complex irre
ducible representations can indeed be anomaly-free, al
though the number of such examples is very limited. 

All AFICR with D<;4 X 109 are listed in Table I up to 
SU( 16). None of these representations satisfy the asymptotic 
freedom. 

All complex fermion representations in SU(N) which 
satisfy the constraints of asymptotic freedom and anomaly 
cancellation are listed in Tables IV-VIII. The most general 
solution subject to the anomaly-free condition can be given 
by the sum of a complex representation Ca listed in Tables 
IV-VIII and a pseudo real representation Ra whose general 
form is 

9 

Ra = I mi(R i IfJR il IfJ I njrj . (29) 
i= 1 . 

Here [ Ri 1 are the nine complex representations defined in 
Table III and) runs over all pseudo real irreducible represen
tations rj . The multiplicity m i and nj are nonnegative inte
gers; and the condition for the general solution, Ca + Ra , to 
be asymptotically free is simplyJ6 

T2(Ca) + T2(Ra )<;.yN. (30) 

Our results will be useful in model building within the con
text of grand unified theories (GUT) with elementary scalar 
fields, where all gauge interactions are unified into a simple 
gauge group and the constraints to the model include the two 
conditions we have imposed. Furthermore, we expect the 
role of pseudoreal representations to be minimal in view of 
Georgi's rules2 for grand unification. Usually additional 
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TABLE VI. Complex solutions in SU(N) with 3<N<7 which contain at 
least one irreducible representation of rank greater than 2. The representa
tion R "R 2, ••• ,R9 are defined in Table III. In a given row, the representation 
I;~ , n;R; is denoted by the integer n" ... ,n9 • Again, if n; <0, n;R; is inter
preted as In i I R r. When a number of solutions of similar form exists, they 
are sometimes denoted collectively by introducing an integer variable Pin 
the solution. In these cases, the values of P which give solutions are given in 
the last column. The maximum multiplicity of the solution I is given in the 
10th column. 
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TABLE VI (continued). 
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TABLE VII. Complex solutions in SU(N) with S.;;N.;; 10 which contains at least one irreducible representation of rank greater than 2. The notation is the same 
as that of Table VI. 
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p .. o 

-I 
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" 
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n I' I - --
-I '" 1-:..1' n I' 
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TABLE VIII. Complex solutions in SU(N) with II <N" 17 which contain at 
least one irreducible representation of rank greater than 2. No solutions of 
this type exist for N> 18. The notation is the same as that of Table VI. 

11':) 

28·· 7P I~~ I '4 
13- 7P 1)-1' -2 

2U- 7P 4 ~ p', - 1 3~P:"'h 
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-25 ·7P .-\:...1'$] 

_35. 7 )' -():...) 

-1 -, ::;1\- -:,p (l:..1':...·1 
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1 H-~H) 

-1 1_:1)' 
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III I-I 'j 
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:.:'1' I 11-)'-1 

1..'1' 

-1':1' -\ )' 

-I'i 

l:T 'I-I' 

) ,-L,I 

i 1- I ~l 11"-1' I 

constraints are needed for GUT to insure that fermions 
transform as 1,3, and 3* only under the SU(3) color group.3 

In dynamical models, a new gauge interaction is intro
duced which becomes strong at an energy scale much above 
presently available energies. These kinds of interactions 
usually have a simple compact group structure of the kinds 
studied here. Again the fermions must satisfy the conditions 
of asymptotic freedom and anomaly cancellation with re
spect to this new gauge interaction to be physically meaning
ful. Furthermore, the real representation content is relative
ly unimportant. In these models it is perfectly sensible to 
regard the ordinary quarks and leptons as bound states of 
more fundamental objects (preons), and the additional con
straint that the representation is totally antisymmetric in 
SUfN) GUT need not apply. 
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Thus both schemes of unification requiries the same 
minimal conditions on the fermionic content'3: 

(a) existence of complex representations, 

fbi asymptotic freedom, 

(c) anomaly cancellation. 

We have enumerated all solutions to these conditions in this 
paper. 
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For several years the authors have been interested in determining complete sets of states for 
macroscopic nuclear collective models, such as the Bohr-Mottelson one (BM) and the interacting 
boson approximation (IBA), as well as in their use in nuclear structure calculations. In the present 
paper we obtain a complete set of states for microscopic nuclear collective models such as those of 
Vanagas and of Filippov and Smirnov . For calculations in these models, one requires a set of states 
for the A nucleon system, in appropriate coordinates which include the ones related with 
collective degrees of freedom. As is customary in nuclear physics, the complete set of states is 
derived more conveniently if one assumes an oscillator interaction between the nucleons. We 
obtain explicitly this set of states when A> 1, showing that it can be expressed in terms of 
wavefunctions whose dependence on the collective coordinates is similar to those appearing in the 
BM model and in the IBA. We briefly indicate how this set of states can be used in microscopic 
collective model calculations. 

PACS numbers: 21.60.Ev 

I. INTRODUCTION 

For several years the authors 1-3 have been interested in 
determining complete sets of states for macroscopic nuclear 
collective models as well as in their use in nuclear structure 
calculations. 

Some of the authors 1.2 first obtained the eigenfunctions 
of the Bohr-Mottelson (BM) Hamiltonian4 associated with 
quadrupole vibrations, which implied the explicit derivation 
of the r part of the BM eigenstates as the rest of the eigen
function was known.41t was also realized in these papers, 1.2 
that, using this r part, one could obtain the reduced 3j-sym
boIs for the O( 5) :::) O( 3) chain of groups, and with the help of 
the latter determine all relevant matrix elements that appear 
in the general BM Hamiltonian, i.e., one that contains high
er-order terms than the quadratic ones in both potential and 
kinetic energy. These states and reduced 3j-symbols were 
applied by one of the authors5 and his collaborators to the 
study of the structure of several medium and heavy even
even nuclei, in the Greiner6 version of the general BM Ha
miltonian. 

A few years later we became aware of the extensive 
work on the interacting boson approximation (IBA) that had 
been carried out by Arima and lachello. 7 We managed to 
reformulate the problem in configuration space3 and showed 
that a complete basis of states required in the IBA computa
tions would be those of the BM vibrational Hamiltonian, 
multiplied by the eigenstate of a one-dimensional oscillator 
Hamiltonian associated with an s boson. The calculations of 
the matrix elements of the two-body interactions in the IBA 
required then the same reduced 3j-symbols of the 0(5):::) 0(3) 
chain of groups, which were mentioned in the previous para
graph. Thus the stage was set for calculations in the IBA 

alSupported by the Deutsche Forschungsgemeinschaft (DFG). 
bl Member of the Instituto Nacional de Investigaciones N ucleares and El 

Colegio Nacional. 

using the same techniques as for the generalized BM Hamil
tonian. Some of the authorsK and their collaborators carried 
out this IBA program for several medium and heavy even
even nuclei. 

About the same time that we started to develop an inter
est in the IBA, we became aware of the extensive work done 
on microscopic nuclear collective models by the groups of 
Vanagas9 and of Filippov et al. lo For calculations in these 
models one requires, as in the macroscopic case, a complete 
set of states, but now for the A nucleon system, in appropri
ate coordinates 11.12 that include explicitly the ones related 
with collective degrees of freedom. As is customary in nu
clear physics, the complete set of states is derived more con
veniently if one assumes an oscillator interaction between 
the nucleons. 13 In the references mentioned9

.
10 some of the 

states are derived with the help of the translationally invar
iant shell model, 10 as well as by using appropriate Wigner 
coefficients by the UtA - 1) group associated with the A-I 
Jacobi vectors for the A nucleon system. 9 

It is the purpose of the present paper to derive the com
plete set of states explictly when A :> 1, using for the collective 
parts the type of wavefunctions already introduced in the 
analysis of the general BM Hamiltonian and the IBA. 1-3 The 
matrix elements of the relevant operators with respect to this 
complete set of states can then be determined through proce
dures similar to those followed in the macroscopic nuclear 
collective models. The program has already been outlined in 
a short publication 14 in which the states were limited to the 
scalar representation of the O(A - 1) group, but in this paper 
an arbitrary one, characterized by the partition ((i)1(i)2(i)3) in
volving only three numbers, will be considered. This would 
allow us to discuss collective effects for open shell nuclei, 
where they are particularly important, and not only for the 
case of closed shells which is the one explicitly treated in Ref. 
14. 
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The paper will be mathematical in nature, but the ex
perience of the previous publications 1-3 clearly indicates 
that, once a complete set of states becomes available, the 
applications to specific nuclei become feasible. 5•

8 

II. THE COLLECTIVE DEGREES OF FREEDOM 

In this section we shall introduce the collective degrees 
of freedom through the concept of an intrinsic quadrupole 
moment for an A-body system in three dimensional space, 
and then express the coordinates X ;s, i = 1,2,3,5= 1,2, ... ,A, 
of this system in terms of the collective ones plus others. 

From the beginning we want to eliminate the center of 
mass motion, and thus our description will be given in terms 
of the Jacobi coordinates associated with the relative posi
tions of the nucleons, i.e., 

XiS = [5(5+ 1)]-112 [ttl X;t -5X;S+I]' 

5 = 1,2, ... ,A - 1. (2.1) 

We now consider the quadrupole matrix for theA-body 
system which, in the frame of reference fixed in space whose 
origin is at the center of mass, is given by 

q = Ilqij II = II :tll XisA}s II, i,j = 1,2,3. (2.2) 

The intrinsic quadrupole matrix in the frame of refer
ence fixed in the body is then a diagonal matrix whose ele
ments are given by the roots IS of the characteristic equation 

(2.3) 

Denoting these three real and positive roots by A = Pk, 
k = 1,2,3, and expressing them in terms of three new param
eters p,b,e through the relations 16 

Pk = (p2/3)[ 1 + 2b cos(e - 21Tk 13)), (2.4) 

we immediately find out, through the standard methods of 
solving a cubic equation with the help of trigonometric func
tions,17 that 

p2 = tr q, b 2 = 1 tr Q2/(tr q)2, 

cos 3c = (54)1/2det Q I(tr Q2)3/2, (2.5) 

with Q being the traceless quadrupole matrix defined by 

Q = Ilqij -1 tr qD;j II· 
The p~ 's, k = 1,2,3, are the terms in the diagonal qua

drupole matrix in the frame of reference fixed in the body. 
We expect then that they or, equivalently, p,b,c of (2.5), to
gether with the Euler angles {}k' k = 1,2,3, will be related 
with the collective degrees offreedom of an A-body system. 
But this system, once we have eliminated the center of mass 
coordinate, has 3A - 3 degrees of freedom while the Pk,{}k, 
k = 1,2,3, gives us only six. Is it possible to find 3A - 9 new 
coordinates such that we can expand the XiS' i = 1,2,3, 
5 = 1,2, ... ,A - 1, in terms of them and the sixPk'{}k' 
k = 1,2,3? The answer to this was given more than a decade 
ago by Zickendraht11 and by Dzublik et al., 12 and, in the 
notation of V anagas, 9 the coordinate transformation takes 
the form 
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3 

Xi' = I !Pk D L({}j)D!_4+k.s(¢)j. (2.6) 
k=l 

In (2.6) the matrix Dl({}j) = liD L({}j}11 is the defining 
representation (which is the reason for the I = 1 appearing as 
an upper index) of the 0(3) group, in terms of the Euler an
gles and in its standard orthogonal form. 18 The matrix 
liD L( ¢ )11, t,s = 1,2, ... ,A - 1, has the same meaning for the 
O(A - I} group and it depends on (A - I}(A - 2)/2 angular 
coordinates denoted by ¢. As in (2.6) we need only the last 
three rows of this matrix; the number of angular coordinates 
required will be those of the O(A - I) group minus those of 
the O(A - 4) subgroup associated with rows 1 to A - 4, i.e., 

! (A - I)(A - 2) -- ! (A - 4)(A - 5) = 3A - 9, (2.7) 

which is the required number as indicated in the previous 
paragraph. 

Furthermore, we note that from the orthogonal proper
ty of the matrices liD ;s( ¢)II we have 

q = fi l ({}k)1I p;D,j IID I({}k)' (2.8) 

where - indicates the transposed matrix. Thus the Pk'S ap
pearing in (2.6) are related to the diagonal quadrupole matrix 
II P~Dij II while Dl({} k) is the orthogonal matrix, function of 
the Euler angles, that takes us from the frame of reference 
fixed in space to the one fixed in the body. Note that from 
(2.2), (2.4), (2.5), and (2.8) we see that thepk'{}k' k = 1,2,3, 
are invariant under permutations of the single-particle co
ordinates, which is one of the reasons for identifying them 
with collective degrees of freedom. 

The coordinate transformation (2.6) must be bijective 
(one-to-one onto) which implies the inequality 16 
0<P2 <p I <P3 < 00 that translates into restrictions for band c 
that limit them l6 to the lined triangle in Fig. 1, where 
x = b cos c,y = b sin c. The restrictions on c, i.e., 0<c<1T/3 
are the same4 as those of r in the BM model but, as we see 
from Fig. 1, b cannot exceed 1 so its range is not that of (3, 
which is in the interval4 0<(3< 00. 

From (2.6) the Xis are associated with the defining irre
ducible representation (irreps) of both the 0(3) and O(A - 1) 
orthogonal groups. It is clear therefore that polynomial 
functions of the X's can be expanded in terms of irreducible 
representations of these two groups, and, for our later devel
opments, it will be important to understand the nature of 
these representations and introduce a convenient notation 
for them. For the 0(3) group they are the well-known ones l9 

that can be denoted by 

FIG. 1. The variables band c appearing in Eqs. (2.4) and (2.5) are restricted 
to the lined triangle, where the coordinates are given by x = b cos c and 
y = b sin c. 
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(2.9) 

in whichL gives the irrep of 0(3) whileK and Mare, respec
tively, the irreps of 0'(2) and 0(2), the subgroups associated 
with rotations around the z axis in frames of reference fixed 
in the body and in space. The notation (2.9) is in agreement 
with the D ki(tJj) appearing in (2.6), but corresponds to the 
inverse rotation in the notation used in Rose's book. 19 De
noting by q; ~M(t?j) the functions used in this reference, 19 we 
have the relation D ~M(tJj) = q;tK *(tJj)' where * indicates 
conjugation. 

Passing now to the O(A - 1) group, the rows and co
lumns of its irreps can again be characterized by subgroups 
of O(A - 1) in frames of reference fixed respectively in the 
"body" and in "space." We note that the O(A - 1) group is 
essentially related with particle indices and thus the "body" 
and "space" labels for the rows and columns in its represen
tations is just a way of describing them which emphasizes the 
analogy, but not the identity, with a similar labeling in the 
0(3) group. We shall denote respectively with and without 
prime the chain of orthogonal groups in the "body" and 
"space" fixed frames. We shall also refer to "body" and 
"space" fixed frame generators (again to be denoted with and 
without prime) of these chains of groups as those which Van
agas9 calls left and right shift operators. 

In the case of the rows of the irreps of O(A - I) we can 
take the Gel'fand-Zetlin20 chain of orthogonal groups, i.e., 

O'(A - I):)O'(A - 2):)0'(A - 3):)···::::>0'(2). (2.10) 

Looking now at theXis of(2.6), we see that they are expressed 
in terms of D ~ _ 4+ k.s( tP ), k = 1,2,3, s = 1,2, ... ,.4 - 1, so in 
the frame of reference fixed in the body (to which the row 
index A - 4 + k corresponds) only the last three compon
ents A - 3, A - 2, A-I, appear. These components ex
pressed as Gel'fand patterns20 associated with the irreps of 
the chain of groups (2.10) are given respectively by 

O'(A - 1)--+ 

O'(A - 2)--+ 

O'(A - 3)--+ 

O'(2)~ 

(2.11) 

where the big zero indicates that all components in the pat
tern are zero except those explicitly indicated as 1. 

Clearly, then if we now have instead of the Xis an arbi
trary polynomial function of them, all irreps associated with 
the chain of subgroups O'(A - 4):)O'(A - 5):) 
... ::::> 0'(2) continue to be scalars, i.e., the corresponding rows 
in the Gel'fand pattern contain only zeros. Thus, by the in
equalities20 satisfied by the partitions characterizing the ir
reps of the chain of groups (2.10), a polynomial in the Xis can 
be expanded in irreps ofO(A - 1) whose rows are associated 
with Gel'fand patterns of the type 
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O'(A - 1)--+ WI W2 W3 0 ... 0 

O'(A - 2)--+ 71720 ... 0 

O'(A - 3)--+ ;1 0 ... 0 
(2.12) 

O'(A - 4)--+ 0 .. ·0 

0 ' (2) --+ 0 

From (2.12) we conclude that the only irreps of 
O(A - 1) of interest to us would be those characterized by a 
partition in three integers, i.e., (W IW2W3 ). Furthermore, the 
row or the representation will be characterized by the irreps 
(7172) of 0 ' (A - 2) and;1 ofO'(A - 3), which, from the 
Gel'fand-Zetlin rules20 (at least when A >6) satisfy the in
equalities 

WI >71>W2>72>W3 >0, 

71>;1>72>0, 

(2.13a) 

(2.13b) 

which are also those of a U(3)::::> U(2)::::> U( 1) chain of groups. 
We now tum our attention to the column index in the 

irrep of O(A - 1) that will be relevant for our later develop
ment. As the Xis are expressed in terms of the D ~ _ 4 + k.s ( tP ). 
where the column index s takes now all values 
s = 1,2, ... ,.4 - 1, it is clear that in the chain of groups (2.10), 
but now in the frame of reference fixed in "space" and not in 
the "body," we no longer have only scalar representations of 
the subgroups O(A - 4):)0(A - 5):) .. ·::::>0(2). We can then 
still develop polynomial functions of the X's in terms of ir
reps of O(A - 1) whose columns are characterized by Gel
'fand patterns such as (2.12), but they would have, in general, 
three terms in every row. However, this characterization of 
the columns in the irrep ofO(A - 1) is not very physical. It is 
more convenient to pass from O(A - 1) to the subgroup giv
en by the representation D (A - I.II(SA) of the A-dimensional 
symmetric group SA' 21 In this way the polynomial functions 
in the XiS will be characterized by irreps of the symmetric21 

group SA associated with the partition [f J = (fJ2'" fA) of 
A, and could be combined with the spin-isospin part of the 
wavefunction to satisfy the Pauli principle. Considering also 
the chain of subgroups SA ::::>SA _ 1 ::::> ... ::::>S2 of the symmetric 
group, the irrep of O(A - 1) is further characterized by Ya
manouchi21 symbol (r) = (r 1r 2 .. ·rA ) and, because a given irrep 
[f J of SA can appear several times in an irrep (W 1WZW3 ) of 
O(A - 1), we need an extra set of indexes 8 that distin
guishes22 these repeated representations. Thus we finally ar
rive at the conclusion that polynomial functions of the XiS 
can be expanded in terms of the irreps ofO(A - 1), which we 
could denote by 

(2.14) 

The explicit determination of these irreps is by no 
means trivial,9.10 but, as we shall see later, in most applica
tions we shall not require them. What will be important 
though is to find a complete set of states that we can write as 
sums of products ofirreps of 0(3), O(A - 1) in (2.9) and (2.14) 
and functions ofp,b,c, which we shall proceed to determine. 

III. THE OSCILLATOR HAMILTONIAN 

As in many other problems in nuclear physics,13 when 
we want to find complete sets of states we start by consider-
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ing eigenstates of anA-body system in which the interactions 
are of the harmonic oscillator type. Choosing units in which 
fl, the mass of the nucleon, and an appropriate frequenc/3 

are 1, we have in terms of the Jacobi coordinatesX,s and their 
corresponding momenta Pis = - ialaX,.\ that our Hamil
tonian takes the form 

A - I 3 

H=! I I (P7s+ X 7s)· (3.1) 
s= J i= 1 

It is clear that this Hamiltonian is invariant under both 
the 0(3) and O(A - 1) orthogonal groups and thus the irreps 
Land (lUllU2lU3) can characterize the eigenstates of (3.1). To 
find these eigenstates explicitly, it is convenient to pass from 
the coordinates Xis to the six collective coordinates Pk ,11k, 
k = 1,2,3 and the 3A - 9 angular coordinates </J, as indicated 
in (2.6). Under this transformation of coordinates the Hamil
tonian (3.1) takes the form 9,10 

H = {I ± [_ L _ (A - 4) ~ + p~] 
2 k = I ap~ P k ap k 

~ (2 2 )-1 (a a )} L Pk -Pk' Pk -;-- -Pk'-;--
k>k'=1 UPk UPk' 

+ {i k> t = I (p~ + p~. )( p~ - p~ , ) - 2 

X [2'~2_4+k,A_4+k' +Lk~'] 
3 

+2 I PkPk'(P~-p~,)-2 
k>k' = I 

X 2' ~ _ 4 T k,A - 4+ k ,L kk' } 

1 3 A - 4 

+- I Pk-
2 I y~2_4+k,s' 

2 k=1 s=1 

(3,2) 

where 

L"'k" = ~LICk'k"kLk withck'k"k being the anti
symmetric tensor and L k the component of the ordinary 
angular momentum vector in the frame of reference fixed in 
the body, 18 The 2';, are the generators of an O(A - I) group 
also in a kind of "body" fixed reference frame, i.e., they are 
defined by 

A-I 

2';,= I D;u(</J)D:v(</J)2'uv' (3,3) 
U,v = 1 

where 2' uv are the standard generators of the O(A - I) 
group 

3 a a 
y =-i~X--X-uvL JU ax JV ax.' J = 1 Jt' JU 

(3.4) 

which in turn can be expressed as functions of only the angles 
</J 's and derivatives with respect to them. 

While the derivation of the expression (3.2) is carried 
out in the references mentioned,9.10 the present authors have 
also looked at the problem from a point of view that leads to 
the explicit expressions of all the generators of a dynamical 
group Sp(6) [where one of these generators is the Hamilton
ian (3.1)J in terms of the coordinates introduced in (2.6). This 
analysis is presented in Appendix A. 

We want to transforn the Hamiltonian (3.2) so as to be 
able to obtain from it the equation that will provide us with a 
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com plete set of states characterized by the irrep L of O( 3) and 
(lU 1lU2lU3) ofO(A - 1). For this purpose we note that the Casi
mir operator G '(r), r = 2,3, ... ,A - 1, of an orthogonal group 
O'(r) in a frame of reference fixed in the body is given by 

r 

G'(r) =! I Y;;. (3,S) 
5,1= 1 

Looking then at ~: ~ 14 Y ~2_ 4 + k,s' k = 1,2,3, which is the 
last term appearing in (3.2), we conclude from the fact that 
Y;, = - Y;" that we can write for k = 1,2,3, 
A .- 4 

'" 2',2 = G'(A - 3) - G'(A - 4) L A~3.s , 
.~ = 1 

A -- 4 

I 2'~2_ 2,s = G'(A - 2) - G'(A - 3) - 2';2, (3.6) 
s=) 

A -4 

I 2'}_I,s = G'(A - 1) - G'(A - 2) - 2';2 - 2';2, 
s=l 

in which 

(3.7) 

We can write now the eigenfunction If/ of H of (3.2) as 

If/= (PIP2P3)-IA-4)12(p~ +p~ +p~)-2¢ (3.8) 

and the corresponding Hamiltonian when acting on ¢ as H '. 
Expressing then H' in terms of p,b,e, related to PI' P2' P3 
through (2.4) we see, in a straightforward though laborious 
way, that it becomes 

, 1 ( 13
2 

R 2 2) H=- --+-+p , 
2 ap2 p2 

(3.9) 

where, using (3.6), we obtain that the operator ~ R 2 takes the 
form 

! R 2 = i (R ~ + R ~ + R ~ ), (3.10) 

in which 

az 1 132 

- (1 + b cos 3e - 2b 2
) -- + (2b sin 3e) ---

ab 2 b abae 

- ~ [1 - .k. cos 3e - ~ b 2] 
b 4 4 
a 1 - b cos 3e 132 

X--
ab b 2 ae2 

.1... cot 3c [ 1 + , b sin 3c tan 3c - b sec 3e] !... 
b 2 - ac 

+ ~ [( A ~ sy _ ~] 
1 - b 2 

X +6, 
1 - 3b 2 + 2b 3 cos 3c 

3 I-be I 22 k (L ,,2 + 2',,2) 
k = I 4b Sk 

3 [1 _ 2be + 4b 2(e2 _:l)] 1/2 

(3.11a) 

+ '" k k 4 L ' 2" L 22 k k' 
k = I 2b Sk 

i R ~ = ~ (1 + 2bc I) - I [ G '(A - 3) - G' (A - 4)] 

+ ~(l + 2be2)-1 

(3.l1b) 

X [G'(A - 2) - G'(A - 3) - y;2]+ W + 2bc3)-1 

X [G'(A - 1) - G'(A - 2) - y;2 - 2';2], 
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where we have used the shorthand notation 

Ck =cos[c - (21Tk /3)], sk-sin[c - (21Tk /3)], 

k = 1,2,3. (3.12) 

The reason for writing the ! R 20f(3.1O)asasumofthree 
terms is to emphasize that R i and R ~ came respectively 
from the first and second curly brackets in (3.2) while R ~, 
when divided by 2p2, is the last term in (3.2). 

As the Hamiltonian (3.1), and thus also theH I of(3.9), is 
invariant under the group O(A - 1), the eigenstates of H I can 
be characterized by the irrep (w IW2( 3) of this group. There
fore, we can write the t/J in (3.8) in the form 

- [ f(w,w,w,)(p b c·{} ).D(w,w,w,)( A.)] 
- , , , k 'f' lilfJlr)' (3.13) 

where the D is given in (2.14) andj(w,w,W,) is still to be deter
mined. We have also expressed t/J as the component D [ j J (r) 
of the product of a row vector f (w,w,w,) and a matrix D(w,w,w,) 

associated with the irrep (w IW2( 3 ) of O(A - 1). From the 
inequalities (2.13) it is clear that the row vector has as many 
components as the dimension of the irrep [W IW 2W 3] ofa U(3) 
group. 24 

The only operators appearing in (3.9)-(3.11) that are 
related to the O(A - 1) group are the generators .!f ~ , 
k= 1,2,3,of(3.7)andtheCasimiroperatorG '(r),r=A -1, 
A - 2, A - 3, A - 4, both of them in the frame of reference 
fixed in the "body." Thus f i<u,w,W,)( p,b,c;{} k) satisfies the 
equation 

(3.14) 

whereH I is the matrix operator given by(3.9)-(3.11)in which 
.!f~ and G '(r) are replaced by their matrices .g'~ and G'(r) 
with respect to the Gel'fand states (2.12). These matrices are 
well known; for the G '(r) they are diagonal and if the irrep of 
O'(r) is characterized by the partition (K IK 2 • .. K[r12 J) the fac
tor along the diagonal is given by24 

[r/2J 

I K,(K, + r - 15), (3.15) 
5 = I 

where [r/2] = r/2 or (r - 1)12 depending on whether r is 
even or odd. Thus we see that with respect to the states (2.12) 
we have the following diagonal matrices associated with the 
Casimir operators: 

G'(A - 1) = [WI(W I + A - 3) + W 2(W 2 + A - 5) 

+ W 3(W 3 + A - 7)] 

X liD r;r, D r;rA:: ;" II, 

G'(A - 2) = 11[71(7 1 +A - 4) 

+ 72(72 +A - 6)]Dr;r, Dr2r,D,:-;,;-, II, 
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(3.16a) 

(3.16b) 

(3.16c) 

while G(A - 4) vanishes. The matrix elements of .!f~, 
k = 1,2,3, with respect to the states (2. 12) have been obtained 
by Gel'fand and Zetlin,20 and they will be discussed in the 
next section. 

Thus we see that we have the perfectly definite problem 
(3.14) to solve if we want to find the components of the vector 
f (,u,w,w,)( p,b,C'{}k)' which we require if we want to get a com
plete set of states for microscopic collective models. Unfor
tunately, this problem seems quite difficult. The part of 
f (w,w,w,)( p,b,C'{}k) that depends onp can, from (3.9), be sepa
rated from the rest and expressed in terms of Laguerre poly
nomials. 1.2 The dependence of f (w,w,w,) on the Euler angles {} k 

can be given 1.2 in terms of the Wigner function D ~M({}k) of 
(2.9). It is the dependence of f ('u,w,w,) on band c that is diffi
cult to determine as, from (3.11) and (3.14), it would imply 
solving a complicated set of coupled partial differential 
equations in these variables. The experience that two of the 
authors had with the solution l

•
2 of the Bohr-Mottelson vi

brational Hamiltonian showed how hard (though still feasi
ble with the help of group theoretical methods 1.2) was the 
solution of the set of coupled ordinary differential equations 
associated with the single variable y. The present problem is 
at least an order of magnitude harder, and thus, rather than 
attempt to solve it exactly, we shall consider in Sec. V the 
case when A> 1 and then show how to express f (w,w"u.l in 
terms of the eigenfunctions that appeared in the BM vibra
tional Hamiltonian l

•
2. 

To implement our program in the limit of large A's, it 
will be convenient to add and subtract to the matrix Hamil
tonian appearing in (3.14) the term 

3 3 W(W + A - 5) 

2 k~1 P + 2b cos[c - (21Tk 13)]J 

= ~w(w+A-5) (l-b
2

) , (3.17) 
2 1 - 3b 2 + 2b 3 cos 3c 

where W is related to the partition (W IW 2W 3) characterizing 
the irrep of O(A - 1) through the definition 

W=!(W I + w2 + (3)' 

The H I is then given by 

1 [ J2 R2 ] H'=- __ +_+p2, 
2 Jp2 p2 

where the matrix operator R2 can be written as 

(3.18) 

(3.19) 

(3.20) 

in which Rk2, k = 1,2,3, are defined as follows: The operator 
! R;2 is given by (3.11a) in which, from the right-hand side of 
(3.17), the term [(A - 5)12]2 appearing in it is replaced by 
[w + (A - 5)12]2; !R22 is given by (3.11 b) in which .!fk, 
k = 1,2,3 of(3.7) are replaced by the matrices:%k of these 
operators with respect to the states (2.12); finally! Ri2 is 
given by (3.11c), where in each of the square brackets we 
have to add, from the left-hand side of (3.17), the term 
- w(w + A - 5) and besides replace .!f ~ by.g' k and the Ca

simir operators G '(r), r = A-I, A - 2, A - 3, A - 4, by the 
diagonal matrices G'(r) of (3.16). 

It will be very convenient to have a compact symbol to 
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designate the new term appearing in ~ R;2, and thus we de
fine 

c? = CUI + CU2 + CU 3 + ~ (A - 5) = 3[cu + (A - 5)/2], 
(3.21) 

which will play an important role in all the following discus
sIOns. 

We proceed now to derive the matrices of .if~ with 
respect to the Gel'fand-Zetlin20 states (2.12) and see the in
teresting form that.if~ takes whenA> 1, which will allow us 
to find in Sec. V a complete set of states for microscopic 
collective models of the nucleus. 

IV. MATRIX ELEMENTS OF THE GENERATORS OF AN 
O(A - 1) GROUP IN A GEL'FAND-ZETLIN BASIS 

In this section we wish to determine the matrix ele
ments in the Gel'fand-Zetlin basis (2.12) of the operators 
J k, k = 1,2,3, which, from (3.7), are given by the following 
generators of the O(A - 1) group in the frame of reference 
fixed in the "body" 

Y; = J ~ 2.1 ~ I' 

j';=j'.~ 1.1 3' Y';=J~_3.1 2' (4.1) 

The work of Gel'fand and Zetlin,20 and later that of Pang 
and Hecht,25 provided the general expression for the matrix 
element of a generator .Y~", s,t = 1,2, ... ,r of an O(r) group, 
with respect to the Gel'fand state characterized by the irreps 
of the chain of groups O(r)::) O(r - 1)::) ... ::) 0(2). The Y SI 

defined in the frame of reference fixed in "space" satisfy the 
commutation relations 

[ j/ ,,,.51',,, ] 

= (- i)(.Y",1,8" + Yfs'0", + 'y'"IO", + Ys',OIt'), 

(4.2) 

while the .if;f in the frame of reference fixed in the "body" 
satisfy the same commutation relation (4.2) but with the sign 
changed on the right-hand side. It is clear therefore that 
- ( - I)S - f Y sf and .if;f satisfy the same commutation re
lations, and thus, if we multiply the matrix representations 
of Gel'fand and Zetlin20.25 for .if sf by the phase factor 
- ( - 1)' - t, we get a representation of the generators in the 
frame of reference fixed in the "body," i.e., for the particular 
generators in (4.1), the matrix ~ k associated with .if ~. The 
choice of phase was also made so that it agrees with standard 
results lS when we restrict ourselves to the group 0(3). 

The Gel'fand-Zetlin states (2.12) are not the more gen
eral ones possible for the group O(A - 1) but are restricted to 
those in which, in the frame of reference fixed in the "body," 
from O(A - 4) downwards we have only the scalar represen
tations. We suppress all the zeros in the Gel'fand pattern 
(2.12), and thus what we want to determine are the matrix 
elements 

(4.3) 
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We start by considering .if~ = .if~ ~ 3.A _ 2' which obvi
ously is not affected by the irrep (cu ICU2CU 3) of O(A - 1) as it 
corresponds to a generator of the subgroup O'(A - 2). Thus 
the matrix element of .if ~ depends only on 71 , 72,S I in ket and 
bra, is diagonal in the 7 indices, and, from the analysis of 
Pang and Heche5 and the phase considerations discussed 
above, is given by 

(CU~~;~3 .if; CU~~;~3) 
S; SI 

= i[(T - r )(r + I _ T,)]1/2g T,T,O 
I ~ I ~ I .... ;1;- ;'~-1 I 1 

(4.4) 

where g ;:T, is given by 

7,T, = [h + SI +A - 4)(72 + SI +A - 5) ]1/2.(4.5) 
g!,', (2SI +A - 5)(2SI +A - 3) 

Turning now our attention to Y; = .if ~ _ 2.A _ I , we see 
from (4.2) that it commutes with all the generators of 
O/(A - 3) and thus its matrix element will be diagonal in the 
S I index. Again from the analysis of Pang and Hecht25 and 
the phase considerations discussed previously we obtain 

= i [(T I - SI + I)(cu l - TI)(T I - CU 2 + I)(TI - CU, + 2)]112 
(TI - T2 + I)(TI - T2 + 2) 

+ i [ (SI - T 2 )(CU I - 72 + l)(cu2 - T 2)(T2 - cu3 + 1)] 1/2 

(TI - T2 + I)(TI - 72 + 2) 

_ i [ (TI - SI)(CUI - 71 + I)(TI - CU2)(71 - CU3 + I)] 112 
(71 - T 2)(T I - T2 + 1) 

_ i [(SI - 72 + I)(CU I - 72 + 2)(cu2 - T2 + 1)(72 - CU3)] 112 
(71 - 72 + I)(TI - T2 + 2) 

(4.6) 

where 

= [(SI + Tj - j + A - 3)(cul + Tj -) + A - 2) 

(2Tj - 2j + A )(2Tj - 2) + A - 2) 
X (CU2 + Tj - ) + A - 3 )(cu3 + Tj - ) + A - 4)] 112 

(71 + 72 + A - 4)(TI + 72 + A - 5) 
(4.7) 

and} = 1,2. 
As for the matrix element (4.3) when k = 2, we do not 

need to calculate it explicitly as we can obtain it using the 
commutation relation 
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[2';,2';] = -i2';. (4.8) 

Once we have the matrix elements (4.4), (4.6), and (4.8) 
of the 2'", k = 1,2,3, it becomes interesting to determine 
their asymptotic form when A becomes very large. It is con
venient for this purpose to replace the numbers characteriz
ing the irreps in the chain O'(A - I):)O'(A - 2) 
::::> O'(A - 3) by the following parameters, which, as we show 
later, will be related to the irrep in the chain 
U(3):) U(2):) U(I) and allow us to see more clearly the limits 
of the coefficients gin (4.5) and (4.7) when we have a large 
number of nucleons. We first define 

j.i = liJ2 - liJ3 , 

and, combining with the liJ of (3.18), we obtain 

liJ( = liJ + (2,1 + j.i)/3, 

liJ2 = liJ + (j.i - A )/3, 

liJ3 = liJ - (A + 2j.i)/3. 

Furthermore, we define 

2r = r( + r 2, 

21 = r( - r 2 , 

which imply 

r( =r+l, 

r2 = r -I, 

(4.9a) 

(4.9b) 

(4.lOa) 

(4.lOb) 

(4.lOc) 

(4.lIa) 

(4. lIb) 

(4.12a) 

(4.12b) 

I 

and finally we introduce a parameter m by the relation 

b( = r + m. (4.13) 

From the inequalities (2.13a) we see that 

liJ( + liJ2 >r( + r 2 >liJ2 + liJ3, 

and thus, if we define 

r' = r -liJ, 

we see that it takes values only in the range 

- (2,1 + j.i)/6<r' «A + 2j.i)/6. 

(4.14) 

(4.15) 

(4.16) 

We note furthermore from (2.13b) that r(>r2 and thus from 
(4.llb) I must be nonnegative. As we have also liJ(>r l we 
obtain from (4.lOa), (4.12a), and (4.16) that 

A + j.i/2>1>0. (4.17) 

Finally from (2.13b) and (4.12),(4.13) we have 

I>m> - I. (4.18) 

We proceed now to rewrite theg's of(4.5) and (4.7) in 
terms of A,j.i,I,m, r', and instead of liJ we substitute c? through 
the relation (3.21). We then obtain for the g of (4.5) 

[ (~c? + 2r' + 1+ m + I)(~c? + 2r' -I + m)](/2 , 

(~c? + 2r' + 2m)(~c? + 2r' + 2m + 2) 

(4.19) 

while for the g of (4.7) we get 

g ((VI(t},:(()\)(T I +. T~)S·I 

7i { Dc? + 2r' + m + 1+ Ij ] [~c? + r' + (2,1 + j.i)/3 + 2 + Ij ] 

(jc? + 2r' + 3 + 2Ij )(jc? + 2r' + I + 21j ) 

X [~c? + r' + (j.i - A )/3 + I + Ij ] [~c? + r' - (A + 2j.i )/3 + Ij ] } (/2 

(~c? + 2r' + I )(jc? + 2r') (4.20) 

withj in Ij and rj taking the valuesj = 1,2 and I( = I, 
12 = -1- 1. 

When, in Sec. VI, we discuss microscopic collective 
models in the versions ofVanagas9 and Filippov, \0 we will 
show that for A of the order of a 100, the c? is of the order of 
alOOO, whileA,j.i,r',I,m are of the order of 10. This difference 
becomes even more pronounced when A continues to in
crease. ThuswhenA-+oo thegof(4.19) and (4.20) becomes I 
while for large A we can expand the g's in inverse powers of 
c? so that, suppressing all upper and lower indices, we can 
write 

g = I + (g/c?), 
00 

g = I (gn/c?n). 
n=O 

(4.2Ia) 

(4.21b) 

It is interesting now to compare, in the limit when 
A-+co, the matrix elements (4.4), (4.6), and (4.8) of 2'", with 
those of the generators Cij' i,j = 1,2,3, ofa U(3) group, again 
in a Gel'fand and Zetlin basis26 but now for the unitary 
group chain U(3)::::> U(2)::::> U( I). We shall designate this basis 
by a round bracket rather than the angular one for the ortho
gonal groups used in (4.3). The matrix elements 
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(liJI~2~3 liJlliJ2liJ3) 
r(r2 Clj r(r2 

b; bl 
(4.22) 

have been obtained explicitly in Ref. 24 (p. 26). Comparing 
them with (4.4) and (4.6), we immediately obtain in the limit 
A- co, for which g = I, the correspondence 

2';-+i(C12 - C2 tl-L;, 
2'; -+i(C23 - Cd L;, 

2';-+i(C31 - CJ3)=L;, 

(4.23a) 

(4.23b) 

(4.23c) 

where the last relation is obtained by comparing the commu
tator (4.8) with25 

[L;,L;] = - iL;. (4.24) 

We denote now by boldface letters .g" and L", the ma
trices associated with the operator 2'" and L", k = 1,2,3, in 
their respective basis (4.3),(4.22). In view of the expansion 
(4.2Ia) of g, and if we denote by 2'" the matrices associated 
with (4.4) and (4.6) when we replace g by g of (4.21), we see 
that we can write now for arbitrary A that 
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(4.25) 

This will be the basic expansion needed in the next sec
tion to obtain a complete set of states for microscopic collec
tive models. 

v. COMPLETE SET OF STATES 

We proceed now to discuss the matrix Hamiltonian H' 
of (3.19) to show that under an appropriate change of varia
bles it can be expanded as c? plus a series of inverse powers in 
a, where this parameter is defined in (3.21), i.e., 

oc H' 
H'=c?+ I _no 

n~O a" 
(5.1) 

We show in discussions in this and the following section 
that c? is related with the ground state energy of the oscilla
tor Hamiltonian (3.1). Thus we want to deal with (H' - c?) 
rather than with H' as the eigenvalues of the former will 
provide the excitation energies. When A---+ 00, we see from 
(3.21) that a---+oo and thus (H' - c?) will go into the matrix 
operator Hb which will be determined explicitly in this sec
tion as well as the complete set of its eigenstates. We can then 
use this set to find the matrices ofH~ and thus ofH' or, more 
generally, to find the matrix representation of a Hamiltonian 
dY" associated with an arbitrary two-body interaction poten
tial. 

The H' of (3.19) is given in terms of the R2 of (3.20), 
which, from the discussion following this last equation as 
well as from (3.11), is a matrix whose elements are operator 
functions of b, e, alab, alae, and L ~. We shall first analyze 
R2 and then turn our attention to H'. 

We recall that band e are restricted to the lined triangle 
in Fig. 1, where the abscissa and ordinate are given by 
x = b cos candy = b sin e. Thus the e is in the interval 
0,;;;e';;;1T13 while b can go from 0 to a value along the heavy 
line in the figure whose equation is 

1 + 2b cos[e - (41T13)] = O. (5.2) 

We now propose to substitute the variables band e in R2 by 
new ones /3 and y defined by 

y=e, (5.3) 

., 
=~ I !I+2bcos[e-(21TkI3)]I-I, (5.4) 

k~. I 

where c? is defined by (3.21). The explicit expression 
b = b ( /3,y) can be obtained either by solving a cubic equation 
that we get for b if we replace e by yin (5.4) or, more conve
niently for our purposes, if we write 

(5.5) 

and use (5.4) to get a recurrence relation to obtain bn (/3,y). 
Note that when b<l, b~( /3 la) and thus in (5.5) the summa
tion starts with n = 1 and bl( /3,y) = /3. 

By using (5.3) and (5.5) we can then express theR 2 given 
by (3.10) and (3.11), with the modifications added in the dis
cussion following (3.20), as a matrix whose elements are op
erators which are functions of /3, y, a I a/3, a lay, and L ~. 
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When A, and thus also c? of (3.21), becomes very large, we 
can see from the discussion of the previous paragraph that 
the new form of R2/2 can be obtained if we write e = yand 
b~( /3 la) and disregard all terms in the final result in which 
we have inverse powers of a. 

Looking at R;2/2 of (3.1la), we see that we have terms 
such as 

a2 a a2 a2 cot 3e a 
ab 2 ' bah' b abac' b2 ac2 ' -b-ah' (5.6) 

which will have the same form in /3 and y but only with the 
extra factor cr. We have also in R;2/2 as indicated in the 
discussion following (3.20), a term 

(a4 /2)(1 - b 2)(1 - 3b 2 + 3b.1 cos 3c) 1= a4 /2 + a 2/3 2
, 

(5.7) 

where the right-hand side follows from (5.4). All terms in 
R;2/2 that contain expressions of the type (5.6) multiplied by 
powers of b can be disregarded as b~/3 I a and thus they will 
be small compared with the terms (5.6) themselves. We also 
notice that from the procedure by which we go from H' of 
(3.9) to the matrix H' of (3.14) the R;2 must contain as a 
factor the unit matrix 

(5.8) 

Turning now our attention to R~2 /2, we note that it 
contains the factor (l/b 2)~(c?1/32) but that all b present in 
the numerator can be disregarded as b~( /3 I a). Further
more, we saw from (4.25) that ,it'~ can be expressed as a sum 
of two terms, the second of which has a c? in the denomina
tor. Thus we can substitute J?'~ by L~ and write R~2 /2 ap
proximately as 

.1 

R~2/2~c? I i4/32sin2[y-(21TkI3)11-IJ~2, (5.9) 
"., I 

where 

J~ = L ~I + L~. (5.10) 

Finally we turn our attention to Ri2/2, given by (3.11c) 
with the modifications discussed in the paragraph following 
Eq. (3.20). We have in it factors of the form 
[ 1 + 2b cos[c - (21Tk 13)] l-I, which we can replace by 1 as 
b~/3 la is small. 

We then see, using again (4.25), that Ri2/2 can be writ
ten as 

.1 

=[A2+1l2+AIl+3(A+Il)]I-~ I L~2, (5.11) 
k _ I 

where I is the unit matrix of(5.8), and the right-hand side was 
obtained with the help of Eq. (3.l6a), (3.18), and (4.10). 

We note that R;2,R~2 contain factors c? plus, from (5.7), 
a constant term! a 4 1, while Ri2 contains factors of the order 
of A,1l or squares of them, which, as indicated in the previous 
section, are orders of magnitude smaller. Thus to the order 
that we have been carrying the analysis we can disregard R/ 
as compared with R;2 and R~2 and write finally 

R2/2 = (a4 /2)1 + c? [2H~M + 0 (l/a)] , (5.12) 
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where H~M is the Bohr-Mottelson collective Hamiltonian 
associated with the angular momentum J of (5.10) in the 
frame of reference fixed in the body, i.e., 

H~M 
I( I J 4J 1 J. J - - --(3 - - sm3y-
2 (34 J(3 J(3 (31 sin 3y Jy Jy 

+(32) 1+ ± I J'2 (513) 
k-] 4(31sin 2 [y-(21TkI3)] k' • 

In (5.12) we write an equality rather than an approxi
mate expression and this is the reason for including the term 
of order 0 (110"), which, of course, can be disregarded as com
pared to H~M if 0"---+00. 

We now introduce this RZ in H' of(3.19) and proceed to 
show how we finally get the Hb in the expansion (5.1) and 
then derive the explicit and complete set of eigenstates of the 
latter. 

We again note that, for large A, ~ is large and thus the 
first term in (5.12) is much larger than the second so that the 
main part of the potential in H' of (3.19) is given by 
~ [0"41 p2 + p2] which has a minimum at p = 0". As a last 
step, we would like to change the variable p in the range 
O<p< 00 to another one (i in the range - 00 <(i< 00 for 
which the potential would have its minimum value ~ at 
(i = O. One possible way to introduce a coordinate with these 
characteristics is to write 

p = 0" exp(CiIVLO")'=':'O" + (iIVL + "', (5.14) 

which gives for the main part of the potential in H' the 
expression 

! [0"41pz + pZ] 

= ~ cosh(vlaIO") = ~ + (iz + o (O"-Z). (5.15) 

Furthermore, we see from the right-hand side of (5.14) that 
we can write 

1 JZ (]2 -I 
- -- = - -0 + 0(0" ). (5.16) 

2 Jpz iJii-

Finally, as the term 2~H~M in (5.12) that appears in the H' 
of (3.19) is divided by pZ=:;~, we obtain 

H' = ~I + Hb + 0(0"-1), (5.17) 

where 

H;)= (- ;2 +(i1)1+2H~M' (5.18) 

Comparing (5.17) with (5.1), we see that Hb is the first term 
(i.e., corresponding to n = 0) in the series of inverse powers 
of 0" appearing in (5.1) while 0 (0"-1) represents the rest of the 
series. It is interesting to note that the BM Hamiltonian will 
not change its spectrum if we replace L " by J" of(5.1O) and 
thus it will remain I v + 5/2, where v is an integer. The spec
trum oq ( - J Z I iJiiz + (iz) will, of course, be n + ~, where n 
is an integer. Thus the spectrum of ~ + Hb takes the value 

if + 2N + 6 = WI + W z + W3 + ~(A - 1) + 2N, (5.19) 

whereN = n + v. 
Turning now our attention to the oscillator Hamilton

ian of (3.1), we show in the next section that its ground state 
for a given irrep (W IW ZW 3 ) ofO(A - 1) has the energy (5.19) 
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when N = O. Furthermore, as collective excited states can be 
obtained by applying to the ground state functions of the 
creation operators that are scalars ofO(A - 1), i.e., 

A-I 

I TJis TJjs' i,j = 1,2,3, 
s= I 

TJ is = (1IVL)(XiS - iFis ), 

(5.20) 

(5.21) 

we see that collective excited states will increase their energy 
by jumps of two quanta as is also the case of (5.19). Thus, 
when considering all irreps (W IW ZW 3) ofO(A - 1), ifl + Hb 
has already the same spectrum as H of (3.1) or, equivalently, 
asH' of(3.9) or (5.17). Therefore, the terms 0 (0" -I) in (5.18) 
considered as perturbations can change the eigenstates of 
~I + H~ but not its eigenvalues. 

We now turn our attention to the derivation of a com
plete set of eigenstates of the Hamiltonian Hb of (5.18). For 
this purpose we first note that the matrices Lk are given with 
respect to Gel'fand states characterized by 
U(3):)U(2):) U(I) chain of groups whose irreps are, respec
tively, (W IW ZW 3), (717 z), (SI)' i.e, 

. (WI~Z~3 WIWZW3) 

L" = 7,72 L" 7 17 z 

S; SI 
(5.22) 

We can now consider the states characterized by the 
chain of groups U(3):) 0(3):) 0(2), where the irreps will be 
respectively (w IW ZW 3), L,K and we need an extra quantum 
number fl to distinguishZ7 repeated representations L of 0(3 ) 
in a given one (W IW ZW 3) ofU(3). The kets can then be denoted 
by 

(5.23) 

and the matrices in this new basis, which we designate by a 
dot above, i.e., L.", will clearly be diagonal in fl,L and inde
pendent ofthe former as well as of the (w IW2W3)' as the L." are 
the generators of 0(3):)0(2). In fact the L." have the stan
dard form, i.e., for k = 1,2, we obtain 

L." = II ~ i k - I! [(L - K)(L + K + 1)]1/2DK·.K + I 

+ (- l)k-I[(L + K)(L - K + 1)]1/2DK'.K_I JD.fJ'f]DL'.LII 

(5.24a) 
while for k = 3 we have 

L~ = IIKDK'KDL·LDf}'f] II. (5.24b) 

We shall also designate by i the matrix i = IIDf] 'f]DL'L DK'K II 
corresponding to 1 of (5.8). 

The passage from the basis in U(3):>U(2):>U(I) to the 
one in U(3) :::>0(3) :::>0(2) is achieved with the help ofthe uni
tary transformation bracket 

C~C~' W~:~:l (5.25) 

which has been determined in previous publications,28.z9 
with the explicit form summarized in Appendix B. 

. We can then use (5.25) to transform H~Mof (5.13) into 
an H~M in which the J" of (5.10) is replaced by 

j" = L" i + L." . (5.26) 
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Furthermore, from the discussion in Sec. II, we saw that the 
dependence of the eigenstates H' of(3.9) on the Euler angles 
is given in terms of the irreps of 0(3), i.e., the Wigner func
tions D ~M W) Thus in (5.26) we can replace L ~ by its matrix 
L~ defined by 

L~ = Ilf D~~MWj)L k D~MWj)dfl II (5.27) 

and get a corresponding H~M given by (5.13) in which the J 
of (5.10) is replaced by 

jk = Lk i + IL~ . (5.28) 
The matrix L~ is independent of Mas the operator L k is 

the angular momentum in the frame of reference fixed in the 
body. The explicit form of this matrix is then given by (5.24) 
if we suppress the 0 {l' {l appearing there and replace Land K 
by Land K. Furthermore, the matrix I is the 
(2L + I)X(2L + 1) unit matrix I = IloK"d. 

Note that the right-hand side of(5.28) i.s the sum of two 
terms. The first one is the matrix Lk of the operator L k in the 
basis in which L'2 and L; are diagonal, multiplied by the unit 
matrix in the basis characterized by the U(3j:) 0(3j:) 0(2) 
chain of groups in which L'2 and L; are diagonal. The second 
is the unit matrix in the basis in which L'2 and L; are diag
onal, multiplied by the matrix Lk of the operator Lk in the 
basis char.acteriz~d by the U(3j:) 0(3j:) 0(2) chain of groups 
in which L'2 and L; are diagonal. Clearly then from the very 
procedure used to derive the Clebsch-Gordan coefficients in 
Chapter III of Ref. 19, we see that if we apply to j k the 
unitary transformation jk _(ULL)t jk ULl

, where ULL, is 
given by 

ULl 
= 11U~~.JY II = II(LK LKIJc5Y)II ' (5.29) 

we obtain that the matrix jk takes the form (5.24) in which L 
and K is replaced by J and % with IL - LI <J<.,L + L. Thus 
the matrix (ULL)t H~M VLl whose elements are operator 
functions of (3, y, a la(3, a lay are then exactly the same as 
those appearing in the Bohr-Mottelson (BM) vibrational 
Hamiltonian 1,2 with the only difference that now we have J 
and ,J)" while in the BM case we had Land K. It is clear, 
therefore, that, with the changes indicated, we can use for 
the eigenstates ofHb of (5.18) the same functions of (3 and y 
as in the BM case. 

If we now put together all the steps discussed in the last 
paragraphs, we get a vectorial eigenfunction of the matrix 
operator of (5.18) whose components we can denote by 
f~':~',~r:") (a,(3,y;lfk ), Combining them with the irrep 
D ~':~~:r:~~ I f I (r) ( tP ) of O(A - 1) as indicated in (3.13), we get a 
complete orthonormal set of states for anA-body problem, in 
the collective coordinates a,(3,y,lf k plus the angles tP asso
ciated with the group O(A - 1), that is denoted by the ket 

INv,AtJ,LM,flL,(lUllU2lU1)b ! fj(r) 
= tPN - ,,(a) F~ A)/2 ((3) L tP ~~J(y) .. ~ 

XL! (LK,LKIJ·ff) 
K.K 

[(

lU llU,lUl 

XD~M (lfj) T~i;, flLK 

xD1''''''''''',1 . (A-.)]! TIT~'SI;b)j!(r) ¥' . (5.30) 
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In (5.30) tPN- ,,(a) is a one-dimensional oscillator state 
of N - v quanta associated with the operator ( - a 21 (Ta2 

+ ( 2
) appearing in Hb of(5.18). The rest of the state comes 

from the H~M of (5.13). The F~_ A 112 ((3) and tP 1~J (y) are 
respectively the(3- and y-dependent part of the eigenstates of 
the Bohr-Mottelson vibrational Hamiltonian that were giv
en explicitly in Ref. 2. The other terms appearing in (5.30) 
have already been defined and discussed in this article. We 
recall that in the BM problem 1.2 the v and A are related 
respectively, to the irreps of the U(5) symmetry group or'the 
BM Hamiltonian and its 0(5) subgroup. The J appearing in 
tP ~~J (y) is the irrep of an ordinary rotation group in the 
chain 0(5j:)D 2(0(3)). As a given J can appear more than 
once in a definite irrep A of 0(5) the index t distinguishes 
between these repeated representations of 0(3).1.2 

The orthonormality properties of the ket (5.30) with re
spect to all the indices in it follow from the properties of the 
functions and transformation brackets appearing on the 
right-hand side. Furthermore, from the way the states (5.30) 
were derived, it follows that they will be eigenstates of H' of 
(3.9), when A and thus also r? of(3.21), tends to infinity. 

Having obtained an explicit and complete set of states 
for the A -body problem in terms of the collecti ve coordinates 
(i,(3,y,lf l,lf2,lf l' as well as the angles tP characterizing the rel
evant part of an (A - 1) X (A - 1) orthogonal matrix, we 
proceed, in the next section, to discuss its application to mi
croscopic nuclear collective models. 

VI. MICROSCOPIC NUCLEAR COLLECTIVE MODELS 

In the previous section we gave explicitly a complete set 
of orthonormal states for the translationally invariant part of 
an A-body problem, which would be the eigenstates, in col
lective coordinates plus others, of the oscillator Hamiltonian 
(3.1) when A--. 00. In this section we would like to consider 
anA-body Hamiltonian with an arbitrary two-body interac
tion between the nucleons rather than the oscillator one, and 
with A:> 1 but not infinite. We shall in particular restrict 
ourselves to the collective part of this Hamiltonian along the 
lines that have been proposed, from one viewpoint, by Filip
pov lO and his collaborators, and, from another, by the group 
ofVanagas. 9 

In both of these approaches one restricts oneself, in the 
first step, to a definite irrep (lU llU2lU3) of O(A - 1). Before 
proceeding with the analysis, we first want to indicate how 
this irrep is suggested by the Pauli principle and the SU(3) 
symmetry of the oscillator. 

A. Determination of the irrep (W1W:zlU3) of O(A - 1) 

If we start with the oscillator Hamiltonian (3.1), we 
know that we can get its lowest energy states30 that satisfy 
the Pauli principle as Slater determinants in which we fill the 
levels compactly with Z protons and A - Z neutrons. In the 
case of closed proton and neutron shells we have a single 
state, while in the open case we have many, but in both the 
dependence on the center of mass coordinate 

A 

X = (A )-1/2 " X~ 
lA ~ IS 

(6.1 ) 
s = I 
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is given30 by the multiplicative factor exp [ - ! I: = 1 X 7A ], 
which corresponds to zero quanta. Thus the number of 
quanta ffp and ffn that we have respectively for protons 
and neutrons can be calculated in the following way: Let us 
consider first the Z protons and call N the number of quanta 
in the last shell of the oscillator that is completely filled. As 
each shell n = O,I, ... ,N of the oscillator has a capacity for 
(n + l)(n + 2) protons (taking into account the spin! of these 
particles) it is clear that 

A~'p = [z - nto (n + 1)(n + 2)](N + 1) 

N 

+ I n(n + 1)(n + 2) . 
n=O 

Using well-known formulas3l for I;; = 0 nr
, where 

r = 0,1,2,3, we obtain 

jJ'p =(N+ lIZ 

(6.2) 

- -hN(N + 1)(N 2 + 9N + 2) - 2(N + l)z. (6.3) 

In a similar way for the neutron case, if N I is the number of 
quanta in the last filled shell of the oscillator, we can write 

JV'n = (N I + 1)(A - Z) - -A 
XN'(N' + I)(N'Z + 9N' + 2) - 2(N' + 1)2. 

(6.4) 

If the last shell, i.e., the one corresponding to N + 1 or 
N' + 1 quanta for protons or neutrons respectively, is not 
empty then, as was indicated above, there are a variety of 
ways of constructing the Slater determinants giving states of 
lowest energy. One could combine these states linearly so as 
to characterize them by definite irreps (AJ.l) of the SU(3) sym
metry group of the oscillator; for medium and heavy nuclei, 
there would not only be many of these (AJ.l), but, in general, 
each one would appear many times. Sabaliauskas32 has 
shown, that the irrep (AJ.l )max corresponding to the maximal 
eigenvalue of the quadratic Casimir operator of the SU(3) 
group usually appears only once and suggests that the states 
characterized by this irrep would give rise to the ground 
state band. This happens for many nuclei in the sod shell as 
shown in the SU(3) model of Elliott. 33 The strong spin-orbit 
coupling effects in medium heavy and heavy nuclei seem to 
break this symmetry, but the low multiplicity that Sabaliaus
kas32 finds for (Afl)max may indicate that SU(3), as happened 
before for isospin in the case of isobaric analog states,34 re
mains a good symmetry even in a region in which one would 
not expect it to be valid. 

We shall follow Sabaliauskas' suggestion, so that the 
linear combination of Slater determinants corresponding to 
the ground state band will be characterized by the number of 
quantaff = ffp + ffn and the irrep (AJ.l)max ofSU(3). 
From its construction it is clear that the configuration part of 
these states will be characterized, if Z and A are even, by the 
irrep {fl = {4ZI22IA/2~zll of the symmetric groupSA' 
Furthermore, this configuration part is also characterized by 
the chain of groups22 
U(3A - 3p U(3) X U(A - 1) [h Jhzh 31 

u u 

0(3) L O(A - 1) (W l W ZW 3) (6.5) 

u u 

0(2) M {fl, 
where to the right of each group we have indicated its irrep, 
noting that the irreps [h lh2h3J of U(3) and U(A - 1) are the 
same. 22 

The ground state band constructed by the procedure 
indicated in the previous paragraph is also characterized by 
a definite irrep (w JW Zw3 ) of O(A - 1) which coincides with 
the irrep [h lh2h3] ofU(A - 1). This can be seen from the fact 
that the ground state was formed by a combination of Slater 
determinants in which the levels were filled compactly. Thus 
when we apply the O(A - I) scalar quadratic functions of the 
annihilation operators Sis = (1/vL.) (Xi, + iPi,) of the form 

A - ) 

Bij = I Sis Sis , (6.6) 
s=I 

which are also invariants of the symmetric group SA' to the 
ground state, we get zero, as we cannot obtain states with 
lower number of quanta that satisfy the Pauli principle. 

We conclude then from the relations of the irreps of 
U(3) and SU(3), U(3) and U(A - I), and the fact that 
(WlW2W3) = [h I h2 h3J that 

WI + W2 + w3-3w =ff, 

WI -W2 =A, 

(6.7a) 

(6.7b) 

(6.7c) 

where we used (3.18); A andfl belong to (AJ.l)max for the nu
cleus in question as given in the tables ofSabaliauskas, 32 and 
ff = ffp + ffn is given in (6.3) and (6.4) as function of 
(A,Z). We give in Table I for some nuclei theirrep (W lW2W3) of 
O(A - I) together with the a2 = WI + W2 + W3 + ~ (A - 5). 
Using the tables of (AJ.l )max of Sabaliauskas, 32 it would be an 

TABLE I. The irreps (UJ,UJ2UJ3) ofO(A - I) for several nuclei. The table also includes the irrep (Atl)ma, corresponding to the maximum eigenvalue of the 

quadratic ~asimir operator of the SUP) group, that is consistent with the Pauli principle for the most symmetric partition! f I characterizing the irrep of SA' 
The table mcludes the total of number of quanta JI/' when filling compactly the levels ofthe oscillator with nucleons and the parameter a 2 defined by (3.21 ). 

Nucleus I~Ox jgCa20 'g;Sm"" I:: Er 100 2~1U 14h 

( Atl)ma> (0,0) (0,0) (12,52) (0,44) (8,96) 

, J 12 60 488 562 944 

If I WI ! 4101 ! 4",2'41 1434,2 '6 1 1446,2271 

(UJ,UJ2UJ,) (4,4,4) (20,20,20) (188,176,124) (202,202,158) (352,344,248) 

a' 28,5 112.5 708,5 806.5 1293.5 
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easy matter to get these values for all nuclei between Z = 32, 
A = 68 and Z = 102, A = 254. 

We see from Table I that, for A> 100, c? is at least an 
order of magnitude higher than A or f.l of (Af.l )max , and thus 
the type of development in inverse powers of a discussed in 
the previous sections seems justified. 

In the microscopic collective models of the nucleus dis
cussed by both Vanagas9 and Filippov,1O the actual Hamil
tonian for anA nucleon system is projected on a definite irrep 
(CU1CU2CU3) of the O(A - 1) group. This irrep is suggested by the 
Pauli principle for the ground state, along the lines discussed 
in the present subsection. For a Hamiltonian with an oscilla
tor two-body interaction this projection was carried out in 
Sec. III and, as the potential energy is only (p2 12), it means 
that it can also be carried out for the kinetic energy in an 
arbitrary Hamiltonian. It remains then to carry out the pro
jection for a two-body potential interaction, and, in the next 
subsection, we briefly summarize the procedures followed 
by Filippov et al. 10 and by Vanagas,9 where for simplicity we 
assume the potential V to be a central one. 

B. The collective part of the potential 

As the interaction is symmetric under permutations of 
the particles and depends only on the relative coordinates 
between them, we can make the replacement 

(6.7) 

whereX/I, i = 1,2,3, is the first lacobi vector, and thus, using 
(2.6) and the orthogonal character of D Uttj)' we obtain 

J J 

I X 71 = I p; [D~ _ 4+ k.1 (1,6)] 2 • (6.8) 
i~ I k - I 

The collective potential used by Filippov is then obtained by 
projecting (6.7) on a definite irrep (CU ICU2CU3) ofO(A - 1), i.e., 

x {A (A 2- 1) v( J2 [itl (X;I)] 1I2)} 
XD~~;~;:;~lfllrl (1,6) dr( 1,6), (6.9) 

where dr( 1,6 ) is the volume element in the angles 1,6 corre
sponding to the O(A - 1) group. From (6.7) the potential is 
independent of the Euler angles ttj , as could have also been 
predicted from the invariance of V under rotations. Filip
pov lO has given an algorithm for the calculation of the poten
tial (6.9) for closed shells and other special cases. 

Another possibility for the collective potential was giv
en by Vanagas,9 who suggested that one decompose the two
body interaction into its irreducible parts associated with the 
group O(A - 1) and consider in the first step just the scalar 
part with respect to this group. The collective potential is 
then given by9 
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'Y/'( ) A(A-I)J / PIP2P3 = 2 V 

X ( vL [itl (X;I)] 1/2) dr( 1,6) . (6.10) 

For a Gaussian interaction Vir) = - ~) exp( - a- 2r) we 
show in Appendix C that the Vanagas collective potential 
takes the form 

V(0 (A - 1) 
------

2 

X I Wd~)l(~)m( - 2a- 2 piJ'( - 2a-2p~)I( - 2a C p~)m 

k.l.m k !! !m! ((A - 1 )12), + I t m 

(6.11) 

wheream = ala + I) '" (a + m - I)isaPochhammersym
bol. In the case when A» 1, as also shown in Appendix C, the 
collective potential (6.11) takes the simpler form 

J '(PIP2PJ) 

VoA (A - I)(A - 5)3/2 

2 [(A + 4 p~ la2)(A + 4 p~/a2)(A + 4 p~/a2) fl2 
(6.12) 

Having a procedure for the calculation of the collective 
potential energy in both the Filippovlo and Vanagas9 cases, 
and in the latter even the explicit expression of the potential 
for a Gaussian interaction, we then obtain the collective Ha
miltonian used by these authors if we add to the potential 
energy expressions (6.9) or (6.10) the kinetic energy given by 
(3.2) when we subtract from it (p2/2). We briefly outline in 
the next subsection how to carry out calculations for eigen
values and eigenstates for these collective Hamiltonians with 
the help of the complete set of states (5.30). 

c. Outline for the calculation of matrix elements 

In the Hamiltonian discussed in the previous section we 
first replace, with the help of (2.4), Pk, k = 1,2,3, by p,b,c. If 
we then substitute the eigenstate IJI of this Hamiltonian by a 
~elated to it through (3.8), we see that 21/1 = E¢ in which 

c, 1 ( J 2 R 2) , ". 
jf =- --2 +-2 + '1 (p,b,c), 

2 Jp P 
(6.13) 

where R 2 is given by (3.10), (3.11), and 'J'( p,b,c) by (6.9) or 
(6.10) in whichpk is replaced by p,b,c. Finally, wewrite.ff in 
terms ofa,{3,y and their derivatives by replacingp,b,c by the 
former through the relations (5.3), (5.4), and (5.14). We then 
have that .cW'depends on 

,W'(a,{3,y;~,~, ~;L k' Y'k' G'(A - k)) ,(6.14) 
Oa J{3 Jy 

whereL k' k = 1,2,3, are the components of the angular mo
mentum in the frame of reference fixed in the body, while 
G'(A - k) and ]'k' k = 1,2,3, are respectively the Casimir 
operators and generators ofO'(A - 1) given by (3.5) and 
(3.7). 

We are now in a position to calculate the matrix ele
ments of cW' of (6.14) with respect to the states (5.30). This 
implies that G '(A - k ), :f k' and L k have to be replaced 
respectively by the matrices G'(A - k), «;I'k' and Lk given in 
(3.16), (4.25), and (5.27). Furthermore, we need to calculate 
the matrix of operators functions ofa,{3,y,JlOa,JIJ{3,JIJy 
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with respect to the functions tPN _ via), F~. _ A)/2 ((3), 
<P 'jY (y) appearing in (S30). For the potential energy part 
this requires the same type of calculations that were carried 
out in the generalized BM model. 2

•
5 For the kinetic energy a 

somewhat different approach is required that will be dis
cussed in a future pUblication. In principle, though, the eva
luation of the matrix elements of dY with respect to the states 
(S.30) of up to N quanta is straightforward, and the corre
sponding matrix can be diagonalized to give the eigenvalues 
and eigenstates. We also plan to discuss in future publica
tions the best way to select the frequency of the oscillator 
functions (S.30) so as to get the most effective variational 
procedure. 

VII. CONCLUSIONS 

The main objective of this paper is achieved through 
Eq. (S.30), i.e., the determination of a complete set of states 
for the A nucleon system in terms of the collective coordi
nates of (S.I4), (S.3), (S.4), the Euler angles {}k, k = 1,2, 3, 
and the angles ¢J, related respectively to the 0(3) and 
O(A - 1) groups. Furthermore, in Sec. VI, we indicate how 
to use these states for the determination of the matrix ele
ments of microscopic collective Hamiltonians, although 
some ofthe steps required in this determination need further 
elucidation, which we expect to implement in future publica
tions. 

It may be fitting to conclude this paper by indicating 
some "hidden" symmetries in the Hamiltonian (3.1) for a 
system of particles interacting through harmonic oscillator 
forces. If we first consider the case of the scalar representa
tion (UJ IUJ2UJ3) = (000) ofO(A - 1) we note that, whenA-oo, 
we get the Hamiltonian H' = Hb of (S.I8) of the form 

(7.1) 

as in the irrep (000) the 2"~ and thus also the L~ in (S.lO) 
vanish. If we then introduce, as was shown in the original 
work of Bohr and Mottelson,4 the coordinates 

am = (IN2)/3siny [D~m Wd 
+D2~2m (t?k)] +/3cosyD~o Wk), (7.2) 

we get 
2 

2H ~M = L (ama m + 1T m 1Tm), (7.3) 
m = -2 

wheream = ( - I)ma _ m and 1T m = - ia/aam
• ThusH b/2 

is the Hamiltonian of a six-dimensional harmonic oscillator 
and its symmetry group would be U(6), as was indicated in a 
recent publication, 14 where the Hamiltonian (3.1) was consi
dered in the scalar representation (000) of O(A - 1). This 
symmetry is not restricted to (3.1) whenA_oo, but actually 
appears for any A as was shown by one of the authors 
(M.M.)35 and derived, from another viewpoint and in a very 
explicit fashion, by Deenen and Quesne.36 

What happens in the case of an arbitrary representation 
(UJIUJ2UJ3) ofO(A - I)? It is clear then that the L~ appearing in 
(S.lO) and (S.I3) does not vanish, and thus at first sight one 
could think that this breaks the U(6) symmetry. A recent 
discussion by Moshinsky and Quesne37 of a three-dimen
sional harmonic oscillator Hamiltonian with a particular 
spin-orbit interaction and an extra centrifugal term indi-
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cates that the U(3) symmetry is not broken, at least in the 
classical limit. The analogy of this problem with the one 
appearing in (S.I8) for arbitrary (WIW2W3) indicates the possi
bility that in this case U(6) will not be broken either. Some of 
the authors plan to discuss this problem in a future publica
tion. 

APPENDIX A: THE GENERATORS OF Sp(6) 

It is well known that the translation ally invariant states 
for a system of A particles in a three-dimensional space, in
teracting under harmonic oscillator forces, have the 
Sp(6A - 6) group as a dynamical group38 whose generators 
are the (6A - 6)(6A - S)l2 bilinear operators 

'TJis'TJjt' SisSjl' !('TJis Sjr + Sjr 'TJis)' (AI) 

i,j = 1,2,3, s,t = I,2, ... ,A - 1, 

where the 'TJ'S and S 's are the creation and annihilation opera
tors associated with the Jacobi coordinates [see Eq. (2.1)] 
through the relations 

'TJis = (l/Y1)(Xi' - iPis ), Sis = (l/Y1)(Xis + iPis ). 
(A2) 

Contracting the generators given in (AI) with respect to 
the particle index s, we get the generators of the Sp(6) sub
group ofSp(6A - 6): 

A-I 

B & = L 'TJis 'TJjs' i,j = 1,2,3, (A3a) 
s=l 

A-I 

Bij = L Sis SjS' i,j = 1,2,3, (A3b) 
s = 1 

A-I 

C. = 1 " ('1'1. f;-. + f;- '1'1 ) 
IJ 2 ~ "/IS ~Js ~js "'is 

s=1 

CCf ij + ! (A - 1) Oij, i,j = 1,2,3, (A3c) 

which satisfy the following commutation relations: 

[Cij'Ci,J'] = Cij'oji' - Cji'o./ ' 

[Cij,Bt] =B&. Oji' +B;'. oj)" 

[Cij,Bt),] = - Bj)' O,t - Bji' 0i)' , 

[B &,B i)' ] = [Bij,Btj' ] = 0 , 

(A4) 

[Bij,BL·] = C)'j 0it + Ci'j 0i)' + C)'i oji' + Cn oj)' . 

In Eq. (A3c), we have introduced the operators 
A-I 

CCf ij= L 'TJis SjS' i,j = 1,2,3, (AS) 
5=1 

which are the generators of the U(3) subgroup ofSp(6), and 
satisfy the same commutation relations as the Cij operators. 

Using Eq. (A2), the generators (A3) can be written in 
terms of the Jacobi coordinates: 

Cij =! (qij + Tij + iLij)' i,j = 1,2,3, 

Bij =![ qij - T'j -(A -I)Oij-i 

A - I ] 

X'~I (Xis PjS + XjS Pis) , 

Bij =![ qij - Tij + (A - 1) oij + i 
A - I ] 

X S~I (Xis Pjs + Xjs Pis) , 
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where qij is given in Eq. (2.S) and the operators Tij and L ij 
are given by 

A-I 

T,j = I Pis Pjs, i,j = 1,2,3, (A7a) 
s-=-l 

A- I 

Lij = I (Xis Pis -.1), Pis)' i,j = 1,2,3, (A 7b) 
s -, I 

where the latter are the components of the total angular mo
mentum in the frame of reference fixed in space. 

To write the operators ~:,:/ Xis PjS and Tij in terms of 
the coordinates introduced in (2.6), we need to consider the 
classical expression of the kinetic energy, i.e., 

2T= I Tii = I (Xisf, (AS) 
i= II,s 

with XiS = dXiJ dt and where we use units in which the mass 
of the particles is 1. 

Carrying out the time derivative of Eq. (2.6), one finds 
J 

XiS = I (PkDki Ll Ks +Pk Dki Ll Ks +Pk Dki .1 Ks ), 
"~I 

(A9) 

where D L (tJj )=Dki • D ~ __ 4 + k,s (ifJ )-Ll Ks ' and 
K=A -4+k. 

Thus, the kinetic energy takes the form 

3 -' -' 

2T= I P~ + I p~ I Dki Dki 
k~1 k~1 i~1 

3 A - I 

+ I p~ I .1 Ks .1 Ks 
k ~ I s~ 1 

3 3 A-I 

+ 2 I Pk Pk' I Dki Dk'i I Ll n .1 Ks , 
k,k' ~ I i ~ 1 s ~ 1 

(AW) 

where we have used the orthogonality properties of the 
IIDki II and IILlKs II matrices. 

To calculate the time derivative of these matrices, we 
use the general resule9 

i> = OD, (All) 

where ila{3 = - il{3a and D is a rotation matrix in n dimen
sions, The matrix elements ila{3' when D rotates a vector, 
give the angular velocity in the plane defined by the axes 
(a,{3) of the "body" frame. The i> and ~ matrices can thus be 
written as 

and 
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3 

Dkk , = I {jJkiDik" k,k'= 1,2,3, (A12a) 
i= 1 

A -- I 

.1KI = I ilKs Ll st , 

s= 1 

K=A-4+k, k=I,2,3, t=I,2, ... ,A-I. (A12b) 

Substituting Eq. (A12) in (AW), we find the final result: 
3 3 

2T= I Pk + I (Pk +Pk') ({jJkk' +il~:K') 
k~1 k<k'~2 

3 

- 4 I Pk Pk' {jJkk' ilKK , 
k<k'~2 

3 A-4 

+ I I Pk il7.:r· 
k = 1 r= 1 
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(A13) 

The momenta associated with the p's, iJ's, and ifJ's are 
then given by39 

Pk = a.T =Pk' k = 1,2,3, (A14a) 
apk 

L ' aT 2 2 
ij=-a =(Pi+Pj){jJij 

{jJij 

-2PiPj ilA- 4 +i,A-4+j, i,j=I,2,3, (A14b) 

X;I' =~ 
ail/l' 

o 'V t<,A - 4, 

(p~ + p~, )il/l' - 2pI PI' {jJ/I" t,t' = A - 4 + i, 
i= 1,2,3, 

p~ il /I' , t = A - 4 + i, 
i= 1,2,3, t' = 1,2, ... , A -1. 

(A14c) 

From Eq. (A14) we can obtain {jJkk' and ilKs in terms of their 
canonically conjugated momenta, so the Pis take the form 

3 

Pis = I Dki Ll Ks Pk 
k~1 

(A1S) 

The corresponding quantum expression is obtained by 
doing the standard replacements 

1 a 1 a 
P --+--- Pk --+---

" i aXiS' i ap k ' 

u', '{fl, 1 a 
c-Z Kt~oL Kt == -:--- , 

I aifJKI 

where iJkk , and ifJKI are the angles associated with the rota
tion matrices, and we have taken 11 = 1. Thus we have 

a 3 a 
- = I DkiLl Ks -
aXiS k~ 1 apk 

3 LlK Dk,- A A 

+ i I s I ( P k L kk' + P k' X ~K' ) 
k #' ~ I p~ - p~, 

3 A-4 1 ~ 

+ i I I - DkiLl ts X~" 
k~l/=lPk 

S = 1,2, ... ,A - 1, i = 1,2,3. (A16) 

Now we can construct the operator ~S XiS P;s straight
forwardly: 

a 3 a 
IX;s --= I Dki DkjPk--

s aXjS k~ 1 apk 
3 1 

+ i I 2 2 (Pk DkiDk'j 
k<k'~2 Pk -Pk' 

+p~, Dk'i Dkj)L kk , 

+ i ± Pk Pk' [DkiDk'j 
k < k ' = 2 p~ - p~ , 

+ Dk'iDkj] g~K' , (A17) 
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which coincides with the result ofVanagas.9 

To write T in terms of the Zickendraht-Dzublik co-
y A 

ordinates, we need to know the action of the operators L ~k ' 
(or '?Kt) on their corresponding rotation matrix D (or ~). 
Consider a rotation matrix D in an n-dimensional space and 
2" kk' the corresponding canonically conjugated momenta 
associated with the angles X kk' of the matrix D. Then, using 
Eq. (All), we have 

n n 

Dik = I. (jJilDlk = I. 8 1•m (jJim Dmk 
1= 1 I,m= 1 

n 

2:. (jJml(8 im Dlk - 8i/Dmk )· (AI8) 
l<m=2 

The left-hand side of this equation can now be written in the 
following way: 

. a 
Dk =-Dk , at' 

n 

2:. iWmJ'? ml D,k , 
l<m =2 

+ A~4 ~ Dki Dk'J y' .?' } 
L.. L.. KI Kr' 
(~l k,k' = 1 Pk Pk' 

(AI9) 

(A21) 

Finally, substituting the operators qij' ~s Xis PjS' and 
Tij in Eq. (A6), we get the generators of the Sp(6) group in 
terms of the Zickendraht-Dzublik coordinates. 

The quantum kinetic energy of the system is obtained 
by taking j = i and summing over i in the last expression. 
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The result is given by Eq. (3.2) when we subtract from itp212. 

APPENDIX B: THE TRANSFORMATION BRACKET (5.25) 

In this appendix we shall denote the bracket (5.25) by 
the shorthand notation 

(BI) 

where we interchanged bra and ket as the transformation 
bracket is real. When K = L, a bracket closely related to (B 1) 
was determined in Refs. 28 and 29. The result obtained there 
differs from (1'1 1'2; I[ flLL ) because of two facts. One is that in 
Ref. 28 the U(3)::)O{3) basis was a complete but nonortho
gonal set of states where states degenerate in L were distin
guished by means of an integer label q. Ifwe want to classify 
the basis by the quantum number fl indicated in (B I), we 
must diagonalize, with respect to the states of Ref. 28, a 
Hermitian operator n; a suitable operator of this type is dis
cussed in Ref. 27. 

The second fact to be noticed is that in Ref. 28 the 
Gel'fand states ofU(3), i.e., the U(3)::) U(2)::) U(l) states, 
were written in a realization involving the spherical compon
ents 'TIm' m = ± 1,0, of the boson creation operators 'TIl" ' 

f-l = 1,2,3. Since 'TIo = 'TI3 and 

'TI+I =i1/2M 'TIl M=- -/ -/ 
() ( ) 

1 
( 

'- 1/2 '1/2) 
'TI-I 'TI2' vL i-1/2_jI/2 ' 

(B2) 

where M is an SU(2) matrix corresponding to the Euler an
gles 

(B3) 

it follows that the Gel'fand state jr j r 2;d, which appears as 
the bra in (B 1), is related to the Gel'fand states [1' L 1'2; ; ) of 
Ref. 28 by 

[1'11'2;1) = 1'V 2:. DJ , (17',17'12,317/2)[1'11'2;;) 
~, - v.; I - v 

~I 

=,,/,,(_),,-vdJ (~) f7 ;, " v,;; -" 2 

X [rlrz;; > , 
(B4) 

where v = ~(rl + 1'2)' j = ~(rl - 1'2)' and D' (17 1,172 ,173 ) are the 
standard irrep matrices 19 ofSU(2). 

Thus we have 

(BS) 

where, from Ref. 28, 
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(W~~;~3 W~~~3) = q!( _ 2)" .. LIZ _ w, 

~; 

X [(2l + l)(l + L /2)!(72 - W3)!(7, - W3 + 1)!(w, - 72 + 1)!(7, - w2)!(w, - 7d!]'/2 
(j - L /2)!(w, - W 2 + 1)!(w2 - 7 2)! 

XL (-)"[!(cu,-w 3 -L-E)-a]!(2a+E)!(w 2 -w 3 -f3)! 

a.fl 2Ba!( q - a)![!(w, + Wj - E) - V - a + f3]!(72 - (U3 - 13 )!(2a + E - 13 )!f3 !(7, - W, + 1 - (3)! (B6) 

Here E = 0 when w, - W3 - L is even, and E = 1 when 
w, - W3 - L is odd. 

For values of K < L, the bracket (B 1) can be obtained by 
using the fact that 

I
w,w2W3) = [(L + K)!2

L- K]1I2 
qLK (L - K )!(2L )! 

X(C' +C o )L-K IW'liJ 2liJ 3
) 

o -, qLL' (B7) 

where C ;~' are generators ofU(3). We take the scalar product 
of(B7) with 

(B8) 

expressed in the form (B4) and apply the powers of the gener
ators on the bra using the known formulasz6 for the matrix 
elements of generators ofU(3) with respect to Gel'fand 
states. In this way we obtain the bracket with arbitrary K as a 
linear combination of the brackets with K = L given in (BS) 
and (B6). 

APPENDIX C: THE VANAGAS POTENTIAL ENERGY 
FOR A GAUSSIAN INTERACTION AND ITS LIMIT FOR 
LARGE A 

The type of interaction we consider [in units in which fl, 
the mass m of the nucleon, and the frequency of the oscillator 
used in (3.1) are taken as 1] has the form 

A 

- Vo I exp [-11'.: -r;'12/a2
], (Cl) 

s<s'=-1 

where 1'; = IX;" i = 1,2,3 j, s = 1,2, ... ,A, and u a" gives the 
range. 

As the matrix element of the exponential function with 
respect to an anti symmetric system of identical particles 
gives the same result for any combination of (s,s'), 9 it is 
enough to consider 

(C2) 

As shown in Ref. 9, the interaction can be written in 
terms of! PI.'<P I as 

-! VcM - l)A exp[ - (2Ia2)(p~ c; s~ s~ 

(C3) 

with 
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where! <PI.' k = 1,2,3J are the last three angles in the 
(A - 1 )-dimensional Jacobi coordinate space of (2.1) and 
(2.6). 

In order to calculate the collective potential, we have 
according to Vanagas9 to integrate (C3) with respect to the 
volume element 

d7d> = Ir [(A - 1)12]!~/2r [(A - 4)12]J (sin<P3)A- 5 

X (sin<p2)A - 4(sin<p,)A -- 3 d<p,difJ2d<P3 , (C4) 

with the range of the <PI.'S being O<<Pk <TT, k = 1,2,3. The 
normalization coefficient is determined via the condition 
Sd7d> = 1. 

To do the integration, we have to use formulas No. 
9.212 and 3.383 of Ref. 31, i.e., 

(' x' - '( 1 - xl" . 'ef3x dx = B (f-l,v)<P (v,f-l + V, - (3) Jo 
= B (f-l,v)e B <P(f-l,f-l + v, - (3), 

(CSa) 

where 

B(f-l,v) = T(f-l)r(v)lT(f-l + v), (CSb) 

and <P is the confluent hypergeometric function. 
Let us now consider the integral 

("("(" ,222222222 
1= Jo Jo Jo e-(21aIlPlc3s2S1+P2C2S1+P3cll 

xst- 5 ~ - 4 .>1- 3 d<P3d<p2d<p, . (C6) 

First we integrate over the <P3-dependent part and writing c; 
= 1 - s; = 1 - x, we get 

e 12Ia'lp;,l,; (' e-12Ia'IP;sjs;xxIA-bI/2(I_x)-'/2dx, 
Jo 

(C7a) 

which from (CS) becomes 

B(!,(A - 4)/2) <P(~,(A - 3)12, - (2/a 2
) p~ s~ s~). (C7b) 

The integral (C6) now takes the form 

1= B(!,(A - 4)12) iff iff 
X <P (!,(A - 3 )12, - (21 a2

) p~ s~ s~) 

Xexp[ - (2/a2)(p~ c~ s~ +p; c~)] 
x~ - 4 .>1- 3 d<p,d<pz, 

which, when expanding <P as a series, gives 
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1= B(l (A - 4)/2) L { (~)K (- (2/a2)p~)K 
2' K ((A - 3)12)K K! 

X 1'Ti" exp [ - (2/a 2
)( p~ c~ s~ + P; c~ ] 

X~ - 4 + 2K s1- 3 + 2K d~ldrP2} , (C8b) 

where (x)n is the Pochhammer symbol (x)n = xIx + 1)-
... (x + n - 1). We use the same steps to determine the re

maining integrals, getting finally r( PI P2 P3) ofEq. (6.11). It 
is obvious that the ;c/'( PI P2 P3) of (6.11) is invariant under 
permutation of the particle indices, or equivalently of the 
I Pk L k = 1,2,3. 

In order to investigate the dependence of r( PI P2 P3) 
onp, b, c, it is better to consider the limit A> 1 for which the 
factors s1- 5, ~ - 4, and s1- 3 in the volume element contri
bute only in the vicinity of ~K = 1T/2, K = 1,2,3. Making 

then the transformation 

~K = 1T/2 + EK , K = 1,2,3, d~; = dE; , (C9a) 

sin~; = COSE, and coS<jJ; = - sinE; , (C9b) 

and, if we disregard terms of order higher than ci, we can 
use the relation 

cos EK~1 - ci!2~ exp( - ci/2), 

sin EK~EK' K = 1,2,3, 

(ClO) 

so we finally get 

3 fOO [(A - 6 + K 1= II exp-
K~I -00 2 

+ 2api) ~_ K ]dE4_ K 

= ~12 { JJI U(A - 6 + K) + 2p~/a2] } - 1/2 ,(Cll) 

where we enlarged the limits of the integrals from (0,1T) to 
( - 00, + 00) because the whole expression only contributes 
in the vicinity of 1T!2. We obtain then 

r( ) __ voA (A - 1) I(a) (CI2) 
PI P2P3 - 2 1(0) , 

which gives rise to Eq. (6.12). Substituting the p~ by their 
values (2.4) in terms of p,b,c, we can write, when A> 1, 

v A 7/2 
r( p,b,c)~ __ 0 __ 

2 

X [~P: (1 - 3b 2 + 2b 3 cos 3c) + 16p4 
27 a 3a4 

4p2 ] - 1/2 
X(I-b 2 )A +_A2+A3 (CI3) 

a2 

Note that whenA> 1, we have y = c,b~/3/(]'andp~(]' + (i/ 
\11, where (]' is given by (3.21). Thus we could also write the 
Vanagas potential in terms of(i,/3,y. 
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The paper examines the possibility of interpreting the energy-stress tensor of an electromagnetic 
field with or without a perfect fluid as due to a viscous fluid without any electromagnetic field. 
Some results obtained previously by Tupper are recovered and the time irreversibility brought 
about by viscosity is emphasized. 

PACS numbers: 41.to.Hv, 03.50.De 

I. INTRODUCTION 

Following the observations of Tupper I that some non
null electrovac metrics could be interpreted alternatively as 
due to a viscous-fluid distribution, the present authors2 

found that a necessary condition for such a dual interpreta
tion is a symmetry property of the metric and the electric (or 
magnetic) field. We could thus exhibit some cases where this 
viscous fluid interpretation did not work. 

More recently Tupper3 has made a very thorough inves
tigation of the problem of dual interpretation involving elec
tromagnetic fields and viscous fluids and has given examples 
from known solutions of how different types of situation can 
arise. In the present paper we attempt a similar investigation, 
but our mathematical procedure is somewhat different from 
that of Tupper and appears to us simpler. Also some points 
which have not been properly emphasized in Tupper's paper 
are here brought into relief. 

Let us first state the problem clearly: we have a metric 
gp" such that the corresponding Einstein tensor 
Gpl' (-RI,v - !Rgp1') satisfies the following equation 

GI,v = [(p+p)iJl,if1' -pglLV +Ew ]' (1) 

where p andp are the pressure and density of the fluid respec
tively, ifp is the fluid velocity vector, and Epv is the energy 
stress tensor for an electromagnetic field. The coupling con
stant here and in the following discussion have been omitted. 

Now following Lichnerowicz,4 we can write 

EI" = - (!gpv - ifl,ifv)(E 2 + B2) - (EpE1' + BpB1') 

- (ifpS" + ifvSp)' (2) 

where Ep and Bp are the electric and magnetic fields as seen 
by an observer moving with the fluid and are given by 

E - F ~<ll' B-1 ~<lPF"f3 v - ILl'V, V - 21Jj-lva/3v , 

where F"v is the electromagnetic field tensor and the Poynt
ing vector Sp is defined by 

SI' = 7]p"f3yEaBf3ifY. (3) 

We are now ready to investigate whether the same met
ric field can be interpreted as being due to a viscous fluid, i.e., 
whether we can satisfy the equation 

Gp" = [(p+p)u"u" -pgl'v + 27]O"pv], 

where we must have the algebraic relations 

uPul' = 1, 

0"1'" U" = 0, 

(4) 

(5) 

(6) 

cI,; = 0, (7) 

along with the differential relation connecting the shear ten
sor with the derivatives of the velocity vector 

(8) 

As G,,1' is assumed given, Eqs. (4)-(7) provide us with 16 
algebraic equations to determine the sixteen unknowns (four 
components of ul' + ten components of 7]0"1'" + the two sca
lars p and pl. Hence in general they will be uniquely deter
mined. In order that the interpretation may be valid once the 
0"1'" and ul' are thus determined, the differential relation (8) 
must be identically satisfied and besides, the values of p,p, 
and 7] must be physically acceptable. Obviously this would 
not be the case in general. 

II. SOLUTIONS OF THE ALGEBRAIC EQUATIONS 

We note that in view ofEq. (4) and (6), ul ' is an eigenvec
tor of G 1''' and hence in the case of non degeneracy the other 
three eigenvectors of G"" will be spacelike (in the case of 
degeneracy one may choose the other three to be spacelike). 
It is easy to see that G"v and O"p1' have the same eigenvec
tors-a result which will be used later. 

We now investigate the eigenvectors of G p,,' 

Using (1) and (2), we have 

G"v£l'= [!(E2-B2)-plE" -(E"B")Bv' (9) 

GI'1'BP = [!(B 2 
- E2) - plB" - (E"B")E". (to) 

Hence there will be two eigenvectors (both spacelike) in 
the two space spanned by E" and B I'. These are 
EI' +.-1. ± BI', where 

1 

2(E"B") 
X {(E 2 - B2) ± [(E 2 _ B2)2 + 4(Ea B ")2] 1/2}. 

(11) 
.-1. is indeterminate in the case of null fields where 
E 2 - B 2 = (Ea B a) = O. For non-null fields, the eigenvalues 
corresponding to the eigenvectors E" + .-1. ± B I' are from 
(9)-(11), 

( 12) 

For null fields the degenerate eigenvalue is - p. The two 
other eigenvectors will be in the orthogonal plane, i.e., in the 
plane spanned by S" and if 1'. A simple calculation shows 
that the eigenvectors are S" + at if", where 

a:t =H- [(E 2+B 2)+p+pl ±t} (13) 
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with 

(14) 

and 

S2_ -SliSP , 

Of these two, S P + a _1f P is timelike and as uP is known 
to be the timelike eigenvector, we have 

(15) 

where the normalizing factor (3 ensures that Eq. (5) is satis
fied and is given by 

(32 = l/[a2
_ -s21. (16) 

Thus, uli will be identical with 1f P iff S P vanishes. The eigen
values corresponding to these eigenvectors S P + a ± 1f Ii are, , 

from (1), (2), (13), and (14), 

H(p-p)+S]' (17) 

From Eq. (4) the eigenvalue ofGpv corresponding to the 
eigenvector uP is p while from (17) it is equal to 
H(p-p)+s]. 

Therefore 

P=H(p-p)+s]. 

Again contracting (1) and (4), we get 

p- 3p=p- Jp. 

Thus from (18) and (19) 

p=H(5p-p)+51· 

(18) 

(19) 

(20) 

From (1), (2), and (4), substituting the values ofp andp from 
(18) and (20) we get 

2rwpv = {(P + p) [1 - j.B2(a_f] - 5(32(a_)2s + (E2 + B 2)}1fp1fv - H(P + p) - S + 3(E2 + B 2)]gpv 

- (1fpS" + 1f"Sp){1 + j.B 2a_ [p + P + 2sl) - j.B2[p + P + 2s]SpSv - (EpE" + BpB,,). (21) 

Thus from (15), (16), (18), (20), and (21), the sixteen unknowns are determined in terms of the known quantities. 

Again from (21), corresponding to the eigenvectors 
SP + a -1f P,EP + A + BP, the eigenvalues of (Jpv are + -

1 
0, 6;][p +p - s], 

_1_ [S _ (P + p)] _ _ 1_[(E2 _ B 2) + 4(Eu Bu)2] 112, 
12~ 4~ 

_l_[s_(p+p)] + _1_ [(E 2 _B 2)2+4(EuBUf]I12. 
12~ 4~ 

The condition for the viscous fluid interpretation to 
work is that the shear calculated for the vector given by (15) 
must agree with (21). However in general this leads to a too 
complicated equation. Leaving aside the general discussion 
we now consider special cases. 

III. SPECIAL CASES 
A. Electrovac universe 

Let us first take the case of an electrovac universe with 
Sli = O. This is the case considered in our previous paper 
where the field was considered to be a simple electric or mag
netic field (this can be done by a duality rotation); we have 
from (14), asp =p = 0, 

S = E 2 (when only an electric field exists), 

= B 2 (for a simple magnetic field), 

and the eigenvalues of the shear tensor are 

E2 E2 E2 
0, 3;' - 6;]' - 6;]' 

(with similar expressions for the magnetic field case) belong
ing, respectively, to the eigenvectors, uP,EP (or BP) and two 
vectors orthogonal to EI' and uP, there being a degeneracy 
for the last two. This was the main result arrived at in our 
previous paper. 

B. Perfect fluid with null field 

2555 

The null-field condition gives Eu B u = E 2 - B 2 = O. 
Ifthere is no fluid along with the null field, Eqs. (13) and 
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I 
(14) show that the eigenvalues corresponding to the eigen-
vectors Sp + a ± 1fP both vanish and the eigenvectors are 
both null vectors (note the self-orthogonality of null vectors) 
and thus no timelike eigenvector uP exists. Thus, as was ob
served previously by Tupper, one cannot have a viscous-flu
id interpretation in this case. 

If a fluid is present along with the null field we have 
already noted from Eq. (11) that A ± is indeterminate. This 
corresponds to the fact that belonging to the degenerate ei
genvalue - p for the tensor GliV [cf. Eqs. (9) and (10)] any 
vector in the E P ,B P space (i.e., any vector orthogonal to 1f P 

and S P) is an eigenvector. 
The eigenvalues of (JliV in this case are 

1 1 
0, -(p +p -s), - [s- (P +p)], 

6~ 12~ 

1 
12~ [S-(p+p)], 

and show the same degeneracy as the Gpv tensor. 
It is clear that these degeneracies can be ensured auto

matically if the metric has a rotational symmetry in the space 
spanned by E P and B P (i.e., the two space orthogonal to 1f P 

and SP). Once this is satisfied, the shear tensor given by (8) 
will have an eigenvalue pattern (0, - 2a, a, a). If, as is likely 
due to symmetry reasons, the eigenvectors coincide, one can, 
by choice of the parameter~, make the shear tensor agree 
with the tensor (21). However, it may be noted that in view of 
Eq. (14), for this null-field case, S> (p + pi, and hence the 
degenerate eigenvalues are to be positive if ~ is to be positive. 

As a distribution of fluid cum null field, we recall the 
metric given by Raychaudhuri and Dutta,5 

(22) 

for matter plus radiation. 
Using the above metric for a viscous fluid solution we 
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get 

p = 4~ (2a + 3)t -2(a+2), 

p = _1_ (4a + 3)t -2Ia +2), 

12rr 

with the non vanishing velocity component being 

UO = vL: t -(a+ 11. 

The shear tensor components, i.e., diagonal components are 

[
0 2v'2a t -(a+2) _ ~t -(a+2) _ ~t -la+2)] 

'3 '3 '3 

and 
t -(a + 2) 

7]= 

so here 7] may be positive if t < 0 and a is odd. We shall return 
later to this point of 1] having positive values only for t < O. 

C. Case of a perfect fluid distribution (with either an 
electric field or magnetic field) 

When we have either an electric or magnetic field but 
not both, SI" = O. Here from (16) we find.8a_ = 1 and hence 
from (15) ul" = 31". From (14),5 = £2 + P + P (if we have an 
electric field). 

Using these conditions, Eq. (21) reduces to 

27]al"v =jE2W1"3v -g,lv)-EI"Ev' (23) 

From (18) and (19) 

- lE2} P -p=z 
P -p = AE2 . (24) 

Substituting (23) and (24) in Eq. (2) we get 

E~ = [p - p + P - p ]3'l 3 v - (p - p)EY:, + 27]~. 
(25) 

This is also evident from (1) and (4), since ul" fJ 1". Equation 
(25) is the same as that obtained in our previous paper in the 
case of electrovac universes--only we no longer have any 
freedom in choosing the velocity vector-here it must be the 
velocity vector of the original perfect fluid. Thus we now 
have the additional condition that this velocity vector of the 
original fluid must be shearing, the shear ellipsoid is a spher
oid with the electric (or magnetic) vector orthogonal to the 
symmetry plane of the spheroid. In particular, for a static 
fluid cum electromagnetic field, due to the static nature the 
velocity vector is shear-free and hence no viscous fluid inter
pretation is possible. 

Any non static spherically-symmetric fluid distribution 
with a radial electric field can, in general admit a viscous 
fluid interpretation for, as known from the investigations of 
De,6 Mashoon and PartovV in such a case shear is always 
present except for a very special equation of state, and radial 
symmetry ensures that the shear components 

a~ = a~. 

The case of stationary, axially-symmetric rotating mod
elsK offers an interesting point. In this case there are two 
Killing vectors--one timelike and the other spacelike-with 
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closed orbits. Consistent with the symmetry the velocity vec
tor may be taken to be a linear combination of these two 
vectors-it then turns out that it is either nonshearing or the 
shear tensor has the eigenvalue pattern (0, 0, - a, + a). As 
this does not agree with the necessary pattern for a viscous 
fluid interpretation, no such interpretation is possible in this 
case. 

We next consider, as an example, a plane symmetric 
metric given by Thorne9 

ds2 = dt 2 _ A 2(dx2 + dy2) - W 2dz2, (26) 

with 

t = ao(A + 2.8)(A -.8 )112, 

W=A +4.8+ q(A _.8)112 
A 

ao q, and.8 are constants, ao and.8 being limited to positive 
values. The metric was interpreted as due to a pressureless 
fluid of density p = (6rra6 WA 2) - 1 and in the rest frame of 
the fluid, the electromagnetic field is a simple magnetic field 
in the Z direction, of magnitude 

B = (2.8 1J2/3ao)A -2. 

Obviously in this case, the conditions for the viscous 
fluid interpretation to work are all satisfied. In particular, we 
have 31" t% and by direct calculation 

_ B2 1 [1 .8] p=p+ -= -+--, 
8rr 6rra2 A 2 W 3A 2 o 

(27) 

_ B2 .8 
p--- (28) 

- 24rr - 54rra6A 4' 

a; = - 2~ = - 2a; = 2-~ In [ WI A ],ag = 0,(29) 
3 dt 

d 
7] =.8 1(18rra6A 4 -[In (W I A)]). (30) 

dt 

7] is thus a complicated function of time. Note the degener
acy of the shear-tensor components. The general behavior of 
the universe may be thus described: A has a minimum value 
.8 at t = 0 and increases monotonically as t-+ 00 • However, at 
some intermediate value of t, say to. W vanishes--one then 
has a singularity of p as well as the shear tensor al"v' but the 
pressure ji remains finite and is always less than p13. After 
t = to, W may have quite complicated behavior but if for 
simplicity we take q = 0, Walso is monotonically increasing 
and ultimately as t-+ 00, WI A approaches unity and the 
shear tensor as well as the density and pressure vanish. 7] is 
always finite in the domain to<.! < 00 and vanishes at both 
t = to and t-+ 00. but is negative at large enough values of t. 

IV. CONCLUDING REMARKS 

To sum up we may classify the solutions using the elec
tromagnetic field into the following cases and the relevant 
conclusions for the viscous-fluid interpretation to be 
possible. 

(i) Electrovac with non-null field. For the viscous-fluid 
interpretation of such a solution there must be a symmetry of 
the (II'" tensor. 

(ii) Electrovac with null field, A viscous-fluid solution is 

A. K, Raychaudhuri and S. K, Saha 2556 



                                                                                                                                    

not possible as such but may be possible with the introduc
tion of the heat-flux term as well, as shown by Tupper. 

(iii) Fluid cum electromagnetic null field. For the dual 
interpretation of such a solution, the velocity vector of the 
viscous fluid is given by u I-' = f3 (S J.L + a _ {J 1-') and a symme
try of the (/I-'v tensor is required. 

(iv) Fluid cum non-null field with SI-' #0. For the equiv
alence of such a solution with viscous fluid, the velocity vec
tor of viscous fluid is given by up = f3 (SI' + a _ {J 1-'). The 
shear tensor calculated from this velocity vector must agree 
with that given by (21) and there is no symmetry restriction 
on (/;,,,. This is the most general case and thus complicated. 

(v) Fluid cum non-null field with SI-' = O. Here the ve
locity vector of the original fluid is equal to the velocity vec
tor of the viscous fluid, i.e., ul-'={J 1'. A symmetry of the shear 
tensor is required for the dual interpretation. In particular, if 
the original distribution is static so that the shear vanishes, 
no viscous-fluid interpretation is possible. 

Lastly we note the following regarding the requirement 
that y! must be positive. 

Equating the divergence of the r.h.s. ofEq. (4) with zero 
and then contracting with uv ' we get 

p;,ul-' + (p + p)e - 41Ta2 = O. (3\) 

The above relation shows that the constraint Y! > 0 
would place some restrictions on p. P. and the expansion e. 
In general one can say little further from Eq. (31); however 
most of the known solutions ofa fluid cum--electromagnet
ic field are spatially homogeneous as given by Dunn and 
Tupper 'o (cited by Tupper)-admitting three linearly inde
pendent spacelike Killing vectors. In that case the Lie de
rivatives ofp, P. with respect to all three Killing vectors van
ish-i.e .• they are functions of"(" alone where ( lines are the 
orthogonals to the three trajectries of the group. We can 
have then a functional relationship between p and p and if. 
further. we take the simple special case p = ap where a is a 
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constant for Y! > 0, the above equation requires 
p(v - g)(1 + crl/2 be a monotonically increasing function 
along the future directed t lines. Thus. while a particular 
metric may give rise to negative Y!. its time-reversed may 
satisfy the condition 1/ > O. This may be expected for viscos
ity. being a dissipative process, introduces an irreversibility 
and hence may fix a direction of time-flux. Indeed, it is due to 
this fact that we have found that the metric (22) can be inter
preted as being due to a viscous fluid for t < O. Similarly some 
cases where the viscous fluid interpretation has been consi
dered untenable by Tupper because of negative 1/ (as he has 
concentrated on t> 0) may yield 1/ > 0 with ( < O. 
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A complete study of a charged particles motion in such electromagnetic fields, where vectors of 
electric and magnetic fields are parallel to each other and to some constant vector, is made. It lists 
all classes of fields, permitting the solution of the problem by the method of separation of 
variables, ana all concrete kinds of fields in which Dirac's and Klein-Gordon's equations can be 
expressed through the known specifications and are given for the first time. 

PACS numbers: 41.70. + t 

Consider a charged particles motion in such electro
magnetic fields where in some Lorentz coordinate system 
vectors of electric and magnetic intensity are parallel to each 
other and to the constant vector n. 

E=nE, H=nH. (1 ) 

Such fields will be called longitudinal. Without limita
tion of generality we consider n to be oriented along the Z 
axis, i.e., n = (0,0,1). In this case from Maxwell's equations 
we have (The system of units and designations of Refs. 1 and 
14 is used here.) 

E=E(xo,x3), H=H(x"x2). (2) 

Thus the magnetic field is stationary while the electric 
one can be nonstationary. For an electromagnetic current 
density we find 

p = a3E, j = - [nV H] - naoE. (3) 

From (3) it follows that free Ip = j = 0) longitudinal 
fields can be only stationary and uniform. It is also obvious 
that the fields'·2 in the general case may be given by the 
potentials 

Ao = AO(xO'x3), A, = A,(x"x2), E = aoA3 - ay4o, 
(4) 

A3 =A3(xO'X3), A2 = A2(x"X2), H = a~, - a,A 2. 

All are arbitrary functions of their arguments. Lorentz 
classic relativistic equations in longitudinal fields fall into 
two independent systems (Differentiation with respect to 7 

interval is marked with a point.) 

mxo + EX3 = 0, mX3 + Exo = 0, (5) 

mx, + HX2 = 0, mX2 - Hx, = O. (6) 

Each of the systems may have the first obvious integral 

m2(x~ - x; ) = m 2 + k L m 2(xi + x~) = k i. (7) 

Thus the classical motion in longitudinal fields falls into 
two independent ones-the motion in two-dimensional sub
space x o, x 3 , determined by an electrical field only; and the 
motion in two-dimensional subspace x" x 2, determined only 
by a magnetic field. 

Accordingly the classical action function can also be 
presented in the form of a two term sum, 

S = So + S" So = So(x"x 2 ), S, = St!XO'x3), (8) 

satisfying two independent equations 

(a,So + A ,)2 + (a2S0 + A2)2 = k i, 
(aoS, + Ao)2 - (a3S, + A3f = m 2 + k i , 

(9) 

(10) 

and describing independent motions in magnetic and elec
tric fields. 

In quantum theory k, is an integral of motion as well. 
The solutions of Klein-Gordon's equations that determine 
the states with the definite k" in the general case, can be 
represented as 

(11 ) 

Here No is a normalization factor, function if; is a solu
tion to equation 

(12) 

that is, to Schrodinger's two-dimensional stationary equa
tion. The function cp satisfies the equation 

(9~- 9~ - m 2 
- ki)cp = O. (13) 

In (12) and (13) we assumed 91l =iall +AJ.l" 
The Dirac wave function for longitudinal fields is more 

conveniently represented as "blocks" through Pauli's two
dimensional matrices a: 

( 
m + F - ik,cr2 ) - .._ 

IJiD=NQ k CPl', F=f7 0 +f7 3• 
(m - F)cr3 - ,cr, 

(14) 

Here l' is a constant arbitrary double component 
spinor, the scalar function q; = q; (XO'x3) is a solution of the 
equation, 

(9~ - 9~ -m2 -ki +iE)q;=O, ( 15) 

similar to (13). The two-dimensional matrix Q has the form 

( 16) 

and functions!. (5 = ± 1) are the solution of the first-order 
equations system: 

(op)G=k,G, 
p = (,0/',,9 2,0), 

G=(/'). 
1-, 

( 17) 

This system in general form is readily squared. 
Supposing 

(18) 
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From (17) we find the second-order independent equations 

(9t + b'~ -kt +sH)tP, =0, s= ± 1 (19) 

that are analogs to Eq. (12). It is useful to note that the Q 
matrix, as follows from (16) and (17), satisfies the equation 

(rrp)Q = klQa l. (20) 

Thus the quantum-mechanical problem, like the classi
cal one, resulted in the investigation of independent two-
dimensional equations that describe independent motions in 
electric and magnetic fields. 

The availability, as usual, of the arbitrary constant 
spinor I' in Dirac's wave function (14) is evidence of integral 
motion existence with no classical analog (spin integral of 
motion). From Refs. 2-4 and 14 it follows that such a spin 
integral of motion for longitudinal fields can be found in the 
obvious form. For the fields of a structure l

•
2 the operator 

i = CIn)[m cos y + i(Ip)(p3 sin y - P2 cos y)], (21) 

where y is an arbitrary constant, I, P k are Dirac's matrices 
corresponding to the motion integral, and the function (14) 
can be subordinated to the additional equation 

(22) 

that taking of (20) results in an algebraic equation on the I' 
spinor: 

(23) 

1= L -iI - kl cos y, - kl sin y,m cos y), 12 = 1. 

The solution of such an equation is well known. 
Thus, the classification of Dirac wave functions by spin 

is carried out in longitudinal fields. 
One can manage to find the concrete solutions of Eqs. 

(12) and (19) and (13) and (15) only for such fields as allow 
separation of variables in these equations. 

The problem of finding all the fields allowing a com
plete separation of variables in Klein-Gordon's equation 
was solved in Refs. 5 and 6 in full. Similar investigations of 
Dirac's equations were made in Ref. 7. According to Refs. 5-
7 there are four classes of electrical and two classes of mag
netic fields of such a kind. Numbers are given of these classes 
according to the classification of Ref. 5; in brackets are those 
of Ref. 7: 9(2), lla(4), 16(11), 18a(12), 20(13), 23(14), 30b(25), 
37a(26). In all the cases the classical equations (5) and (6) 
permit obviously one more, besides (7), first integrals of mo
tion, and may be integrated in quadratures. The solutions of 
Eqs. (9) and (10) are just found by quadratures. In quantum 
theory the use of these integrals of motion permits reduction 
of the solutions ofEqs. (12), (13), (15), and (19) to a solution of 
usual differential equations. 

Some rather particular cases of exact Dirac's and 
Klein-Gordon's equations for longitudinal fields were stud
ied previously.8-13 

Consider the kinds of electric fields permitting separa
tion of variables in equations of motion and exact solutions 
of such equations. 

(1) Ao=A(X3)' A3=0, E= -A'. 
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The first integrals of the classical equations (5) are 

mxo - ko - A = 0, 

m2x~ = R (x3) = (ko + A )2 - m 2 - k t . (24) 

The conditions ko + A )0, R)O determine classically acces
sible regions of motion. The solution of Eqs. (24) and (10) in 
quadratures with A (x,) being an arbitrary function has the 
form 

Xo = I(ko + A )R -1/2dx3, 7 = mI R - 112dx 3 , 

SI = kc,xo - I R 1/2dx3 • 

To solve Eqs. (13) and (15) we find 

<p = exp( - ikoxo)X(x3 ), X" + RX = 0, 

cP = exp( - ikoXo)X(x3), X" + (R - iA ')X = 0, 

F= ia3 + ku +A. 

(25) 

(26) 

One can manage to find exact solutions ofEq. (26) with 
the following choice of the A (x3 ) function: 

A (x) = ax, A (x) = ax-I, A (x) = a exp/3x, 

A (x) = a tan/3x, A (x) = a tanh/3x, 

A (x) = a coth /3x. 

(27) 

Here a, /3 are constants. The solutions themselves of 
Eqs. (26) with theA (x3) choice in the form of one of the func
tions (27) can be expressed through the known special func
tions. This record, for example, was studied in Refs. 1 and 14 
in detail and there is no need to repeat these calculations. 

(2) Ao=O, A3=A(xo), E=A'. 

In classical theory, with A (xu) being an arbitrary func
tion, we have 

m2x~ = R (xo) = m 2 + k t + (k, + A )2, 

mX3 + k3 +A = 0,X3 = - I(k} + A )R - 112dxo, 

7 = m I R -1/2dxo, SI = k3X 3 + I R 1/2dxo. (28) 

In quantum theory we find 

<p = exp( - ik3x 3 )X(XO)' X" + RX = 0, 

cP = exp( - ik3x 3)X (xo)' X" + (R - iA ')X = 0, 

F= iao + k3 +A. (29) 

Here exact solutions of Eqs. (29) obviously can just be 
obtained with the A (xo) function choice in the form of (27). 

(3) Introduce variables 

(30) 

and give them potentials 

Ao = 0, 2A3 = A (uo), E = A '(uo). 
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In classics one may readily obtain 

muo-ko-A =0, 

m(ko +A)uJ -m2-ki =0, ko+A;;;'O, 

(31) 

7 = mj(ko +A )-Iduo, U3 = (m 2 + k i)j(ko +A )-2duo, 

2S1 = kOu3 + (m 2 + k i )j(ko + A )-Iduo' 

In quantum theory the explicit solution is also possible 
for an arbitrary function A (uo), 

cp = (ko + A )-1/2exp( - iSd, 

j; = (ko + A )-Iexp( - iSd, F = ko + A. (32) 

(4) For the variables 

Uo = x~ - x~, U3 = -2
1 

In I Xo + X3 I, 
Xo -X3 

assign the potentials 

Ao = 0, 2A3 = A (uo), E = A '(uo). 

The classical motion is described by the following 
equations: 

2muOu3 + k3 +A = 0, 

(33) 

m2u~ = R (uo) = (k3 + A )2 + 4uo(m 2 + k i), R;;;.O 

7 = mj R -' /2duo, 

2u3 = - j(k3 + A )uo 'R -' /2duo, 

2S, = k3u3 + j(2Uo)-'R 1/2duo. 

In quantum theory we have 

cp = exp( - ik3u3!2)X(uO)' 

16u~X" + 16uoX' + RX = 0, 

j; = exp( - ikJuJ /2),r(uo), 

16u~X" + 16uoX' + (R - iA ')X = 0, 

F = [2(xo + x 3 ) 1 - '(4iuoao + k3 + A). 

(34) 

(35) 

The exact solution here is possible with A = auo; how
ever, in this case the electric field is constant and uniform 
and more simple solutions exist in such a field (see the pre
vious solutions of the paper). A solution is also possible if 
A = aliluol. By substitutingx2 = IUol Eqs. (35) are reduced 
to the ones studied in Ref. 1. 

In this case the electric field is nonstationary and 
nonuniform. 

Other electric fields permitting exact solutions of Eqs. 
(13) and (15) have not been found yet. 

There are two classes of magnetic fields permitting sep
aration of variables in Eqs. (12) and (19). 

Classical equations (6), (7), and (9) permit in the explicit 
form the two first integrals, their solutions being expressed 
by quadratures. 
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m 2xi = R (XI) = k i - (k2 + A )2, 

mX2 + k2 + A = 0, R;;;.o 

7 = m f R -' /2dx" X2 = - f(k2 + A )R -' /2dx" 

So = k2x 2 - f R 1/2dx,. 

(36) 

Quantum-mechanical equations (12) and (19) are re
duced to the ordinary ones, 

If; = exp( - ik2x 2)X(X I), X" + RX = 0, 

If;, = exp( - ik2x 2)X,(x,), X;' + (R + sA 'lx, = O. (37) 

These equations are absolutely analogous to Eqs. (26) 
and their solutions can be written in the explicit form 
through the known special functions, A (x,) being taken in the 
form of (27). 

(2) Introduce polar coordinates 

X, = u, cos u2, X2 = u, sin u2, 

and assign potentials 

A,=O, A2=A(ud, H= -u,-'A'(u,). 

Integration of classical equations leads to the expressions 

m 2ui =R(u,)=ki -(k2+A)2U,-2, muiu2 +k2+A=( 
R;;;.O 

7=mfR-'/2dU" u2= - j(k2+A)U,-2R -'/2du ,,(38) 

So = k 2u2 - j R 1/2du,. 

In quantum theory we find 

If; = exp( - ik2u2)X(ud, X" + U,-IX' + RX = 0, 

If;, = exp( - ik2u2 )X,(u l ), 

i;' + u,-li; + (R + su,-'A ')Xs = o. (39) 

Here k2 is an integer for Klein-Gordon's equation and half
integer for that of Dirac's. The solutions are expressed in the 
explicit form through the known special functions only as 
A = aui (with stationary and longitudinal magnetic field). 
The field of this structure A = au I was investigated in Ref. 9. 

Other magnetic fields allowing solution of Eqs. (12) and 
(19) in explicit form have not yet been found. 
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Inverse scattering: determination of inhomogeneities in sound speed 
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The one-dimensional wave equation is examined for the purpose of developing a method 
applicable to indirect probing of propagation speed inhomogeneities. The examination utilizes the 
theory of inverse scattering and results in the development of a new method. The method consists 
of an algorithm which derives the inhomogeneities through processing in a special way the 
backscattered waves generated by an incident 8-function. 

PACS numbers: 43.20.Bi, 02.30.Jr 

1. INTRODUCTION 

Inverse scattering theory originated in a paper of 
Gel'fand and Levitan. I They employed spectral theory to 
develop a method for obtaining the Schrodinger potential 
from the spectral function. Further work illuminating math
ematical and quantum mechanical aspects of the method 
was carried out by, among others, Levinson2 and Faddeev . .l 
Kal added applications to electromagnetic propagation 
through plasmas where Schrodinger's equation is also use
ful. A survey of developments on inverse scattering and oth
er inverse methods can be found in Ref. 5. 

A re-examination of the method by the author showed 
that (a) the time domain formulation,6 rather than the fre
quency domain formulation used earlier, is the most natural 
and that (b) there exists a simple intuitive derivation 7 of the 
key results which may lead to inverse scattering methods for 
other equations. Soliton theory, where again Schrodinger's 
equation crops up, found applications for the time domain 
formulation. 8

•
9 

Herein, the method is applied to a different equation, 
namely the wave equation. As is the case with Schrodinger's 
equation, the present application also leads to an algorithm 
involving the solution of an integral equation. 

The application dealt with in this paper is relevant to 
the problem of indirect probing of sound speed inhomogene
ities. This problem has recently received wide attention. Co
hen and Bleistein have successfully considered the case of 
small inhomogeneities. 10,11 Refinements to their method 
were added by Gray. 12 Backus and Gilbert 13 examined uni
queness questions. Their technique was utilized by Chen and 
Tsien 14 in devising a numerical method for deducing weak 
inhomogeneities from spectral data at discrete frequencies. 

Unfortunately, the methods referenced above treat only 
the case of small inhomogeneities. Methods that rely on in
verse scattering are not constrained by the restriction to 
small inhomogeneities. An inverse scattering example that is 
directly applicable to the problem examined here is the 
method of Ware and Aki,15 and its improved version pro
vided by Coen. 16 These authors show that the reflected wave 
and the inhomogeneities are related through the Gel'fand
Levitan integral equation. The tie to the Gel'fand-Levitan 
equation is achieved by means of a change of variables that 
transforms the main equation to the Schrodinger equation. 

The method presented herein examines the same prob
lem analyzed by Ware, Aki, and Coen. However, herein the 

main equation is examined by a new inverse scattering meth
od which was developed without use of either (a) a transfor
mation to the Schrodinger equation, or (b) the Gel'fand-Le
vitan integral equation. Variations in the speed are obtained 
exactly by solving a new linear integral equation involving 
the reflected wave generated by an incident 8-function and a 
kernel related to the speed. Solution of the equation pro
duces the kernel from which the speed is found. 

The body of the paper is divided into four sections. The 
first section derives the method. We examine the main equa
tion 

a 2 a2 au 
-U- -U-y(r)-=O, 
ar2 at 2 ar 

where y(r) is continuous and 

y( r) = 0 for r<;O and for r--+ 00 . 

We relate y(r) to the reflected wave due to an incident 8-
function, 

U(r,t) = b(r - t) + R (r + t) for r<;O, 

by means of a new integral equation involving a kernel which 
determines y(r). 

The section section contains the application to the inho
mogeneous propagation speed. Here, we show that the wave 
equation 

a2 1 a2u 
-u- ----=0, 
az2 c2(z) at 2 

can be transformed to the previously examined equation, 
and we utilize the method of the previous section to obtain 
the variations of the propagation speed. 

The third section provides an illustration of the theory 
by means of an example. Here the reflected wave and the 
kernel ofthe integral equation are evaluated by independent 
means for a particular speed profile. We show that (a) the 
kernel is the solution of the integral equation, and (b) the 
kernel reproduces the speed profile. 

Finally, the fourth section considers the relation of the 
present method to that by Cohen and Bleistein as refined by 
Gray. We consider small variations and show that their re
sults follow as a special case. 

2. ANALYSIS 

We consider the equation 

a 2u a2 u au 

a--2 - -y(r)- =0, 
T at 2 ar 

(2.1) 

2562 J. Math. Phys. 23(12). December 1982 0022-2488/82/122562-07$02.50 © 1982 American Institute of Physics 2562 



                                                                                                                                    

where 

r(1") is continuous, 

Y(1") = ° for 1"<>;;0 and for 1"--00, and 

U (1",t ) = 8(1" - t) + R (1" + t) for 1"<:;;0. (2.2) 

We shall derive a method for determining Y(1") from the re
flected wave R (t). 

Let us assume a representation of U of the form I? 

a 
U (1",t) = 8(1" - t) + R (1" + t) - - K (1",t) 

at 

+ I 7" K (1", y)R ( y + t) dy, (2.3) 

where R (s ) means the total derivative of R with respect to its 
argument S. In Appendix A we show that the representation 
exists provided 

a 2K a2K aK 
- - - -y(1")-=O, (2.4) 
a? at 2 a1" 

and 

K (1",t) = ° for t < - 1" and t> 1", 

K(1", -1") = 0, 

d 
2 -K(1",1") - Y(1")K(1",1") = Y(1"). 

d1" 

(2.S) 

(2.6) 

The generated U cannot travel with a speed greater than one. 
Hence, 

U (t,1") = ° for t> 1". (2.7) 

It follows from (2.3) that 

1'+7 R (s) ds -K(1",t) 

+ J~, K(1",y)R (y + t) dy = ° for It I <1", 

where we utilized the fact that 

R (t) = ° for 1<0. 

(2.8) 

(2.9) 
The inverse scattering method consists of solving the 

integral equation (2.8) to find K (1",t). Then, one obtains Y(1") 
from (2.6). Appendix B shows that the solution of (2.8) is 
unique, provided 

0<:;; IR (cu)1 < 1 for all realcu, 

where R (cu) is the reflection coefficient 

A fOO R (cu) = _ 00 R (t )ei"" dt. 

3. APPLICATION-WAVE EQUATION WITH 
INHOMOGENEOUS SPEED 

Consider the wave equation 

a 2U 1 a2u 
----=0 
az2 c2(z) at 2 ' 

where c(z) has a continuous derivative and 

c(z) = c for z<:;;O and Z--oo. 

Let an incident 8-function generate a reflected wave, 

(2.10) 

(2.11) 

(3.1) 

(3.2) 

u(z,t) = 8[(zIC) - t] + R [(zIC) + t] for z<:;;O. (3.3) 
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introduce the transformation 

(' ds 
1" = Jo cis) . 

(3.4) 

Then, the above problem reduces to the one discussed ear
lier, i.e., 

a
2
u _ azu _ Y(1") au = 0, 

a? at 2 a1" 

where 

U(1",t) = u(z,t), 

1 d 
Y(1") = ---c[z(1")). 

c[z(1")] d1" 

(3.S) 

(3.6) 

(3.7) 

We utilize the previously developed method in order to 
determine the propagation speed. We solve (2.8) in order to 
find 18 K (1",t). Then, we find the speed value from 19 Eq. (3.8), 

c[z(1")] = c[1 + K (1",1")y, (3.8) 

and the position of this value from an alternative form of 
(3.4), 

z(1") =c f [1 +K(s,SWds. 

4. EXAMPLE 

Consider the following speed profile 

{
C; z<O, 

c(z) = 
c(I+6z)4/3, z>O, 

(3.9) 

(4.1) 

whose corresponding reflected signal is derived in Appendix 
C. The signal and the kernel are as follows, 

{
O, t<O, 

R (t) = (4.2) 
ce2ct [2 cos v2'Ct - vL sin v2'Ct ], t> 0, 

and 

K (1" t ) = [c1"(2 - SC1" + 4C2?) 
, (1 - 2C1")3 {

O' I~ I > 1", 

+ Ct (2 - 6c1' + tc2?) - c2t 2 - 2c3t 3], It I < l' 

(4.3) 

We shall show that the kernel expression (4.3) is indeed the 
solution to the integral equation (2.8) and that the kernel 
produces the sound speed. 

Let us for the moment assume that the kernel given in 
(4.3) is indeed the solution to the integral equation. Then, the 
speed profile should be obtainable from the kernel according 
to (3.8) where the corresponding value ofzis given from (3.9). 
We verify this in the following manner. Equation (4.3) shows 
that 

K(1',1') = -1. 
(1 - 2c1')2 

Thus, (3.8) gives 

or 

c[z(1')] = e[1 + K (1',1'W, 

c 
c[z(1')] = ---

[1-2c1"]4 

(4.4) 

(4.S) 
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The corresponding value of z is 

Z(7) = C iT [1 + K (5,5 W ds, 
or 

(4.6) 

Substitution of(4.6) into (4.5) verifies that the speed profile is 
indeed that given in (4.1). 

Now, let us proceed to show that the kernel satisfies the 
integral equation (2.8). This equation can be rewritten as 

I=K(7,t), (4.7) 

where 

1= f+IR(s)[1 +K(7,s-t)] ds. (4.8) 

Substitution of the expressions for Rand K leads to 

1=1\ + 12, (4.9) 

where 

and 

A = 2 + iv'L 
2 ' 

C' = 1- 47' + 77'2 - 47'3 - 2t' + 6t'7' 
_ t ,2 _ 6t '7'2 + 2t '3, 

D = 2 + 2t ' - 67' + 67'2 - 6t '2, 

E= -1 + 6t', 

F= -2, 

t' = Ct, 

7' =C7, 

and I f denotes the complex conjugate of II' 
Now, we note that 

feat; ds = e:s , 

f seat; ds = eat; (! - ~2)' 

f S2eat; ds=eat;(L - ~ + ~), 
a a 2 a 3 

f S2eas ds = eas(L _ 35
2 

+ ~ - ~). 
a a 2 a 3 a 4 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Using the above in (4.11) and doing the algebra leads to 

1=11,0 +1'1'.0 +11.1 +1'1'.1' 

where 

I _ A (_ C + D 
1.0 - (1 _ 27')3 2 + iv'L (2 + iv'L)2 

2E + 6F) 
(2 + iv'L)3 (2 + iv'L)4 ' 
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(4.19) 

(4.20) 

I - AQ el2 + iV2/1T' + I') 

1.1 - (1 _ 27')3 ' (4.21) 

and 

Q = C + D ( 7' + t' 1) 
2 + iv'L 2 + iv'L - (2 + iv'Lf 

(
(7' + t')2 +E 
2 + iv'L 

2(7' + t ') 2) 
(2 + iv'L)2 + (2 + iv'L)3 

+ F - ---'---'-(
(7' + t')3 3(7' + t'f 
2 + iv'L (2 + iv'Lf 

+ - ----~ 
6(7' + t ') 6) 
(2 + iv'Ll3 (2 + iv'L)4 . 

(4.22) 

The expressions for A, C, D, E, and Fwhich are given in 
equations (4.12)-(4,16), are substituted into the expressions 
for 1 1•0 and 1 1• 1 , After like order terms are collected, one 
finds out the following results 

Q=O, 

11,1 + I'l'.l = 0, 

11,0 + 1i.o = K (7,t), 

and 

1=11,0 +1i.o +11.1 +1i.1 =K(7,t), 

So, the kernel given in (4,3) is indeed the solution to the 
integral equation. 

Although the speed profile used as an example is very 
useful for analysis purposes because its reflected wave is ex
pressible in terms of elementary functions, nevertheless, this 
profile violates two restrictions of the method. In particular, 
the example has a speed that goes to infinity at large z's 
whereas the method required that at large z's the speed re
turned to its value for z < O. In addition, the speed has a 
discontinuous first derivative at z = 0 whereas the method 
required a continuous first derivative. 

The restrictions placed by the method on the speed ap
pear to be too strong. Quite clearly, abnormal behavior of the 
sound speed in some spatial region will not be accounted in 
the reflected wave until the first reflection from this region 
arrives at z = O. Thus, as long as the inversion process is 
limited to finite z's, the speed behavior at infinity is irrele
vant. Furthermore, the fact that the analysis goes through 
for this example indicates that the inversion process may go 
through even for speeds whose first derivative is discontin
uous. 

5. CASE OF SMALL INHOMOGENEITIES 

Weak inhomogeneities give rise to small reflections. 
Thus, the solution of the integral equation may be expressed 
in terms of a series of terms whose order increases with the 
sequence number. In particular, the solution to (2.8) may be 
written as 

~ 

K(7,!) = L Kn(7,t), (5.1) 
n=O 

where 
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Ko(r,t) = L+r R (5) d5, 

Kn(r,t) = f~ t Kn_ I (r,y)R (y + t) dy. 

The sound speed becomes 

c[z(r)] = c[ 1 + nto Kn(r,r)r 

whereas the corresponding z is 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

A first order analysis of equations (5.4) and (5.5) shows 
that the sound speed is given by 

c(z) = c + co(z), 

where the first order term Co is given by 

co(z) = 2cKo(zlC,zlC), 

or 

d 
- co(z) = 4R (2zIC), 
dz 

or 

d 2J+00 ( Z)A - co(z) = - exp - 2i = UJ R (UJ) dUJ, 
dz 1T - 00 c 

where R (UJ) is the reflection coefficient, 

R (t) = _1_ J + 00 R (UJ)e - iwt dUJ. 
21T - 00 

(5.6) 

The result shown in (5.6) is the same as that obtained in 
Ref. 12. 

6. CONCLUSION 

Earlier work, which had presented a simple derivation 
of the inverse scattering problem for Schrodinger's equation, 
was used in order to develop a new inverse scattering method 
for the determination of the variations of the propagation 
speed from the scattered wave. The method results in an 
integral equation involving two functions, (a) a kernel which 
is determined by the inhomogeneities, and (b) the wave re
flected by the inhomogeneities when a 8-function wave is 
incident upon them. In general, the integral equation may be 
solved numerically. However, iteration may be used to solve 
the equation in the case where the inhomogeneities are small. 
In both cases, the propagation speed is obtained from the 
kernel. 
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APPENDIX A 

We will show here that U(r,t), 

a 
U(r,t) = 8(r- t) + R (r+ t) - -K(r,t) 

at 

+ J~r K(r,Y)R (y + t) dy, (AI) 
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satisfies 

aZu aZu au 
- - - -y(r)-=O, 
a? at Z ar 

(A2) 

provided 

aZK aZK aK 
- - - -y(r)-=O 
a? at Z ar 

for It I < r, (A3) 

d 
2 -K(r,r) - y(r)K(r,r) = y(r) 

dr 
and K(r, -r) = 0, 

(A4) 

and 

K(r,t)=O fort< -r,andt>r. (AS) 

To show the contention, we insert (AI) into the left side 
of (A2). The terms are as follows 

au· . 
- = 8(r - t) + R (r + t) 
ar 

aZ . 
- --K(r,t) +K(r,r)R (r+ t) 

atar 

+ K (r, - r)R (t - r) 

+ -K(r,Y)R (y+t)dy, J
r a 

- T ar 

aZu.. .. a3 
-=8(r-t)+R(r+t)- ~K(r,t) 
a? atar 

+ ~K(r,r)R (r+ t) +K(r,r)R (r+ t) 
dr 

d· .. 
+ -K(r, - r)R (t - r) - K(r, -r)R (t -r) 

dr 

a I . + a;K(r,y) y~ _rR (t - r) 

J
r az 

+ ~K(r,t)R(y+t)dy, 
-r ar 

aZu.. .. a3 
at Z =8(r-t)+R(r+t)- at3K(r,t) 

+K(r,r)R (t + r) - K(r, - r)R (t - r) 

a I' - -K(r,y) R (t + r) 
ay y~r 

a I . + ayK(r,y) y~ __ rR(t-r) 

J
r az 

+ -z K(r,Y)R (t+y)dy, 
-r ay 

where we used integration by parts to obtain the last equa
tion. When we sum the terms we find that 
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a 2 a 2 au 
a--? U - at 2 U - Y(T) a.; 

a (a2 a2 

= - - -K(Tt)--K(Tt) 
at a--? ' at 2 ' 

- Y(T) ~ K (T,t) - Y(T)O(T - t)) 
aT 

+ R (T + t)( 2 :T K (T,T) - Y(T)K (T,T) - Y(T)) 

+ R (t - T{ 2 :T K (T,T) - Y(T)K (T, - T)) 

JT (a2 a2 

+ -2 K (T,y)--2 K (T,y) 
~T aT ay 

aK ). -Y(T)-(T- y) R(T+y)dy. 
aT 

(A6) 

Now, the contention is true because Eqs. (A3)~(AS) and 

d 
K(1', -1') = -K(T, -T) = 0, 

dT 

drive to zero all the terms on the right hand side of equation 
(A6) except the first. To show the zeroing out of the first term 
we note that this term involves the values of K over the full t 
interval. However, we can express the values of K over the 
full t interval in terms of the values of K over the semi-infinite 
t interval as follows: 

K(T,t) = H(T - t)/(T,t), 

where H is the Heaviside function 

and 

H( s) = {I, s>O, 
0, s<O, 

I(T,t) K (T,t) for t";T. 

(A7) 

(AS) 

In this fashion we can rewrite the first term of (A6) as fol
lows: 

a (a
2 

a
2 

aK ) - - -2 K(T,t) - -K(T,t) -Y(T)-(T,t) - Y(T)O(T- t) 
at aT at 2 aT 

= - ~ {O(T - t) [2 ~ I(T,t) + 2 ~ I(T,t) - Y(T)/(T,t) - Y(T)] 
at aT at 

[ 
a2 a

2 
al ]} +H(T- t) ~/(T,t) - -2/ (T,t) - Y(T)-(T,t) 

a.., at aT 

= - ~{O(T - t )[2 ~ I(T, y) I + 2 ~ I(T, y) I - Y(T)/(T,T) - Y(T)] 
at aT y ~ T ay y ~ T 

[ 
a2 a

2 
al ]} +H(T- t) ~/(T,t) - -2/ (T,t) - Y(T)-(T,t) 

aT at aT 

a { [d ] [ a
2 

a
2 

aK] } = - at O(T-t) 2 dT K(T,T)-Y(T)K(T,T)-Y(T) +H(T-t) a--?K(T,t)- at2K(T,t)-Y(T) aT (T,t) . 

Clearly, this last form of the first term is zero because of(A3)~(AS). 

APPENDIX B 

The integral equation 

f 1 T R ( s) ds - K (T,t) 

+ f~ 00 K (T, y)R (y + t) dy = 0, t < 1', 

has a unique solution provided 

0..; IR (w) I < 1 for all real w. 

(Bl) 

(B2) 

To show the above, we note that K (T,t) is unique pro
vided the following equation has only the null solution, 

roo W(T,y)[o(y-t)-R(y+t)]dy=O, (<T. 

(B3) 

However, 

b(y-t)-R(y+t) 

= _1_f+oo (e~i(,,(y~r)_R(w)e~i(,,(y+rl)dw. (B4) 
21T ~ 00 
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Now, after we substitute the right hand side of (B4) in place 
of the term of (B3) appearing inside the brackets and we 
multiply the result by W(T,t) and integrate over t, we find 

- II W(T,WW - R (w)[ w*(T,wlFJ dw = 0, (BS) 1 J+oo" ," 
21T ~ 00 

or 

1.- roo 121 W(T,WW - R (w)[ W*(1',wjf 
1T Jo 

- R *(w)[ W(T,wlFJ dw = 0, 

where W(T,W) is the Fourier Transform of W(T,t), 

W(T,W) = J~ 00 WIT, y)e'WY dy, 

and 

(B6) 

(B7) 

(BS) 

Equation (B6) can be put into an alternative form that is 
more useful for our purposes. Let a and b be the real and 
im~inarypartsofR (w)andA andB the corresponding parts 
of W(T,W). Then, (B6) becomes 
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J.- roc P(I _ a)A 2 + 2(1 + alB 2 - 4bAB ) dw = 0, 
17' Jo 

(B9) 

or, alternatively, 

1 L'" - ! (1 + r) [ ~ 1 - cos () A - ~ 1 + cos () B ] 2 

17' 0 

+ (1 - r) [ ~ 1 + cos () A + ~ 1 - cos () B F) dw = 0, 
(BIO) 

where 

and 

r = [R [ = ~a2 + b 2 , 

a 
cos () = -, 

r 

. () b 
SIn = -. 

r 

Now it follows from (BlO) that 

~ 1 - cos () A - ~ 1 + cos () B = 0, 

~ 1 + cos () A + ~ 1 - cos () B = 0, 

(BII) 

(BI2) 

(B13) 

at all frequencies w where O,;;;r(w) < 1. The above system of 
equationswiIlhavethesolutionA = OandB = Oifthedeter
minant L1 of the corresponding matrix is not equal to zero, 

([ ~I - cos () 
L1 = det 

~1 + cos () 
- ~ 1 + cos () ]). 

~1 - cos () 

However, L1 is equal to 2. Thus, both A and B, and therefore 
W, are equal to zero and the integral equation has a unique 
solution K (1',t). 

APPENDIXC 

Consider the wave equation 

a 2U 1 a2u 
--=0 

az2 c2(z) at 2 ' 
(CI) 

where 

{
C, z<o, 

c(z) = c(1 + 6Z)4/3, z> 0. (C2) 

We will develop the reflected wave that results from a 8-
function wave incident from the region z < 0. We will carry 
out the development by going through the spectal domain. 
In going back to the time domain we will choose the integra
tion contour in a fashion that will make the reflected signal at 
z = ° to be causal. Furthermore, because the introduction of 
the variable 1', where 

1'= r ds = ~ [1-(1 +6Z)-1/3], 
Jo c( s) 2c 

(C3) 

is most convenient we shall eliminate z in favor of 1'. 
The incident wave generates a forward moving wave 

inside the inhomogeneous medium. It can be verified by di
rect substitution into the frequency domain form of(Cl) that 
the forward wave is given by 

u[z(1'),w] = A (w)e ikc7'( 1 - 2C1')-2 [1 - (2ilk)(1 - 2C1')-I], 
(C4) 
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where 

k = w 
C 

The reflected wave is determined by the smoothness condi
tions at z = 0, 

u[O,w] = 1 + R (w), (C5) 

au ~ 
- (O,w) = ik [1 - R (w)]. 
az 

(C6) 

Substitution of (C4) into (C5) and (C6) yields the reflection 
wave spectrum, 

~ 1 { 2i + v1 2i - v1 } 
R (w) = 2' k _ (2i + v1) + k - (2i - v1) . (C7) 

The reflected wave at z = ° is found from R (w) by con
tour integration 

R (t) = _1_ r R (w)e - iwl dw, 
217' Jr (C8) 

where the contour ris chosen so that it runs along the real w
axis but departs from it near the imaginary w-axis to pass 
above the upper half-plane singularity of R (w). Performing 
the indicated contour integration we find the reflected signal 
given in (4.2). 
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Expansions are obtained for the radial distribution function and free energy for a two-dimensional 
hard-core fluid in the semiclassical limit, using the "modified" Wigner-Kirkwood expansion 
method. These results are used to obtain expressions for the density-independent part of the radial 
distribution function and the first-order density correction to it. Quantum corrections to the 
second and third virial coefficients are discussed in detail. Explicit results are given for the 
Sutherland, Yukawa-tail, Wood-Saxan, square-well, and Lennard-Jones (12-6) pair potential 
models. 

PACS numbers: 47.10. + g, 05.20. - Y 

I. INTRODUCTION 

This paper is concerned with the evaluation of thermo
dynamic properties and low-order correlation functions of 
two-dimensional fluids in the semiclassical limit, where 
quantum effects are small and can be treated as a correction 
to the classical system. Although an ideally flat system sel
dom occurs in nature, a strictly two-dimensional picture has 
been used in predicting the properties of an adsorbed film. 1 

For classical fluids, considerable progress has been made in 
recent years. 2-4 However, our understanding of the two-di
mensional quantum fluids is less satisfactory.s Although the 
influence of dimensionality on the quantum effect is of much 
interest,6 it has not yet been investigated systematically. 

The usual way of studying the contribution of the quan
tum corrections is to expand the physical property of interest 
in ascending powers of Planck's constant h. The first term of 
this series is the classical value, the other terms collectively 
give the contributions arising due to quantum effects. In the 
Wigner-Kirkwood (WK) method/ the expansion is made in 
powers of the kinetic energy operator fz2V2

, which leads to a 
series in powers of fz2. Since V2 operates on the potential 
energy term, the WK method fails in cases where the inter
molecular potential is a nonanalytic function of distance. 
The other shortcoming of the WK method is the slow con
vergence of the expansion series. This limits the applicability 
of the method to systems at high temperatures and low 
densities. 

The problems of nonanalytic potentials are dealt with 
by using the Hemmer-Jancovici 8 (HJ) method in which ex
pansion is done in terms of the modified U rsell functions 
U,!" leading to a series in powers offz. The value of U,!, can, 
in principle, be found from the solution of the quantum me
chanicall-body problem. Unfortunately, the actual calcula
tion is too involved to be feasible. It is only for hard spheres-
9-11 and hard disks6 -systems that U'{' and U~ have been eval
uated. For potentials, which have an attractive tail, the solu
tion of even the two-body problem becomes difficult. How
ever, for such potentials, a different type of expansion 
commonly known as the perturbation method 12 or modified 
WK method l3 can be adopted. In the modified WK expan
sion, hard-sphere basis fucntions are used instead of free-

particle basis functions. The use of the hard-sphere basis 
functions remove, at least partially, the shortcoming of the 
WK method. 

The problems concerning the evaluation of the equilib
rium properties (virial coefficients, pair correlation func
tions, and thermodynamic properties) for nonanalytic po
tentials have been discussed using the modified WK 
method. 14-17 But all these attempts are confined to three
dimensional fluids. To the best of our knowledge, no work is 
available for a two-dimensional fluid, the constituent parti
cles of which interact via a potential which has a hard core 
plus an attractive tail. 

. ~n ~ec. II we di~cuss a general theory for calculatin~ the 
eqUlhbnum properties of a two-dimensional fluid whose 
particles interact via a hard core plus weak attractive tail 
potential. Section III is devoted to obtaining the density
independent radial distribution function and the first-order 
density correction to it. In Sec. IV we calculate the second 
and third virial coefficients for a two-dimensional hard-core 
fluid in the semiclassical limit. We discuss the second and 
third vi rial coefficients for some specific potential models in 
Sec. V. The results are summarized in Sec. VI. 

II. GENERAL THEORY 

In quantum statistical mechanics the grand canonical 
partition function of a two-dimensional fluid is defined as 

(2.la) 

where z is the fugacity and W:r,. is known as the Slater sum. 
For a two-dimensional fluid the Slater sum is written as 

w:r,.(1, 2, ... , N) 

= NU 2N I !/I~(l, 2, ... , N)exp( - f3fiN )!/Ix(1, 2, ... , N), 

(2.1b) 

where A = (21Tfz2f3 Im)I/2 is the thermal wavelength, 
f3 = (kT)-I, and the !/I's are a complete set of an orthogonal 
N-partic1e wave funct~n. The summation in Eq. (2.1b) ex
tends over all states. H N is the Hamiltonian of the system 
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'" _ ft2 ,Y 

Hs = -- I V'; + U(I, 2, ... , N), 
2m , 1 

(2.2a) 

with 

U(I, 2, ... , N) = I u(i,})' (2.2b) 

The quantity Wy(l, ... , N)II:y~ Idr, is the measure of the 
probability that the configuration of the system is found to 
be within the interval 

I(r l, ... , rs ), (rl +dr l .. ·, rs +drN)I· 

Assuming that the quantum effects are largely deter
mined by the repulsion due to the hard core, we choose the 
basis function, which is the eigenfunction of the hard-disk 
Hamiltonian. Let l/;~ be the eigenfunction of the hard-disk 
Hamiltonian fj ~Z. given by 

'" ft2 .\' 
H~Z = - - I V'; + Uhd(l, 2, ... , N), (2.3a) 

2m '--I 

with 

(2.3b) 

Then 

fjo .1.0 = EO ,/,0 
:\ fl/ x x 'f'x' (2.4) 

Treating the attractive interaction as a perturbation, Eq. 
(2.2a) can be written as 

fj,\ = fj~ + Up(l, 2, ... , N), (2.5a) 

where 

(2.5b) 
i <J 

up(i,}) is the intermolecular perturbation potential, which is 
zero for rij < d, where d is the hard-disk diameter. 

In terms of the hard-disk wave function ¢~, The Slater 
sum can be expressed as 

W'(.(I, 2, ... ,N) 

= NlA 2sI l/;~·(1, 2, ... , N) 
x 

xexp[ -(3(fj~ + Up)]¢~(l, 2, ... , N). 

We follow the method of Friedman IH and write 

exp[ - t(3(fj~. + Up)] 

= exp[ - t(3Up ]T(t )exp[ - t(3fj~.], 

where 

with 

(2.6) 

(2.7) 

(2.8) 

Tdt) = r dt l exp(t l(3Up) [exp( - tl(3Up),(3fj~] , (2.9a) Jo 
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The term Tn + I is given by the recursion relation 

Tn f 1 (t) = L dt l exp(f l(3Up) [exp( - fl(3Up iTn (f l ), (3fj~ ] 

+ fl (3 {V'; Up Tn (td + 2V', Up V',Tn (fd} 

- ti (32(V',Up)2Tn(td] 

+ [ - 2V',Tn(td + 2tl(V',Up)Tn(t l)]·V',). 

From Eqs. (2.6)-(2.10), we get 

W:\:(I, 2, ... , N) = W~(I, 2, ... , N) + W~(l, 2, ... , N) 

(2.10) 

+ W;"(I, 2, ... , N) + "', (2.11) 

where 

W o (I 2 N) = N' 1 2N" '/'Ox'e - f3 Upe - f3fj:~./,ox N , , ... , VI, L 'I' 'I' 
x 

_. f3U W hd( I 2 J\T) = e f' N , , .•• , lY , 

+ + v,Up'V'] W~d(l, 2, ... , N), 

W;"(l, 2, ... , N) 

= N lA 2N I ¢~. e - f3
UpT

2
( I)e - f3lj'!,if!~, 

x 

and 

W~(I, 2, ... , N) 

is the Slater sum of the hard-disk fluid. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

To evaluate Eq. (2.14), we use the superposition ap
proximation and write the Slater sum as 

Wj,,(I, 2, ... , N) = II Wi(i,}), (2.16a) 

where Wi (i,}) is the Slater sum ofa pair of particles i and}. It 
can be expressed as 

Wi(i,}) = W~(i,}) + Wi (i,}) + W~(i,}) + .... (2.16b) 

Equation (2.16a) is exact in the classical limit. For a quantum 
mechanical system, it is accurate at p-+D. In the semiclassi
cal limit we may expect it to be a reasonable approximation, 
except perhaps, for configurations in which three or more 
particles are very close and there is considerable interference 
of the wave functions. Under this approximation 
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W~(I, 2, ... , N) = W~(1, 2, ... , N) 

xI [W~(i,j)/W~d(i,j)], (2.17) 
i<j 

which leads to 

W~(I, 2, ... , N)=(A 2p)e-PupW~(I, 2, ... , N)I[W~d(i,j)]-l 
i<j 

where 

W hd(' .) = 2,14" ./,0·(· .) -(3ii~(i.Jl./,o(· .) 2 l,j !/L L 'f/x l,j e 'f/x I,j 
x 

= U 2f dk e - A 'k'/2"l; ItP~l(rij' 8 W , (2.19) 

h ~d(i,j) = 2!A. 4~ tP~·(i,j{ - :; V~ )e - pii~(i.JltP~ (i,j) 

= ~; fdkk2e-A'k'121Tl; ItP~l(rij,8W, (2.20a) 

and 

P hd(") U 2 fdk- - A 'k '12" " ./,0.( ll)L 2 .1.0 ( ll) 2 I,j = 6~ e "7 'f/kl rij' U --:jf" 'f/kl rij' U • 

(2.20b) 

Here r ij = I r; - rj I and tP~1 i~ the eigenfunction of the rela
tive hard-disk Hamiltonian H~el' L is the total angular mo
mentum operator. It can be shown that 

h ~d(i,j) = (1/31T)W~d(i,j) + 0(,1), (2.2Ia) 

P~d(i,j) = (1/61T)W~d(i,j)(rij/A)2 + 0(,1 -I). (2.21b) 

Equations (2.21a, b) are derived in the Appendix. Substitut
ing Eq. (2.21) in Eq. (2.18), we obtain 

W~(I, 2, ... , N) = A 2p e -PUp W~d(I, 2, ... , N) 
61T 

" [J
2
Up(i,j) I JUp(i,j) 

X L + - ----''---
;<j J~ rij Jrij 

_ l..-p(JUp(i,j))2] + 0(,1 3). (2.22) 
4 Jr;j 

In the semiclassical limit, W~d can be written as6 

W~(I, 2, ... , N) 

=exp [ -P~Uhd(i,j)][I + I U~(i,j)+ I U~(i,j,k) 

+ I U~(i,j)U~(k, I) + .. J 
(2.23) 

where U;;'d(I, 2, ... , I) is the I-particle "modified" Ursell 
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function for a hard-disk system. Explicit expressions for 
U hd (i,j) and U~ (i,j, k) have recently been obtained by 
Sinha and Singh.6 

Substituting Eq. (2.11) in the expression of the grand 
partition function [Eq. (2.2Ia)] and integrating by parts, we 
obtain 

Eq= I zNffexp[ -PI U(i,j)] [1 + I U';'(i,j) 
N>O N! 

+ I U,{,(i,j, k) + I U';'(i,j)U';'(k, l) + .. lvl dr;, 

(2.24) 

where 

U';'(i,j) = U~(i,j) + [1 + U~(i,j)]U;'(i,j), (2.25) 

U,{,(i,j, k) = Uhd(i,j, k) + [1 + Uhd(i,j, k )]U;'(i,j, k). 
(2.26) 

U;'(i,j) and U;'(i,j, k) are, respectively, two- and three-par
ticle "modified" Ursell functions due to perturbation poten
tial and are given by 

m .. A 2p [J2Up(i,j) 1 JUp(i,j) 
Up (I,j) = -- + - ----''--...:... 

61T J~ rij Jrij 

_ 2.p(JUp(i,j) )2] + 0(,1 3), (2.27) 
4 Jrij 

and 

U;'(i,j,k)=- A
2
p

2 
[V;up(i,j),V;up(i,k) 

241T 

+ Vjup(i,j).VjupU, k) + Vkup(i, k),Vkup(i, k)] 

+0(,13). 

(2.28) 

Using Eq. (2.24), an expression for free energy can be 
obtained as 

PA q = PA C _ ~pfgC(I, 2)U';' (1, 2) dr2 
N N 2 

-+ p2 f g"(I, 2, 3)U';' (1,2,3) dr2 dr3 

- +p3f[gC(I, 2, 3,4) _gC(l, 2)gC(3, 4)] 

X U';'(l, 2)U';' (3, 4) dr2 dr3 dr4 

+ L Kc{f~ [p2g"(1, 2)] U';'(l, 2)dr2}2 
8P Jp 

+ 0 (A 3), (2.29) 

where K C is the isothermal compressibility for a classical 
fluid and is given by the relation 19 

pKCIP= 1 +pf[g"-I] dr. (2.30) 

A C and gC( I, 2, ... , I) are, respectively, the free energy and 1-
particle distribution function for a classical two-dimensional 
fluid. p is the number density. 

The first-order quantum correction to the radial distri-
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bution function (RDF) comes from W~ only. W~ and W~ 
contribute to the order of A 2. Thus, the expression for the 
RDF correct to the first-order correction is given ash 

gq(l, 2) = [I + U;,"d(l, 2)]gc(l,2) 

+ p I [U ~~ ( I, 2, 3) + 2 U ~~ (I, 3) ]gC( I, 2, 3 )dr:! 

+ +p2[1 + U;,"d(l, 2)]I U~(3, 4)[gC(I, 2, 3,4) 

- gC(I,2)gC(3, 4)]dr" dr4 

__ I KC[I + U;,"d(I,2 )]{~[P2gC(I, 2)] 
2e ap 

xI U~(3, 4) ~ [p2gC(3,4)]dr4 } 

+ 0(,.1, 2). (2.31) 

III. RADIAL DISTRIBUTION FUNCTION 

A. Density independent radial distribution function 

The density-independent RDF for a two-dimensional 
system may be written as 

where the summation extends over all the eigenfunctions I/Jx 
of the relative Hamiltonian fire! of two particles, each of 
massm 

kel = - (li2/m)V2 + u(r). 

For classical fluids, Eq. (3.1) reduces to 

g~(r)=exp[ -eu(r)]. (3.2) 

If we separate the intermolecular potential u(r) as 

u(r) = uhd(r) + up(r), (3.3) 

then, as discussed in Sec. II, we can solve Eq. (3.1) and write 
the solution as 

gZ(r) =gg(r) +g6(r) +g~(r) + "', 
where 

g6(r) = 

g~ (r) = (A 2e)e - pup!r) {[ a2;~(r) _ ! e (a;; y]h ~d(r) 
+ (~)2[ _ a2

up(r) + ~ aup(r) 
r ar r ar 

+ ! e(au;;r)rk~d(r)}, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

and g~d(r) is the density-independent part of the RDF for a 
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quantum mechanical hard-disk fluid. In the semiclassical 
limit, it is given byo 

hd {I + U~~(r), 
go (r) = 

0, 

where 

for r> d 

for r <d, 

U~~(r) = Xo(r) + XI(r) + X2(r) + ... , for r>d 

with 

Xo(r) = - exp( - t 2), 

X I(r) = (1/2V2)(A /d)t 2erfc(t), 

(3.8) 

(3.9) 

(3.lOa) 

(3. lOb) 

X2(r) = (1/817)(,.1, /d )2t 2 [t 2e - ; - vis (2 + t 2)erfc(t)]. 
(3.lOc) 

Heret = [(217)112/(,.1, /d )][(r/d) -- I]anderfc(t )isthecompli
mentary error function. Expressions for h ~d(r) and P ~d(r) are 
derived in the Appendix. These are now inserted in Eqs. 
(3.5)-(3.7) and the resulting expressions are added to give 
g1j(r) 

g6(r*) 

=e PUri [l+ao(r*)+adr*)+O(A/d)l], r*>I, 
(3.11) 

where 

ao(r*) = Xo(r*), 

I (A )2[ a2
up (r*) 

al(r*) = XI(r*) - 1217 d e ar*2 

with 

+!!.... aup(r*) _ ~e2(aUp(r*))2] 
r* ar* 2 ar* 

__ I (~)2e(aup(r*))8(r* _ 1), 
417 d ar* 

~ [g~d(r*)] 8 (r* - I) + a (A /d). 
ar* 

Here r* = rid and 8 is the Dirac 8 function. 

B. First-order density correction to the RDF 

(3.12a) 

(3.12b) 

The I-particle distribution function can be expanded in 
powers of density p as I <i 

g(I,2, ... ,1) 

=exp[-e I U(i,j)][! an(I,2, ... ,/)pn], 
1<'<1<1 n = 0 

(3.13) 

where the coefficient an (I, 2, ... , I) is the cluster integral in
volving I-base points and n-field points. Equation (3.13) is 
valid for both classical and quantum systems. Substituting 
Eq. (3.13) in Eq. (2.31) we get the following expansion coeffi
cients for ~(1,2): 

ag(l, 2) = [I + U;,"d(l, 2)]a~(l, 2) + 0(,.1, 2), (3.14) 

a'f(1, 2) = [I + U;,"d(l, 2)]aW, 2) 
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- 2[1 + U;:'d (1,2)] fexp [ - pu(l, 3)] U;:'d(l, 3) dr3 

+ fexp{ -P [u(I, 3) + u(2, 3)]}[U~(I, 2, 3) 

(3.15) 

and so on, where 

a~(I, 2) = 1, (3.16a) 

a~ (1,2) = f IJ3/23 dr3, (3.16b) 

and 

lij = exp[ - pu(i,j)] - 1. (3.17) 

Equation (3.15) can be rewritten as 

ai(l, 2) = [1 + U~(I, 2)]a~(1, 2) + 2'(1, 2), (3.18) 

where 

2'(1,2) 

= - 2[1 + U~(I, 2)]fexp [ - pUp(l, 3)] U;:'d(I, 3) dr3 

+ fexp [ -p{up(I, 3) + up (2, 3)}][U;:'d(I, 2,3) 

+ 2U~(I, 3)] dr3. (3.19) 

Correct to the first-order quantum correction, 2'(1,2) 
can be evaluated by splitting the range of r 12 into a number of 
intervals and considering 2' (1,2) in each interval. 

with 

(i) At r 12 = d, U;:'d(l, 2, 3) can be written as 

U~(I, 2, 3) = W~(I, 2, 3) - 1 - U~(I, 2) 

- U~(I, 3) - U;:'d(2, 3), (3.20a) 

m 41T 00 ( 1T?) (1T?) W hd (r, 8, ¢ ) = - L exp - -2 I nrr1e -2 
8 n=1 A A 

(3.20b) 

rJ3 = d + r sin ¢, 

r23 = d + r sin (8 - ¢ ), (3.20c) 

'12 = d (2 + 4 cos 8 )1/2. 

W;:'d (r, 8, ¢ ) is the quantum mechanical spatial distribution 
function for the three hard disks lying in the plane. In Eq. 
(3 .20b), I is the Bessel function of the imaginary argument. 
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Equation (3.20b) has been obtained by neglecting the curva
ture effect and is therefore correct to the order of A 2. 

Atr12 = d, U;:'d(I,2) = - I,and W;:'d(l, 2, 3)-0. Thus 

This leads to 

2'(1,2) = 0 

and 

a'l(l, 2) = 0, at r12 = d. (3.22) 

(ii) d';;;JI2<.d + A. In this region, the first-order contri
bution of U;:'d (I, 2, 3) comes only from the configuration in 
which either r13 > d + A or r23 > d + A. Using the superposi
tion approximation 17 we find 

2'(1,2) = 2[1 + U~(I, 2)]fexp [ -pup(l, 3)] 

Xlp(2, 3)U~(I, 3) dr3 

+ [1 + U;:'d(I, 2)]fexp{ -p [up(l, 3) 

+ up (2, 3)]} 

X U;:'d(l, 3)U;:'d(2, 3)dr3' (3.23) 

. •. 6 
Since U;:'d (r) correct to first-order correctlOn 1S g1ven as 

U~(r)- -exp[ - [21T/(A/d)2]{(r/d)-IFJ, (3.24) 

we find that 

and 

2'(1,2) = - [2/(r12/d)](A/d)[1 + U;:'d(l, 2)] 

X e-PUp(d1y(I, 2) + OrA 2) (3.25) 

ai(l, 2) = [I + U;:'d(l, 2)] 

X {aW, 2) - [Y/2/(rI2/d )](A /d)e -pup(d1y(l, 2)}, 

d<r J2 <d+A, (3.26) 

where 

y(I,2)= r,,+d J;,(2,3)~dr23' 
J1r" - d I SIO a 23 

(3.27) 

Here ai3 is the angle between the two vectors r12 and r13 . 
Thus 

cos(ai3) = (t12 + d 2 - ~3 )/2r 12d. (3.28) 

(iii) r 12 > d + A. For this configuration, U;:'d (r 12 ) -0 and 
the first-order contribution of U;:'d(l, 2, 3) comes from the 
loose cluster in which r12 and r13 (or '23) are greater than 
d + A and r23 (orr 13 )is less thand +A. Using the superposi
tion approximation, we obtain 

2'(1,2)= - [Y/2/(rI2/d)](A/d)e-PUp(dly(I,2) (3.29) 

and 
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aj (1,2) = a~ (1,2) - [V2/(r12/d)] (A /d)e - liup(d1y(l, 2). 
(3.30) 

Thus the first-order density correction to the RDF, valid to 
the first-order quantum correction, is given by 

a'{(1, 2) = [I + U;;'d (I, 2)] 

X {a~(I, 2) - (r~:d) (~) e-liup(dly(l, 2)}. 

(3.31) 

Using the relation 

Ii) =/hd(i,j) + [I + Ihd(i,j)]1;,(i,j), (3.32) 

Eq. (3.16b) can be written as 

a~(I, 2) = [a~(I, 2)]hd - 41T 1'°1;,(1, 3)rl3drl3 +A (I, 2), 

(3.33) 

where 

X [1;,( I, 3)f" (2, 3) + 21;, (I, 3)], (3.34) 

with 

cos a 23 = (02 + 03 - ~3 )l2r12r 13 , (3.35) 

and [a~ (I, 2) ]hd is the value of a~ (I, 2) for the hard-disk sys
tem and is given by20 

[a~ (1, 2) ]hd 

1Td 2
[ 1- ~ sin-,(r,;d) _ (,,;d) 

0, for r 12 > 2d. 
(3.36) 

Equation (3.31), which gives the first quantum correc
tion to the first-order density-dependent part of the RDF, is 
a general expression for aj (1,2) of a two-dimensional hard
core fluid. The values of a~ (1,2) and y(l, 2) depend upon the 
nature of the perturbation potential. Here we evaluate 
aj(l, 2) for a two-dimensional fluid, whose molecules inter
act via a square-well (SW) potential 

u(r) = -' e, d < r < 1]d 
{

<Xl r<d 

0, r> 1]d. 

For this potential model, 

{
efi' - 1_.:1, 

Ip(l, 2) = 0, 

Equations (3.33) and (3.34) are solved to give 

- 2 sin - 1 1] + 4 sm - 1 _ (
? _ d 2( 2 - I)) . (r) 

2rd 2d 
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(3.37) 

(3.38) 

2 . -I( r ) - sm 2d 

+ [ - (1]2 - 1)2 + 2(1]2 + l{ ~ Y - (~ )T/2 

- ~ [4 - (~ y]'/2]}, 

for 1] < 2. 

From Eqs. (3.30) and (3.27) we get 

aj(r) = [I + U;;'d(r)] [a~(r) - 2V2d zefi'.:1 

(3.39) 

X {cos-
1(? - d;;;2 - I)) - cos-'(;d )}(~)] 

+ 0 ((A /d )2), 

for 1] < 2. 

IV. VI RIAL COEFFICIENTS OF THE EQUATION OF 
STATE OF A DILUTE HARD-CORE FLUID 

Using the relation 19 

p=pZ (JA) , 
N Jp Ii 

(3.40) 

(4.1) 

and Eqs. (2.29) and (3.13), we obtain an expression for the 
equation of state in the form 

(JPq =p + f B~ pn, (4.2) 
n=2 

where B ~ is the nth virial coefficient for a semiclassical fluid. 
It can be written as 

B~ = B~ + B~c, (4.3) 

where B ~ and B ~c are, respectively, the classical and quan
tum correction values of the nth vi rial coefficient. Thus, the 
quantum corrections to the second and third virial coeffi
cients can be written as 

B 'f/ = - ~ Jexp [ - (Ju(l, 2)] U;"(I, 2)dr2' (4.4) 

Bqc 
3 

= 4 [B iCP - J exp[ - {3u(l, 2)]a~ (1, 2)U;"( I, 2)dr2 

- ~J exp [ - (JI U(i,j)] U;"(I, 2,3) drz dr3• (4.5) 
3 I<} 
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The classical values for the second and third virial coeffi
cients are given by 

(4.6) 

and 

(4.7) 

A. Calculation of the second vi rial coefficient 

The second virial coefficient for a two-dimensional flu
id in the semiclassical limit is obtained from Eq. (4.3), i.e., 

Bi =B~ +Bi". 

Substituting Eq. (3.32) in Eq. (4.6), we find 

B ~ = !1Td 2 + B ~c, 

where 

(4.8) 

(4.9a) 

B~C = -1T 1'0 1;, (r)r dr. (4.9b) 

Substituting Eq. (2.25) in Eq. (4.4), the quantum correction 
to the second virial coefficient is given by 

Bic= -1TL''' exp[ -pup(r)] U;:'d(r)r dr 

-1Tl'" exp[ -pup(r)]U;(r)[l + U~(r)]rdr.(4.1O) 

Since U ~ (r) - 0 for r> d + A, the main contribution of 
the first integral of Eq. (4.10) comes from the region 
d < r <d + A. We make use of the Taylor expansion ofup(r) 
about d, 

up(r) = ! und)(r-d)klk!, (4.11) 
k~O 

to evaluate the first integral ofEq. (4.10). The second integral 
of Eq. (4.10) can be evaluated using Eq. (2.27). Thus, the 
expression for a two-dimensional fluid in the semiclassical 
limit is given by 

Bi =B~ +-1Td 2 _2 __ +_2 _ + ... 1 [ B I (A) B II (,1)2 ] 
2 \12 d 31T d ' 

where the coefficients B ~ and B ~I are given by 

B I _ -/3up(dl 
2 - e , 

B ~I = e - /3
U p l

d l[l - yJdu;(d)] 

+ 2. roc drre-/3Up(rl[pu;(rjp. 
4 Jd 

B. Calculation of the third virial coefficient 

(4.12) 

(4.13) 

(4.14) 

The third virial coefficient for a semiclassical fluid is 
given by 

After some algebra, we obtain, 
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(4.15) 

With the help of Eqs. (3.32) and (4.7), B~ for a two-dimen
sional hard-core fluid is given by 

B~ = [Bnhd + 4[B~c]2 

- Jexp [ -puhd (l, 2)M,(1, 2)[a~(I, 2)]hddr2 

- 2. Jexp[ - pi Uhd (i,j)] [31;,(1,3)1;,(2,3) 
3 l<} 

+ 1;,(1,2)1;,(1, 3v;,(2, 3)] dr2 dr3, 

where21 

[B~ ]hd = !rd 4
[ 1- \l311Tj. 

(4.16) 

(4.17) 

Substituting Eq. (3.33) in Eq. (4.5), we obtain 

B~c=4[Bic]2+8BicB~c+ [B~C]A + [B~clv, (4.18) 

where 

[B jC]A = - J exp[ - pUp (l, 2) ][a~ (1,2) hd U;:'d (1, 2)dr2 

- Jexp [ -pup (l, 2)]A (1, 2)U~(I, 2)dr2 

- 2. Jexp[ -PIUp (iJ)]U;:'d(l, 2, 3) dr2dr3, 
3 l<) 

(4.19) 

and 

[BjC]D = - Jexp [ -pup (l, 2)]{[a~(I, 2)]hd 

+A (1, 2)}U;(I, 2) dr2 - + J 
xexp [ - PI up (i,j)] U;(l, 2, 3) dr2 dr3. (4.20) 

'<} 

In order to evaluate the first integral ofEq. (4.19), we 
use Eq. (4.11) and the Taylor expansion of [a~ (r) ]hd about d, 

[a~(r)]hd = !1Td 2
[ 1- \l311Tj - \l3d(r - d). (4.21) 

The second integral ofEq. (4.19) can be evaluated after sub
stituting the value of A (1, 2). The first-order correction is 
obtained from the loose cluster in which r l3 and r23 are great
er than d + A and r12 < d + A, while the second-order cor
rection comes from the configuration in which r 12 and r 13 (or 
r 23 ) lie between d and d + A and r 23 (or r 13 ) is greater than 
d + A. The leading contribution of third integral ofEq. 
(4.19), which is of the order of A 2, comes from the cluster of 
three hard disks in a plane, in which two distances lie be
tween d and d + A and the third distance is greater than 
d + A. This can be chosen in three different ways. The inte
gral can be evaluated following the method discussed 
elsewhere. 6 
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+ 1 Ce-fJUp(dIC+e-2fJU,J,dID)]+ ... }, 
(j- yl3/1T) 

where 

and 

8 { 1 (2d [ 1 (1T 0) . 1 0] dr12 } 
D = -; - 0.05187 + d L .1;,(1,2) 12 7i - -; sm 0 - 21T cos (1 _ (r

12
/2d f)1/2 ' 

with 

Substituting Eqs. (2.27) and (2.28) in Eq. (4.20), we get 

[BjC1 D = J.- rd 4 [(A Id )2(E + F) + ... ], 
4 

where 

and 

Finally, 

Bj = B~ + lrd4(~ - yl311T) [yl2B ~(A Id) + 2.15203 B ~I(A Id)2 + .. ·1, 

where 

B I = e - fJup(d I{ 1 + 2 _1_ [4B pc + A (d) l}, 
3 1T(~ _ yl311T) d 2 2 

BII = 1 {e-fJUp(dl[lJ J.- _ 2y13 ) _ J.- f3dU '(d)] 
3 2.15203 1T\ 3 1T(1-yl311T) 1T p 

- 2fJu Idl[2 2y13 0.414961/[ 4 yl3 ] +e P +--- ----r 1T 3 1T 

with 

8 _2fJUldl(2d [ 1 (1T 0). 0 1 oJ dr12 
:.t' = -1T-d e P Jd .1;,(1,2) -1-2 e - -; sm - -21T- cos -[-I-_-(-r-

12
/"""""2o...d-):::--2]--:-1=/2 
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(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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(4.30) 

(4.31) 

(4.32) 
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E and F are defined by Eqs. (4.27) and (4.28), respectively. 
The classical third virial coefficient is obtained from 

Eq. (4.16), 

Be = ~ rd 4 [(~ _ ~) + 4(2B ~C)2 
3 4 3 rr rrd 2 

+ r: 4 (G + H)], (4.33) 

where 

G = - 2rr L'" 1;, (r) [a~ (r) ]hd r dr, (4.34) 

H= - ffex p[ -,8~Uhd(i,j)][31;,(1,3)1;,(2,3) 

+ 1;,(1,2)1;,(1, 3)fp(2, 3)] dr2 dr3 • (4.35) 

From the study of the vi rial coefficients, we find that 
except for B ~, which depends only on the potential at the 
core, the quantum corrections to the virial coefficients de
pend on the potential at the core as well as the shape of the 
potential well, provided only that it is bounded and continu
ous for r> d. The quantum coefficients B ~ and B ~ reduce to 
unity (i.e., the values of hard disks), when up(r)~O. 

We now discuss the virial coefficients for some specific 
potential models. 

V. VI RIAL COEFFICIENTS FOR SOME SPECIFIC 
POTENTIAL MODELS 

A. Sutherland model 

In the case of the Sutherland model, the perturbation 
potential is 

up(r) = -€(dlr)6, r>d. (5.1) 

Then B ~ and B ~I are given by 

B ~ = eP<, (5.2) 

B ~I = eP<[ 1 - 3,8€] + f ~ (_3_)f/3€)" + 2 (5.3) 
n ~O n! 2n + 4 

and the classical second virial coefficient is 

B ~ = ~ rrd 2{ 1 + 2(Z,8€)(eZ - 1) - 2 f ~ (nZ,8€)"enz 
2 n ~O n! 

B~ = - ~ rrd 2 f ~ (_2_)if3€)". (5.4) 
2 n ~O n! 6n - 2 

The coefficients for the third virial coefficient are found 
to be 

B ~ = eP<[ 1 - 2 { f ~ (_4_) f/3€)" 
. (~ - \l'3/rr) n ~ I n! 6n - 2 

- rr~2A(d)}], (5.5) 

B~I= -eP<[0.3185+0.8875if3€)] 

+ 0.5044 B ~I [ f ~ (_2 -)if3€)"] 
n ~ I n! 6n - 2 

+ 0.5942 .Y. (5.6) 

The classical third virial coefficient for Sutherland 
model is obtained from Eq. (4.33). 

B. Yukawa-tail model 

For the Yukawa-tail model, 

u (r) = _ € exp[ - Z(rld - 1)] r>d, (5.7) 
p (rid)' 

where € and Z are constants. Using Eq. (5.7), we obtain 

B ~ = eP<, (5.8) 

B ~I = eP<[ 1 - + (1 + Z )f/3€)] 

+ ~ f ~ f/3€)n+2[Z + (n + 2) Z2 
4 n ~ 0 n! (n + 1) 

X {I + (_ It (n + 2)"zn e1n+21Z 
n! 

n-I (_I)k(n+2)kZk+1 }] 
XEi ( - (n + 2)Z) + L . 

k~O n(n - l)(n - 2) ... (n - k) 
(5.9) 

The classical second virial coefficient for a two-dimensional 
fluid with the Yukawa-tail potential is given by 

[ 
E (nZ) e - nZ n - 3 ( _ l)k (nZ )k ] } 

X (_I)n I + L ' 
(n-2)! (nZ)"-2 k~o(n-2)(n-3) ... (n-2-k) 

(5.10) 

where 

(5.11 ) 

is the exponential integral. 
For this potential model, the coefficients for the third virial coefficient are 

B ~ = eP<{ I + 2 [4((Z{J€)(eZ - 1) - f ~ (nZ{J€)n 
(~ - \l'3/rr) n ~ 2 n! 

[ 
E(-nZ) -nZ n-3 (l)k( Z)k ]) 1 ]} 

X enZ (- 1)" - 1 i + e L - n + - A (d) , 
(n - 2)! (nZ)n-2 k=O (n - 2)(n - 3) •.. (n - 2 - k) 1/"d 2 (5.12) 
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The classical third virial coefficient is obtained from Eq. 
(4.33) using the relation 

C. Wood-Saxan potential 

In the case of the W ood-Saxan model, 

V. 
u (r) = 0 , r> d, 

p 1 + exp[Z(rld - 1)] 

(S.14) 

(S.IS) 

where Vo and Z are constants, we obtain expressions for B ~ 
and B ~I as 

B~ = e- f3Vo/2, (S.16) 

B ~I = e -f3V
O/

2
[ 1 + + (ZPVo)] 

+~ ! ~(_PVot+2[~ (n + 4) 
4 n=O n! Z 2n+3(n + 2)(n + 3) 

1 00 1 { 2 
+Z2k~ln+k+2 (n+2)(n+k+l) 

_ I}] (S.17) 
(n + 3)(n + k + 2) . 

The classical second virial coefficient for a two-dimensional 
fluid with the Wood-Saxan potential is given by 

B C = ~ 1Td 2 {I _ 2 ! ( - tr (,B v. )n! 1 
2 2 n=1 n! °k=,2n+f<-'(n+k_l) 

X [~ + ~21~1 21-I(n+~+/-2)]}' 
(S.18) 

For this model, the coefficients for the third virial coef
ficient are given by 

B~ =e- f3V,,I2{1_ 2 [4 ! ~(-PVot 
(~ - v'311T) n = I n! 

X~ -+-00 1 (1 1 
k.rf'1 2n + k

-
l (n + k - 1) Z Z2 

X ~ 1 ) __ 1 A (d)]} 
1.rf'1 21- I(n + k + /- 2) 1Td 2 

' 

(S.19) 

B 31 = 1 _ 4 (n2 1) 
(1- v'311T) " -
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B ~I = - e -f3V,,I2[0.318S - 0.03700(,BVo)] 

+ 1.318S e- f3V" + 0.S044B~I(2BiCI1Tdl) 
+ 0.S942 2'. 

(S.13) 

(S.20) 

The classical third virial coefficient is obtained from Eq. 
(4.33) using the value of Bic given by Eq. (S.14). 

D. Square-well model 

In the case of the square-well (SW) model, the perturba
tion potential, given by 

(S.21) 

has a singularity at r = 1]d. Since this method involves the 
derivatives of up, we express the perturbation potential in an 
analytic form 15 

-E 
up(r) = , r>d, (S 22) 

exp[(rld -1])la] - 1 . 

where a-O. Further the SW model has a potential cutoff 
r = 1]d. So in place ofEqs. (4.13)-(4.14) and (4.30)-(4.31), we 
use Eqs. (4.10) and (4.18) to obtain the coefficients of virial 
coefficients for the SW fluid. The integrals involving the per
turbation potential up can be evaluated using the upper limit 
7 = 1]d, while the integrals involving the derivatives of up 
can be evaluated following the method of Sinha and Singh. IS 

Thus, for a two-dimensional SW fluid, the coefficients for 
the second virial coefficient are given by 

B ~ = 1 +..1 erf D (S.23) 

B~l = 1 +..1 [1 - ae-6'] + [(ln2 - !)/12]ef3<(j3Ef, 
(S.24) 

where 

..1=ef3<-I, 

D = [fiT (1] - 1)/(llld). 

The classical second virial coefficient is 

B~ = !1Td 2 [1-..1 (1]2 -1)]. (S.2S) 

The values of B ~ and B ~I for 1] < 2 are given below: 
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+ 4 sin-IC ~ 7]2) + 27](4 _7]2)1/2 - 2Y 3] 

+ rr~ .1 3 [ - ; +27]2sin-I(~)-27]2sin-I(2~) +2sin-IC~7]2)+7](4-7]2)1/2_Y3], (5.26) 

B ~I = 1 + .1 {~[erf 8 + ~ (7]2 _ 1) + 3y3 _!l /4=rr] + ~(~ __ 3_)(1 _ e- li
') + _1_ e-o'} 

2.15205 M 3rr r r rr 3 rrM 3rr 

.1
2 

2 { 2 4 2 ( 3 0') 1 21/2 2y3 0.41496 +.!.p} 
+ 2.15205 M (erf8) +3;(7] -1) 1- 4 e - - r 7](4-7]) +~ - rr rr 

+ .1 3 1 {Y3 _ ~ (4 _ 2)1/2 +.!. p} 
2.15205 M r r 7] 7] rr 

(In2-!) 1 -BEIR )2{[1 2. -1(7]) 3 (4 2)1/2] + -- (; 11-'£ - - sm - - - 7] - 7] 
2.15205 9rrM rr 2 2rr 

where M = (1- y3/rr) and 

p = ~ ('1d [_1_ (~ _ '!!")sin e __ 1_ cos e ] ___ d_r..!..!12=---::-:-:-:;:-
d Jd 12 e rr 2rr [1 - (r 12/2d )2] 1/2 . 

(5.28) 

The classical third virial coefficient can be obtained from Eq. (4.16). For 7] < 2, 

(5.29) 

where 

(5.30) 

(5.31) 

and 

[B e] 4[1 1{24[(rr Y3) '_1(27]2+ 1) '_1(1)] 2[ '-I( 27]2+1 ) 3 3 = - - - 7] - - -- + sm 2 - 2 sm - + 27] 2 sm 
3 rr 6 2 27] 27] 27](2 + 27]2)1/2 
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-2sin- l
( 317 21/2)-2sin- I (17!2)+sin- I

( 1I217) 
2(2 + 217 ) 

E. Application to the Lennard-Jones model 

The method discussed in Secs. II and III can also be 
applied to a fluid, whose molecules interact via the Lennard
Jones (12-6) potential 

u(r) = 4e[(a/r) 12 - (a/r)o], (S.33) 

where e and a are constants with units of energy and length, 
respectively. We divide the pair potential according to the 
Weeks, Chandler, and Andersen (WCA) scheme22 

u(r) = ur(r) + up(r), 

where 

and 

{
u(r) + e, 

ur(r) = 0 , 

r<2l/oa 
r>21/6a , 

r> 21/oa. 

(S.34) 

(S.3Sa) 

(S.3Sb) 

We reduce the fluid with the realistic repulsive forces into 
the hard-disk fluid with a suitable diameter 'd.' The value of 
d can be found from some variational method. 13 Then we get 

(S.36) 

( _ 1)' [ 1 x--
2'+ I n + k + 2 

2 

n-i-k+3 

1 ] + . 
n+k+4 

(S.37) 

The classical second virial coefficient is obtained from Eq. 
(4.9) 

B ~ = ~ 1T~{ef3<[(!!...)2 _ 21/3] _ 21 /J ! ~ (j3e)n 
2 a n ~ I n. 

n (n) (- 1)' 2" - k } 

X k.?O k (3(n + k ) - 1) . 
(S.38) 

The coefficients for the third virial coefficient in this 
case are given by 
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(S.32) 

B~ =ef3< 1- - 2 l-ef3< 1---{ 
2 ( [ ( 21/3 ) 

M (d/af 

+ 21/J I ~!3e)" i (n) (- 1)k2" - k J 
n~1 n! k~O k (3(n+k)-1) 

- 1T~2 A (d))}, (S.39) 

B ~I = - 0.3l8Sef3< + l.318Se2f3< + 0.S044B ~1(2B~C/1Td 2) 

+ 0.S9422/. (S.40) 

Here]' is defined by Eq. (4.32) and B~c is obtained using 
relation (S.14). 

The classical third virial coefficient is obtained from 
Eq. (4.33) using the value of B~c obtained from Eqs. (S.14) 
and (S.38). 

VI. SUMMARY 

The purpose of this paper has been to develop a theory 
for calculating the equilibrium properties of a two-dimen
sional semiclassical fluid, whose molecules interact via a 
hard-core plus an attractive tail potential. We have given 
explicit expressions for the density-independent part of the 
RDF g6(r) and the first-order density correction to it. The 
first-order quantum correction to the first-order density-de
pendent part of the RDF is calculated. 

The quantum corrections to the second and third virial 
coefficients for some specific potential models (Sutherland, 
Yukawa-tail, Wood-Saxan, square-well, and the Lennard
Jones) have been evaluated. From the study, we find that the 
first-order quantum correction to the second virial coeffi
cient depends only upon the potential at the core; the higher 
quantum corrections to the second vi rial coefficient and the 
quantum corrections to the third virial coefficient depend 
both on the potential at the core and the shape of the attrac
tive well. 

APPENDIX 

In this Appendix we derive expansions of h ~d(r) and 
p ~d(r). With the help of Eqs. (2.19) and (2.20a), it can be 
shown that 

(AI) 
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Substituting Eq. (3.8), we immediately get 

h ~d(r) = (l/31T)[ 1 - (1 - S 2)e - s'] 

+ 0(.tl2), r>d. (A2) 

In order to derive P ~d(r), we use Schrodinger's equation 
for a two-dimensional system in the form 

- -+-- +-- rPkl = k2rPkl' [ {
J2 1 J} L2] 
J? r Jr f!2? 

This helps us develop the formula 

61T2[.tl2p~d(r) -?h ~d(r)] 

=u4?(rl[:~ +7 :Je-~H~d/r), 

(A3) 

(A4) 

whereii o I is the Hamiltonian for the relative motion of two re 

hard disks. 
However, in evaluating the matrix element in (A4), we 

neglect the curvature effect and replace the hard disks by a 
hard wall. 23 Thus, we take the wave function to be 

{

O' r<d 
rP = 1 -- sin k.(r-d), r>d. 

V1T 
Then, we obtain 

= - ~e(r-d) + 0(.tl- 2
), 

2.tl 4 

where e is the unit step function. 

(A5) 

(A6) 

Substituting this in (A4) and using (A2), we obtain the 
expression for P ~d(r) 
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p~d(r)=_1_(~)2 _ _ 1_(1_s2)e-s'(~)2 +0(1). (A7) 
61T.tl 31T .tl 
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Exact theory for the self-similarity and decay of homogeneous turbulencea) 

Gerald Rosen 
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 
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It is shown that space-time dilatation invariance (x--s -IX, t-+s -2t , with concomitant 
transformations for dependent variables) and linearity of the <1>-equation engender an exact, time
explicit generic form for the solution applicable to freely-decaying homogeneous incompressible 
fluid turbulence. This solution features a summation over mutually independent dynamical modes 
labeled by the dilatation scaling-index n( > 1). Without the assumption of isotropy nor 
introduction of a closure approximation procedure, the theory provides an explanation for the 
experimentally observed self-similarity of the correlation tensors and the decay laws 
( I u(x, t ) 12) cc t - n for the different types and decay stages of homogeneous turbulence. 

PACS numbers: 47.2S.Cg, 47.10. + g 

Although a theory for homogeneous incompressible 
fluid turbulence should be based exclusively on the Navier
Stokes equation, classical statistical mechanics, and exact 
mathematical analysis, contemporary theoretical ap
proaches 1-10 require ad hoc physicomathematical approxi
mations to simplify and facilitate solution of the correlation 
tensor dynamical equations. The primary simplifying as
sumption of statistical spatial isotropy is usually made, not
withstanding the large-scale anisotropy evident even in the 
most controlled types of wind and water tunnel turbulence. 
Moreover, to obtain a solvable system of correlation tensor 
equations from the infinite hierarchy produced by Navier
Stokes nonlinearity, the assumption of isotropy must be sup
plemented by a closure approximation procedure. 1-10 

Wyld II has shown that what is left out is not generally small 
compared to what is included by the various closure approxi
mation procedures. Finally, it is difficult to assess the practi
cal regime of applicability and the theoretical accuracy of the 
isotropic-closure approximation theories. 

The functional differential <1> equation originally der
ived by Hopfl2 provides the proper starting point for a more 
rigorous theory, without the assumption of isotropy nor the 
introduction of a closure approximation procedure. I show 
in the following, that space-time dilatation invariance X-+ 

S -l x ,t_S- 2t, withconcomitanttransformationsfordepen
dent variables) and linearity of the <1> equation engender an 
exact, time-explicit generic form for the solution applicable 
to freely-decaying homogeneous turbulence. From this solu
tion displayed below in (14), it follows that the quadratic 
velocity correlation tensor has the generic form shown in 
(16). In both (14) and (16) there appears a symbolic summa
tion over discrete andlor continuous values of the dilatation 
scaling-index n (> I); the latter constant parameter origin
ates in the initial form of <1> at t = 0 shown in (12), labels 
mutually independent dynamical modes, and serves as the 
decay exponent in (14) and (16). The decay law u2 cc t - nand 
concomitant self-similarity of the velocity correlation ten
sors obtain for all t > 0 if only a single dynamical mode is 
present, while u2 cc t n holds approximately if one dynami
cal mode is dominant in the summation during a stage of the 
decay. 

a) This work was supported by the National Aeronautics and Space Admin
istration grant NAGI-l 10. 

Let u = (ul(x, t), u2(x, t), u3(x, t)) denote the velocity 
field of an incompressible fluid governed by the Navier
Stokes equation 

au/at = -u.Vu+vV2
U-p-

IVp, (1) 

in which v, p are positive constants. For boundary-free flow 
with x = (x I,X2,X3) in R 3, the incompressibility condition 
V·u = 0 can be used to eliminate the pressure term from (1); 
the resulting integro-differential equation 

au/at = - (u·Vu)tr + vV2u, (2) 

features the transverse (solenoidal) part of the inertial term, 
where for any vector field in R 3, 

vtr(x) v(x) - V(V- 2V·v(x)) 

- () 1 "'f V'·v(x') d 3 , =vx +-y x. 
417" Ix-x'i 

(3) 

A statistical state of incompressible fluid turbulence is 
described by an ensemble of solenoidal velocity fields that 
evolve dynamically according to (2). All equal-time multi
point velocity correlation tensors are contained in the com
plex-valued Fourier transform of the probability measure, 
the Hopf characteristic functional '2 

<1> [y, t ]=1 + if (uj(x', t )Yj(x')d 3X ' 

-+ f (uj(x', t )udx", t )Yj(x'lYdx")d 3x 'd 3X " 

- ~ f (Uj(x',t)Uk(x", t)u/(x"', t) 

xy)(x'lYdx"lY/(x"')d3x'd3x"d3x'" + .... (4) 

In (4), the real parameter field y = (YI(X), h(x), Y3(X)) is re
quired to be continuous, infinitely-differentiable, and of 
compact support, (i.e., a vector test function) but is otherwise 
unrestricted. Since the correlation tensors inherit the solen
oidal quality of u, the characteristic functional depends ex
clusively on the transverse part ofy: <1> [y, t ]=<1> [ytr, t]. The 
reality and nonnegativity of the normalized probability mea
sure implies that <1> [y,t ]*=<1> [ - y, t], 1<1> [y,t]l.;;; I,andsev
eral additional nonholonomic conditions. 13 Furthermore, 
since all u satisfy (2), it follows that <1> satisfies the time
evolution equation derived by Hopf'2 
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a<p lat + 11<P = 0, 

11 = - ifytr(X) _8_ V k _8_ d 3X 

J 8Yk(x) DYj(X) 

- VfYj(X)V2 _8_ d3x, 
DYj(X) 

(5) 

(6) 

in which t5/DYj(X) denotes the Volterra functional derivative 
with respect to Yj(x), The parameter field y is not required to 
be solenoidal in order for the three functional derivative op
erators 818Yj(x) to be unconstrained and mutually indepen
dent in (6). 

In cases for which the turbulence is homogeneous, the 
probability measure over the ensemble is invariant under 
translations of the spatial coordinates, and the mean velocity 
(u(x, t) is independent ofx. Since the expectation value of 
(l)thenstatesthatJ (u(x,t )/Jt = O,onehas (u(x,t) = Ofor 
all t;>O in a Galilean frame for which (u(x, 0) = O. The Hopf 
expression for the quadratic velocity correlation tensor fol
lows from (4) as 

8
2

<P I (uj(x', t )uk (x", t) = - £ .( ')£ ( ") 
uYJ X UYk X y~O 

=Rjdr, t), (7) 

with the spatial dependence exclusively upon r=x' - x" for 
homogeneous turbulence; note that (7) is solenoidal, 
JRjklJrj = 0 = aRjklarb as a consequence of the incom
pressibility condition V·u = O. From (4) and (7) one obtains 

<p [y, t] = 1 - ~ J Rjdr,t) Yj(x') 

(8) 

in a GaIilean frame for which (u(x,t) = O. 
Let t denote a real positive disposable parameter. Un

der the dilatation transformation y(x)-+t 2y(tX), the func
tional derivative operators transform as 818 Yj(x) 
-+tt5/ DYj (tx) to preserve the basic commutation relation [8 I 
8Yj(x'),Ydx")] = 8jk 8(3)(x' - x") where 8(3) is the three-di
mensional Dirac distribution. Thus, under the transforma
tion y(x)-+t 2y(tx), the operator (6) transforms 

11-+-iS4Jy]'(SX) D Vk-8-d3x 
8Yk (tx) 8Yj(tx) 

- vS 3jYj(SX)V2 _8_ d 3X = t 211, (9) 
8Yj(tx) 

as seen by changing the dummy variable from x to t - IX in 
the integrals shown in (9). Hence, Eq. (5) becomes 

(! + t 211 )<p [t 2y(tx), I] = 0, (10) 

by replacement of the free parameter field y(x)-+t 2y(tX). 
With the additional transformation of the time variable 
(-+t -2/ , it follows from (10) that 

(~ + 11 )<p [t 2y(tx), t -21 ] = 0, (11) 

for all realt > 0 if <p [y(x), t] satisfies (5). Equation (11) ex
presses the space-time dilatation invariance of the <p Eq. (5). 
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Consider an initial statistical state at t = 0 such that 

(12) 
n(> I) 

where the Fn's have definite homogeneity under the dilata
tion transformations, 14 

(13) 

for all real constant t> 0 and a certain fixed constant scal
ing-index n; the latter parameter must be greater than unity 
for (13) to be consistent in the limit t -+0 + with F" [0] = O. 

It is understood that the symbolic summation S may em
brace continuous values (by a weighted integration) as well 
as one or more discrete values of the scaling-index n. If (12) 
holds, the solution to (5) takes the form IS 

<p [y(x), t J = 1 - S t - n + 1:7 n [!y((t )1/2x lJ (14) 
n(> I) 

for all t;>O, where the :7 n 's satisfy a structural equation 16 

derived from (5) and consistent with:7" [0] = 0, 

(15) 

The form (14) is an immediate consequence of Morgan's 
theorem 17 (commonly applied to obtain self-similar solu
tions to partial differential equations IX invariant under one
parameter groups of transformations), the linearity of(5), the 
dilatation invariance expressed by (11), and the fact that (6) 
acts on a quantity independent ofy to give zero. Thus, if the 
initial statistical state admits a linear decomposition of the 
form (12), the characteristic functional is given by the time
explicit generic form (14). The terms in the dilatation-index 
summation in (14) represent mutually independent dynami
cal modes, granted by the linearity and dilatation in variance 
of (5) for initial statistical states expressible in the form (12). 
The existence of mutually independent dynamical modes 
had not been conjectured previously for homogeneous tur
bulence governed by the essentially nonlinear Navier-Stokes 
equation; the form of the dynamical mode 5' n [y(x) 1 is fixed 
by a second-order functional differential equation III that in
volves n as an eigenvalue parameter if the asymptotic behav
ior of :7" is suitably prescribed for large y(x). 

It follows from (14) and either (7) or (8) that 

Rjdr, () = S t - n.ntJZI(r/(t )112), (16) 
n(> I) 

for al1l';;SO, where 

.nt(nl(r)== 8
2
:7 n [y(x)] I . 

Jk 8Yj(x')8Ydx ") y~O 
(17) 

The initial value of the quadratic correlation tensor (16) is 

Rjk (r,O) = S A JZ)(r), 
n( > I) 

(18) 

where 

A jZI(r)= lim t - n .ntjZI(r I(t ) 1/2) t 2nA ;Z)(tr) (19) 
,--0 

for alIt> 0; the final member oft 19) is a consequence of (I 7), 
(15) and (13), or equivalently (8), (12) and (13). In the aca-
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demic case for which the solenoidal tensor (19) is isotropic, 
its form is implied by the scaling relation in (19) to within a 
multiplying constant. 19 According to (16), the turbulence de
cays as 

u2 = u2(t )=j( lu(x, t W> = jRii(O, t) 

= j S t - ndtnl(O) (20) 
n/ > I) 

and the normalized tensor Rjk(r, t )lu2 is exclusively depen
dent upon r I(t ) 1/2 if only a single dynamical mode is present 
or if one dynamical mode is dominant in the scaling-index 
summation during the time-interval of interest. 

Such single-dynamical-mode turbulence has been ob
served experimentally20 with n = 2.0 (weak grid-generated) 
and n = 3.3 (strong waterfall-generated); in both cases self
similarity is evident in the normalized quadratic correlation 
tensor in terms of the variable r/(t )1/2, in precise agreement 
with the one-term specializations of (16) and (20). Strong 
grid-generated turbulence21 features the decay law u2 

<X t - n 

with n = 1.2 during the initial period of decay, and the asso
ciated normalized correlation tensors are again self-similar 
in r/(t )1/2 to within the accuracy of experimental measure
ment, for both the Taylor microscale and the Kolmogoroff 
similarity-length (which enters concurrently at very high 
Reynolds numbers) are approximately proportional to (t )1/2 

for n close to unity. 22 It is the scaling character of the initial 
statistical state at t = ° that gives rise to these particular 
dynamical modes (n = 2.0,3.3, 1.2) for different types of 
homogeneous turbulence. By employing the assumption of 
spatial isotropy and the eddy-damped quasi-normal approx
imation, Lesieur and Schertzer lo arrived at the same theo
retical conclusion: n is determined by the scaling character 
of the initial statistical state. 
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A study is made of the equilibrium configuration of a liquid surface under surface tension and 
gravity when additionally, the liquid is electrically conducting, is under a given electrostatic 
field, and has at the surface an electric double layer. The essential element here is the presence of 
the double layer, making the problem real in the sense of being distinct from what could be 
approached by the classical methods, and requiring the application of relatively recent 
considerations concerning electrostatic force in a continuum. From the point of view of 
applications, the significant feature is the prediction of a double-layer effect whose dependence 
upon the field is essentially linear, as compared with the quadratic, purely classical effect, and in 
specific problems that are solved, quantitative results in this respect are obtained, of possible use 
experimentally. 

PACS numbers: 73.30 + y, 68.10. - m 

1. INTRODUCTION 

We are basically concerned with the following problem. 
An electrically conducting liquid, at rest and subject to given 
constraints, is under the influence of a given electrostatic 
field: to determine theoretically the shape of the surface of 
the liquid. 

This might be thought of as a generalized Plateau prob
lem, in which the surface is determined by, in addition to 
surface tension and gravity, the field, and the first question 
arising is how to include the field in the general hydrostatic 
equation that has to be solved. Classically, according to the 
Helmholtz theory of electrostatic force in a continuum (see, 
e.g., Jeans'), it would be considered that this was given by 
applying at the surface the Maxwell stress tensor. The Helm
holtz theory has, however, long been a matter of controver
sy, one that goes back to the critique of Larmor2 and was 
notably taken up by Livens3 and Smith-White. 4 The oppos
ing school considered that, contrary to the energy method of 
Helmholtz, the electric force in a continuum should be cal
culated on the basis of direct charge--charge, dipole-dipole, 
and charge-dipole interactions, and this point of view 
reached its fruition in the work of Brown. 5 

The main result of Brown's theory was, remarkably, to 
confirm the correctness of the Maxwell stress tensor. This 
was the case, however, for the purpose of calculating the 
total force and torque on a rigid body in vacuo or immersed 
in a fluid environment, a question of prime concern in elec
trostatics, but the question of what the correct stress tensor 
should be locally, as required for determining the action on a 
deformable body, such as a body of liquid, was still to be 
resolved. This was taken up by the present author,6 and it 
was found yet again, that the Maxwell stress tensor was cor
rect, provided that there is no electric double layer at the 
surface. If there is, then the stress tensor to be applied at the 
surface is, indeed, different from the Maxwell stress tensor. 

This is clearly significant, for the presence of an electric 
double layer is a normal property of matter. It means, in the 
first place, that the deformation of a liquid surface under an 
applied field will be different from what would be predicted 
classically. In the second place, there is the implication of the 

presence of electrical stresses even in the absence of an ap
plied field. This latter point was taken up 7 and led to a purely 
electro hydrostatic theory of surface tension. The former was 
investigated subsequently. 8,9 

The purpose of the present paper is to give a new theory 
of surface deformation. This is necessary since the early con
siderations just referred t08

,9 have been found completely 
invalid on account of deep-seated fluid-mechanical difficul
ties associated with the matching of stress systems at the 
liquid surface. A second, much shallower, error was the at
tachment of the wrong sign to the mean curvature of the 
surface. This also affected the surface-tension theory,? which 
has recently been corrected. 10 

The physical interest of the deformation theory, apart 
from the questions of principle involved, can be introduced 
by our pointing out that while the purely classical effect is 
quadratic in the sense of depending only on the square of a 
parameter describing the strength of the applied field, the 
contribution arising from the double layer is essentially lin
ear. This means that, in a specific experiment, the deforma
tion of the surface under the field will, on account of the 
double layer, be different if the field is reversed. Differential 
effects ascribed to the double layer have been known qualita
tively for a long time (e.g., the differential vapor pressure for 
drop formation in the Wilson cloud chamber), and we ven
ture to suggest that the surface-deformation theory might be 
the first to make quantitative predictions of this kind. 

Now in our theory, surface tension T arises as a conse
quence of the general electrohydrostatic considerations, as 
has been pointed out above, instead of having to be intro
duced phenomenologically, as in the classical theory. In the 
same way, a second constant <I> appears, somewhat analo
gous to T.1t is presumably, like T, characteristic of the mate
rials present, but it differs in that it gauges the magnitude of 
the interaction of applied fields with the double layer. In a 
crude qualitative experiment it would perhaps be manifested 
as a "modification of surface tension" due to the field, but in 
a more refined, quantitative, sense this is not apt, for its effect 
is essentially linear, as we have said, and its mode of deter
mining the surface is otherwise quite different in mathemat-
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ical detail from that of T. The point is that solutions of specif
ic problems that we shall give open the possibility of the 
experimental determination of (/>. Thus, T and (/> having 
joint origin with the double layer, we have the prospect of a 
new line of approach or, at least, the reinforcement of estab
lished lines, to the physics of surface phenomena. 

In the theoretical context, the classical Plateau problem 
is a well-known one in the calculus of variations or, formu
lated alternatively, leads to a nonlinear differential equation, 
and few exact solutions are known. The special difficulty of 
the present problem, however, even after the governing elec
trohydrostatic equations have been correctly formulated, 
will be made clear by the following remark. To determine the 
shape, one must know the electric field at the liquid surface; 
but the electric field is the solution of an electrostatic bound
ary-value problem whose data must include the shape of the 
surface. In fact, the formulation is in terms of simultaneous 
functional equations, prospects for the exact solution of 
which appear to be nil. Nonetheless, the equations can be 
attacked by perturbation theory, and an important part of 
the theory as a whole is to spell out this procedure. 

In Sec. 2 we shall review very briefly the electrohydros
tatic foundation of the deformation theory, and in Sec. 3 
tackle the crucial and delicate stress-matching problem. In 
Sec. 4 we shall formulate in general terms a solution proce
dure. We shall find that situations have to be classified ac
cording to what we shall in due course call the zero-order 
surface. Once this is done, we shall have a general procedure 
for each such surface, and shall solve specific problems con
cerning cylindrical and spherical zero-order surfaces. 

2. THE BOUNDARY·LAYER STRESSES 

The methods of Brown's theory5 being essentially con
tinuum-mechanical, their adaptation6 to the local analysis of 
effects at a surface require that the surface be "smoothed 
out." This is to say, the sharp boundary, representing a phys
ical discontinuity between two phases, has to be replaced by 
a thin transition region in which quantities change abruptly 
but continuously from values characteristic of one phase to 
values characteristic of the other. This is, of course, more 
concordant with physical reality, and in any case, after ob
taining certain results one can take limits if one so wishes. 
We refer to the thin transition region as the boundary layer. 

The liquid we callA, and since it is electrically conduct
ing, there is zero electrostatic field strength in its bulk. We 
call the environment, which is nonconducting, B, and this 
may be a liquid immiscible with A, a gas, or empty space. In 
any case, we assume that it can be treated as a uniform in
compressible fluid dielectric with constant permittivity (di
electric constant) E (> 1). 

Insofar as A "has a surface," this must be taken as a 
mathematical surface S located in the boundary layer. We 
describe S by parametric equations x = x(u,v), y = y(u,v), 
z = z(u,v). Thenifs I = u,s 2 = v,so = v, where vis distance 
(positive or negative) in the direction normal to S at any 
point, zero on S, and increasing from A to B, S). (A = 0,1,2) 
are curvilinear coordinates for describing the boundary lay-
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er. In fact, they are parallel-surface coordinates, any surface 
for S 0 = const being parallel to S according to the definition 
of differential geometry (Eisenhart 1 I). We regard the bound
ary layer as contained between surfaces sa = C A ( < 0) and 
SO = C B ( > 0), defining its thickness a as C B - CA' The S). are 
not in general orthogonal curvilinear coordinates; however, 
since SO is a pure (signed) distance normal to the directions of 
S lands 2, their metric tensorsg).1l and gAil have the simplify
ing properties goo = gOO = 1, gOIl = gO,,( .u#0) = O. Parallel
surface coordinates with the tensor calculus are the essential 
mathematical apparatus of boundary-layer electrohydrosta
tics. They appear first to have been used in boundary prob
lems of physics by Howarth. 12 

The electric double layer is contained in the boundary 
layer, and consistently with the classical, macroscopic spirit 
of the theory, we do not have to assume any particular model 
for it. We have only to make two general assumptions con
cerning its macroscopic character. These are (a) that, under 
no applied field, it is uniform with respect to position on the 
surface, and (b) that its structure (and hence uniformity) is 
undisturbed by the action of an applied field. While (a) will 
meet with little challenge, there may well be cases in which 
(b) is poor even as a first approximation (see Booth I.l) as, for 
example, that of mercury in contact with an electrolyte. 
However, ambient electrolytes are irrelevant here, B being a 
nonconductor, and it is our opinion that normally, the as
sumption will be good enough to provide a reliable working 
basis. 

There is no field in the bulk of A but Eo, the outward
normal component of electric intensity E)., has some value 
whenso = cB,EB say, which is generally non-zero if there is 
an applied field, and then Do, the outward-normal compo
nent of electric displacement D). , is EE B' E being, as we have 
said, the bulk permittivity of B. A decision has to be made as 
to suitable general expressions for Eo and Do inside the 
boundary layer, and the simplest assumption which is con
sistent with the hypotheses (a) and (b) is that, as a first ap
proximation in terms of a, the boundary-layer thickness, 

Eo = ~(SO) + /(so)EB , ° 
C <-S <:;;c 

Do = 9(sO) + h (s O)EEB' A'" B' 
(1 ) 

W here ~ (s 0), 9 (s o),/(s 0), and h (S 0) are independent of the 
applied field and satisfy the conditions ~(CA) = 9(cA) 
= if(cB ) = 9(cB ) = O,/(cA ) = h (cA ) = O,f(cB ) = h (c B ) 

= 1. In fact, if (S 0) and 2IJ (S 0) represent the intrinsic double
layer field, very large if a is very small, while/Is 0) and h (S 0) 
represent the way the applied field is modified on crossing 
the boundary layer to the field-free interior of A. 

The zero-applied-field surface tension [Cade, 10 Eq. (1)], 
which we can continue to call surface tension when there is 
an applied field, is given according to present notation by 

T=-- r:YJdso, 1 i e

" 

41T e, 

and we shall define the constant (/> by 

(/> = __ 1_ r" (~h + 9/) dso. 
41T J, 

(2) 

(3) 

This definition of(/> differs from the previous one [Cade,H Eq. 
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(12)] through sign (a matter of pure convention) and by our 
avoiding the use of boundary-layer permittivity, using elec
tric displacement instead. 

We consider now in the boundary layer the stress tensor 
with respect to the coordinate system SA and in its mixed 
form TA!" and shall be concerned with the components TO!'. 
We shall take Cartesian coordinates with positive x axis ver
tically upward, and in keeping with usual convention (but 
contrary to Cade, X.9 following Eisenhart 11), shall define the 
mean curvature Km of S as half the sum of the reciprocals of 
the principal radii of normal curvature. We correct the pre
vious error in its sign8

.
9 (see Sec. 1) by conforming to the 

convention appropriate to physical application, that a prin
cipal radius of normal curvature is positive if the corre
sponding curve is locally convex with respect to the liquid 
A.14 

Now, with g the acceleration due to gravity and ill (a 
constant) the density of E, we can take over from the earlier 
work [Cade,S Eqs. (9) and (13)], but with the new conven
tions, the values of the stress components TO'L at the surface 
SO = cA : 

(4) 

where r is a constant. Under the new conventions K m' T, 
and <P have all had sign reversals, which is why the only 
apparent effect of correcting the sign of Km has been to 
change the signs of the expressions for TA °1 and TA ()2' 

3. MATCHING OF THE INTERNAL STRESS SYSTEM 

Let us for the time being denote the Cartesian coordi
nates by Xi(i = 0,1,2), X o being the vertically upward one 
which in (4) is denoted by x. Then in the field-free bulk of A, 
where the density isp (a constant), the Cartesian stress tensor 
Tij must satisfy the equations in Cartesian-tensor notation, 

a~i = {gp i = 0, 
aXj 0, i =f. 0, ~i=Tij' (5) 

Now in classical hydrostatics, it is normal to take Tij as sim
ply a multiple of the fundamental second-rank tensor 8ij 
( = I when i = j, = ° otherwise); to be precise, Tij = - PDij' 
P being the hydrostatic pressure which, therefore, from (5), 
must satisfy 

ap = _gp, ap = ap =0, 
axo aX I aX2 

leading at once to the familiar elementary result for the pres
sure in a liquid at rest. However, this form of Tij will not do 
now, for by virtue of the tangential stresses TA °1 and TA °2 in 
(4), such a stress system will not at the surfaceS ° = CA join on 
continuously to the stresses TA o!' (for transforming Tij to the 
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coordinates SA, we obtain TOo = - p, TOI = T02 = 0). We 
must therefore look for a system satisfying (5) but which is of 
a less simple form. 

The problem of finding such a system does not appear 
to be soluble in general terms, and we have to specialize in 
two major respects. In the first place, we shall regard the 
effects of weight (expressed in terms of g, p, and ill) and of the 
applied field as small, the main factor in the determination of 
the surface being the surface tension T, and shall contem
plate a perturbation procedure to the solution in which we 
can, in principle, work to any desired order in perturbation 
parameters which describe the weight and applied field. The 
zero-order approximation in this scheme is what we call the 
zero-order surface, the surface S without taking any account 
of the weight and applied-field effects. Our second special
ization is to assume that this surface is a coordinate surface 
of some system of orthogonal curvilinear coordinates (in
cluding Cartesian coordinates as one particular possibility) 
which might be used to describe A. 

Suppose that such a coordinate system is Xi (i = 1,2,3), 
perhaps being X; above ifit happens to be Cartesian. We 
regard A as represented in this system, taking the stress ten
sor there in its mixed form T~, whose covariant derivative 
(Eisenhart II) is 

Ti = __ 1 Th I _ ; aT; {' } { h } 
1.k ax k + J h k T h j k ' 

where the braced expressions are Christoffel symbols of the 
second kind. Contraction with respect to i and k gives the 
divergence of Tj, whence we find by simple rules of tensor 
analysis that the general form corresponding to (5) and 
which becomes (5) in the special case where theX; are thexi 

is, having relabelled some indices and put Xo = x, 

aTJi Th { j } _ TJ {h} = ~ 
aXj + ; h j h i j aX' gp, 

(6) 

(gil gmm)I/2Tlm = (gmm gll)I12Tml (/, m not summed). 

At the surface S 0 = C A we apply the transformation law 
for a mixed second-rank tensor in order to relate the compo
nents of Tij to the right-hand lnembers of (4): 

(7) 

These are the stress-matching equations. 
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4. THE PERTURBATION METHOD 

We can now outline verbally a solution procedure. We 
suppose that we can solve (6) to the extent of finding a general 
form of stress system containing at most two undetermined 
functions and which, taking these functions as zero, is a con
stant diagonal tensor - Po{jij' This last is the zero-order in
ternal stress system, which we would assume if there were no 
weight and applied-field effects, when the surface S would be 
the zero-order one, say X O = const. We attempt to find a 
first-order surface S, that is, one correct to the first order in 
perturbation parameters representing the weight and the ap
plied field. Our first step is to solve the electrostatic problem 
posed by the given applied field and the fact that the poten
tial takes some prescribed constant value on the surface, tak
ing the surface as the zero-order one. The solution is the first
order field, and to work with (7) with a view to finding the 
first-order surface, it is clearly sufficient to use this field, 
since it is that which, as represented in the equations, is cor
rect to the first order in the perturbation parameters. Our 
ability to do this is the key to our method for now, knowing 
the left-hand members, we can use the second and third of 
Eqs. (7) to determine (to the first order) the unknown func
tions in the T~, fixing for us the first-order stress system. 
Then the first of Eqs. (7) becomes an appropriate general 
formula for K m , a differential equation for the first-order 
surface. Let us suppose that we have solved it. 

Having thus calculated the first-order surface, we re
solve the electrostatic problem, using now the boundary con
dition as applied to this surface. This gives us the second
order field, and now the description of the last paragraph is 
repeated but in terms of one order higher, ending with our 
having supposedly solved a differential equation for the sec
ond-order surface. In this way, we can in principle proceed 
to any order in the perturbation parameters. 

In practice, a system that we study will be either two
dimensional or axisymmetric. Two-dimensionally, S is an 
infinite cylinder whose generators, on account of the role of 
gravity, are horizontal. In an axisymmetric system, S is a 
surface of revolution about an axis which, by the role of 
gravity in this case, is vertical, and which we take as coincid
ing with our vertically-upward x axis. In either case, we can 
obviously choose 5 A so that only one of 5 I and 5 2 enters the 
discussion, the one which is the parameter t of a curve C 
which is the cross section of the cylinder in the two-dimen
sional case, and the section by a half-plane from the axis of 
revolution in the axisymmetric case. 

Two-dimensionally, the mean curvature K m of S is half 
the ordinary curvature K of C, 15 and a function of t. Axisym
metrically, Km does not so reduce, although of course, again, 
it is a function only of the parameter t of the curve C in this 
case. 

In either case, we call C the profile and the problem of 
determining S reduces to that of finding the profile. Thus, in 
the perturbation procedure described above, the first stage is 
that of finding the first-order profile, the second that of find
ing the second-order profile, and so on. With v = s°, and 
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taking t as either 5 lor 5 2, the stress-matching equations (7) 
reduce to the two equations 

fEn 2 

-- - 2Km(T + <l>En) + gwx - r 
81T 

dE8 av aX) . <I>_= __ TI 
dt ax' at l' 

(8) 

and at each stage, subsequently to finding the stress system, 
the equation for finding the profile is a second-order ordi
nary, rather than partial, differential equation. 

5. THE GENERAL CYLINDER PROBLEM 

If we speak of, say, the general sphere problem, we are 
referring to the whole class of problems in which the zero
order surface is a sphere or part of a sphere, this dictating the 
choice of the curvilinear coordinate system X', which clearly 
should be spherical polar coordinates (r,e,¢ ). If we have a 
drop of conducting liquid in a nonconducting liquid environ
ment of the same density, it assumes, as we know, a spherical 
form under the action of surface tension. This is the simplest 
case of the Plateau problem. If the densities are unequal and 
there is an applied field, there is a departure from the spheri
cal form, which it is the object of the present theory to be able 
to calculate, but clearly, according to the definitions in the 
theory, the zero-order surface is the sphere, so that the prob
lem will be a particular case of the general sphere problem. 

By "cylinder" in the present context, we mean a circu
lar cylinder which (or part of which) is the zero-order sur
face, the class in this case being of two-dimensional prob
lems. It also has physical significance, as we shall see in due 
course, although perhaps not obviously and only in prob
lems involving parts of cylinders. 

In this section we give a fairly detailed treatment of the 
general cylinder problem. It is tedious but rewarding, the 
result being quite remarkable from the theoretical stand
point, while giving us the basis for all specific cylinder 
problems. 

We take the coordinate system Xl as cylindrical polar 
coordinates (r,e, z), related to our Cartesian coordinates by 
x = r cos e, y = r sin e, z = z, and in which the zero-order 
profile is the circle (or a circular arc) r = b. Nothing concern
ing the z direction enters, and the general stress equations 
represented by (6), when we work out the Christoffel symbols 
with the use of the metric tensor goo = I, gil = r, go I 
= gil) = 0, assume the special form 

aT' aTf! I 
--' + --' + - (T', - Tl}e) = gp cos e, 

ar ae r 

aT 'I} aT 1J
1J I} 

--+--+rT 
ar ae ' 

-gprsin e, (9) 

(l/r)T'e = rTo,. 

Let us look for a solution of the type 
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T', = - Po + M(r)F(O), 

TO, = G(O), T'e = ?G(O), 

T{I{I = -po+N(r)H(O), 

(10) 

where Po is a constant, and whereby the third of Eqs. (9) is 
satisfied automatically. Substituting into the second, we find 
atoncethatN(r) = randthatwecandetermineH(O)interms 
of G (a). Then, substituting into the first, we obtain M (r) = r 
and determine F (a ) in terms of G (a). The result is 

T',= -p()+gprcosO-~r (, G(r)dr-!rG'(O), 
Jan 

TIi,=G(O), T'e=?G(O), (11) 

TO () = - Po + gpr cos 0 - 3r (Ii G (1') dr, Jeu 

containing just the one undetermined function G (a), and 
where 00 is an arbitrary constant. If G (a) = 0, we have sim
ply, in polar coordinates, the ordinary hydrostatic stress ten
sor for a liquid of density p. 

We can express the profile in polar form, 

x = r(O) cos a, y = r(O) sin a, (12) 

so that a will be the parameter t. Since at zero order r(O) = b, 
we can write 

r(O) = b P +.1 (Oll, (13) 

and A (0) must be assumed small. The right members ofEqs. 
(8) when X i are the present coordinates, become, respective
ly, written out in full, 

av ~T' + av ~Te 
ar av ' ao av ' 

av ao T' av ao Te 
+Tr~ {I+ae~ (I' 

(14) 

av ar T' + av ar Te + av ao T'{I + av ao Tee, 
ar at ' ao at ' ar at ao at 

and we have to calculate the partial derivatives on the profile 
C. 

For(x,y)onC,B= t,sothataOlat= 1 while,from(13), 
arlat = M '(a). Since v is the distance from (x,y) positive in 
the outward-normal direction, if ¢ is the angle between this 
direction and the positive x direction (see Fig. 1) we have, for 
a point on the normal, xlv) = x + v cos ¢, y(v) = y 
+ v sin ¢, so that 

! r( v) l2 = ? + 2(x cos ¢ + y sin ¢)v + v, 
ll() y+vsin¢ tan u v = , 

x+vcos¢ 

and we can find arlav, ao lavon C in terms of x, y, and ¢. 
Then with (12), (13), and the fact that cos ¢ 
= y'/(X,2 + y'2) I /2, sin ¢ = _ X'/(X'2 + /2) 1/2, derivatives 

being with respect to 0, we can express the results in terms of 
.1(0). Having the four partial derivatives arlav, ... , we ob
tain the avlar, ... , in terms of them and the Jacobian 
a(r,O )la(v,t), according to the well-known rule of the calcu
lus of two variables. All the derivatives are evaluated on the 
profile C, whereas we need them on the parallel curve for 
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FIG. I. The relationship of r,e to v,l/!. 

v = C A (cf. Sec. 2), but the error is ignorable. Likewise, we 
can take dEBldt in (8) as dEBldO. 

In this way and through (14), Eqs. (8) become the parti
cular stress-matching equations appropriate to the general 
cylinder problem, 

(15) 

tPdEB = M'(l +.1) T' _ b 2A'2(1 +.1) TO 
dO D ' D ' 

+
1+AT' _M'(l+A)Te 

D (J D {I' 

D = (1 + U + .1 2 + .1'2)1/2. 

We now proceed with the determination of G (0 ) in ( 11), 
and understand clearly that we shall for the time being be 
working to the first power in whatever are the perturbation 
parameters, so that the result for G (a) will be the first-order 
one. This means, expressing .1(0) as 

.1(8) = 7](0) + t (0) + "', (16) 

where the nth term in the series is the contribution made to 
the solution at the nth stage of the perturbation process, that 
we require only 7](0). However, we cannot go wrong by re
taining A (0) for the present, dropping powers and mutual 
products of this function and its derivatives, as they occur. 

We approximate in this way, which involves taking into 
account (13) and the fact that liD in (15) can be expanded 
binomially, and also recognizing that there is nothing of zero 
order on the right of (11) except Po' and hence find at once 
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from Eqs. (11) and the second ofEqs. (15) that, to the re
quired order, 

t/> dEB 
G(O) = b2 dO ' (17) 

understanding, as explained in Sec. 4, that E B comes from 
the solution of the field problem with the zero-order (cylin
drical) profile. Now, substituting into the first of Eqs. (15) 
and approximating in exactly the same way, we obtain 

cE 2 8; - 2Km( T + t/>EB) - g(p - w)b cos 0 

3t/> It/>d 2EB 
=T*---E -----, 

2 b B 2 b d0 2 
(18) 

where 

(19) 

and the problem of finding the first-order profile is reduced 
to finding A. satisfying, to this order, the single equation (18). 

Now A. enters through the mean curvatureKm • We have 
seen that, two-dimensionally, 2Km is the signed curvature K 

of the profile, and this is given by the well-known polar 
formula 

K(O)=+{I+ ~(:~)2_+ :;:}{1+ ~(:~)2r3/2. 
(20) 

We now go through again the kind of approximation proce
dure, in terms of A., described above, and in this way, with 
some small algebraic manipulations and replacement of A. by 
77 [Eq. (16)], (18) becomes 

d277 g(p-w)b 2 cbEB2 
--+77=..1 + cosO---
~2 T ~T 

It/> It/>d 2EB 
--E -----

- 2 T B 2 T d0 2 ' 
(21) 

in which 

..1 = br */T + 1, (22) 

and which is a simple differential equation for 77· 
Ifwe were working to the order zero, we should have at 

this stage ..1 = 0, with r * = r - Po [from (19)] and r the 
external (constant) hydrostatic pressure PI in B, providing 
the well-known elementary formula (for a cylinder), 
T /b = Po - PI' relating surface tension to the pressure dif
ference. Now, we cannot speak of r and Po as "pressures"; 
they are just constants in the actual stress system. On inte
grating (21), two constants will appear in addition to..1, and 
then all three will be fixed, along with the first-order profile 
itself, by compliance with three given conditions, which we 
call end conditions, representing constraints upon the liquid 
A. Thumd conditions which we find useful in practice are 
that, for distinct values 0 1 and O2 of 0, 

r'(Ol) = 0, r'(02) = 0, r(02) = b, (23) 

implying by (13) and (16), when we are working to the first 
order, that 
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(24) 

This is, of course, but one of various possibilities. 
Now suppose that we can solve (21) with t/> = 0, replac

ing..1 by ..10 obtained by taking t/> = 0 in (19). Let us call the 
result which satisfies the end conditions (24), 770' Then this 
gives the first-order profile as determined just by surface 
tension, weight, and the "classical" electrostatic action, tak
ing no account of the applied field acting upon the double 
layer. But we can write (21) as 

d 2 {77 + ~ t/> EB(e) _ ~ t/> EB(Oo)} 
del 2 T 2 T 

+ {77+~ t/> EB(e)-~ t/> EB(Oo)} 
2 T 2 T 

g(p-w)b 2 €b{EB(OW (25) = ..10 + cos 0 - , 
T 8rrT 

having used the fact that..1 =..10 + ~(t/> /T)EB(eO)" and this 
is the same differential equation as for 770 except for the re
placement of 770 by a new dependent variable. Thus immedi
ately, the solution for 77 is 

1 t/> 3 t/> 
77 = 770 - --EB(e) + --EB(OO) 

2 T 2 T 

+ C I cos 0 + C2 sin e, (26) 

a complementary function with constants CI and C2 appear
ing on the right. We have finally to ensure that 77 satisfies 
(24), and this gives us 

EB(Oo) = HEB(e2) - EB'(01)CSC(02 - 01) 

+ EB '(02)cot(02 - 01) J, 

C1 = ~ t/> {E B '(OtJcos e2 - E B '(02)COS OIl 
2 T 

X CSC(02 - Otl, 

C2=~ t/> {EB'(01)sin02-EB'(02)sinO I I 2 T 
XCSC(02 - 0 1), 

(27) 

We note that, with this determination of the constants, 00 is 
fixed, 16 representing determination of the first-order stress 
system (11) within the extent of the constant Po' 

Any specific problem presents a certain differential 
equation for 770 whose prediction is, indeed, the same as it 
would be classically, and the remarkable result we have at
tained is (26), whose meaning is that the applied-field-dou
ble-Iayer effect is simply added on in a standard way, with no 
more equation solving. Still more remarkably, this pheno
menon recurs at the second order (higher orders have not 
been tested). The second-order theory itself evolves by work
ing to the second approximation in the theory above, with 77 
known, so that we retain b [Eq. (16)], unknown and to be 
determined, along with known 772

, 7777', and 77'2. We consider 
no more description necessary. 

6. THE GENERAL SPHERE PROBLEM 

The theory of the general sphere problem is so closely 
parallel to that for the general cy tinder problem that it will be 
sufficient to just write down analogs offormulas in Sec. 5 and 
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comment on points of significant difference. The reader who 
is more interested in applications could, with small sacrifice, 
proceed straight to Sec. 7. 

The coordinate system X j is spherical polar coordinates 
(r,B,,p ), related to our Cartesian system by x = r cos B, 
y = r sin B cos ,p, z = r sin B sin ,p, and the zero-order pro
file is a circular arc r = b. A major difference, characteristic 
of stress theory, is that notwithstanding axial symmetry, we 
have to take into account the stress component T"'",. We 
then find that the appropriate particular expression of (6) is 

aTrr aTor 1 0 <P ) 
--+--+-(2Trr - To - T '" 

ar aB r 

+ TOr cot B = gp cos B, 

aT' aTo 
__ 0_ + __ 0 + (To _ T'" )cot B 

ar ao 0 '" 

+..!...Tro+rTo
r = -gprsinO, 

r 

(1/r) T'o = rT o
r· 

We assume now 

(28) 

T'r= -Po+M(r)F(O), TOr=G(O), T'o=rG(O), 
(29) 

TOo = T"'", = -po+N(r)H(B) 

and obtain, corresponding to (11), the solution 

T'r = - Po + gpr cos f) - ~ r rO G (T) dT Joo 

- * rG '(f)) -1 rG (f) )cot f), 
(30) 

TOr = G (f)), T'o = rG (f)), 

TO fI = T'" '" = - Po + gpr cos f) - 4r ~ G (T) dr. Joo 

The zero-order profile being a circular arc, we again 
have (13), leading to exactly the same particular stress
matching equations (15). We hence obtain the same first
order result (17) for G (B ), but because of the different formula 
for Trr> the analog oft 18) is different. So is the expression for 
Km which, as we have said, is not now half the ordinary 
curvature of the profile (cf. Eisenhart, IIp. 227, example 4; 
the explicit expression is given by CadeS). Now the same 
derivation but with these differences leads to the analog of 
(21), 

d 2TJ dTJ 
--2 + cot f)- + 2TJ 
df) df) 

_ A + g(p - w)b 2 f) EbEo2 
-41 cos ----

T 81TT 
(31) 

2 t1> 1 t1> d 2 E a 1 t1> dE a 
---E ----------cotO 

3 T a 3 T dB 2 3 T dB ' 

br· 8 t1> 
L1 =-- +2, r· =r-po+--Eo(Oo)' 

T 3 b 
From this point, and with the same end conditions (24), 

the same procedure, with only differences of detail, goes 
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through as led from (21) to (26). IfTJo is the solution of(3l) 
when t1> = 0, the actual solution of(31) is 

I t1> 8 t1> 
TJ = TJo - --Eo(O) + --Eo(f)o) 

3 T 3 T 
+ C1 cos 0 + C2QI(COS 0), (32) 

where QI is the Legendre function of the second kind, of 
order 1, and the constants CI, C2, and 00 are given by 

1 { E~(fJI) 
Eo(Oo) ="8 EO (02) - -o-

X [Q ; (cos (2)COS O2 + Q I(COS (2)sin O2 ] 

+ E B~(2) [Q; (cos Otlcos O2 + QI(COS f)z)sin 01 ] }, 

CI =..!... t1>! E B(OI)Q; (cos Oz) - E B(02)Q; (cos Otl J ..!..., 
3 T 0 

C2 =..!... t1> (E B(Otlsin B2 - E B(02)sin Btl ..!..., 
3 T 0 

Ii = Q; (cos B\)sin B2 - Q; (cos (2)sin B\. 

7. SOME SPECIFIC FIRST-ORDER SPHERE AND 
CYLINDER PROBLEMS 

(33) 

Consider the upward-facing horizontal plane surface of 
a solid conductor, having a straight groove of uniform width 
2b, and in the groove conducting liquid bulging above to an 
extent controllable by a pressure head, as shown sectionally 
in Fig. 2. Let this liquid be the liquid A, of density p, and 
above A is E, which is empty space or a nonconducting fluid 
of density w<p. By adjusting the pressure head we can force 
a situation in which the interface meets the conducting plane 
perpendicularly (see Fig. 2), and if w = p and no electric field 
is applied, we have a two-dimensional case in which the sur
face is half a cylinder, that is to say, the profile a semicircle. 
With these special conditions, the actual profile coincides 
with what would otherwise be the zero-order profile. The 
corresponding axisymmetric arrangement, in which the 
zero-order surface is a hemisphere, is one in which, instead 
of a groove, we have a circular notch of radius b. 

B 

, II;'; 

To pressure head ~ 

FIG. 2. The practical realization of a quasicircular-cylindricaI lor quasi
spherical) liquid surface. 
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The above description is of what were previously called 
sessile-drop problems (CadeX,9), the experimental arrange
ment being that conceived for the practical realization of 
two- and three-dimensional sessile drops with fixed base di
mension 2b and contact angle ~1T, Suppose that, in either 
case, the solid conductor and liquid A are at zero potential, 
and that the system is subjected to a uniform applied field 
which is vertical and of strength F, reckoned positive if the 
direction is upward (i.e., of x increasing), This could be real
ized (approximately) if the solid conductor were the lower 
member of a pair of condenser plates. The first-order electro
static problems, whose solutions will give E B for the first
order theory of the last two sections are: two-dimensionally, 
that of a conducting plane with semicylindrical prominence 
and three-dimensionally, that of a conducting plane with 
hemispherical boss, the external influence in each case being 
the said uniform field and the boundary condition, potential 
zero. ,7 Solution of these problems by the method of electrical 
images is elementary (see Jeans'), giving in the respective 
two- and three-dimensional cases 

E8 = 2Fcos 8, EB = 3Fcos 8. (34) 

The conditions of the "contact angle" of!1T and base dimen
sion 2b, along with symmetry and smoothness about the in
tersecting x axis, imply end conditions which are (23) with 
8, = 0, 82 = !1T. 

With (34) and these end conditions, we find at once from 
(27) and (33) that EB(80 ) = 0, C2 = 0, while in (26) and (32), 
the C, term exactly cancels the EB(8) term. Thus in both 
cases 1/ = 1/0' representing that there is no cP effect. 

We introduce the perturbation parameters 

a = g( P - UJ)b 2 /3 = FcP = EF
2
b 

T' T' Y 21TT 
(35) 

(we do not, according to what has just been said, need /3 at 
present), and then, from (21) and (31), putting cP = 0 and 
using subscript 0, we obtain as the respective equations for 1/0 

d
2
1/o A 8 28 --2- + 1/0 = Llo + a cos - ycos , 

d8 
(36) 

d 21/0 + cot 8 d1/o + 2... = .1 + a cos 8 - 9 Y cos2e. (37) 
d82 d8 ·to 0 4 

The method of solution particularly suitable for these equa
tions is variation of parameters (see any text on ordinary 
differential equations, e,g., Ince'S). Carrying out the solution 
with use of the enq conditions, and then (13) with 1/ replaced 
by 1/0' we obtain as the first-order profiles for the respective 
two- and three-dimensional cases, 

r = b ! I + !a(8 sin 8 + cos 8 - !1T) + 1Y cos28 ), (38) 

r = b ! I -1a cos 8 In(I + cos 8) + n,y cos28 ]. (39) 

These solutions are exactly as would be obtained classically, 
there being, as we have said, no cP effect. 

The conclusion is different for the cylinder problem in 
which everything is the same except that we have a different 
applied field. Instead of a field given to be uniform, we shall 
have that due to a uniform line charge of amount/per centi
meter, parallel to the generators of the cylinder and passing 
through the point (e,O) (e> b ) of the xy plane. 
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We shall not burden this exposition with the solution of 
the first-order electrostatic problem. It is obtained quite 
quickly by simple cylindrical harmonics, and still more 
quickly using the two-dimensional form of Robin's integral 
equation (see Durand 19). In fact, the solution of Robin's 
equation is the surface-charge density, and a rule of elemen
tary electrostatics (Coulomb's theorem) gives us at once E B' 

E
B

(8) = 8/ e(b 2 - e
2
)cos e (40) 

E (b 2 + C2)2 _ 4b 2C2 cos28 

We use the same perturbation parameter a as in (35), 
but replace /3 and y there by 

- 2/cP - 2/2 
/3 = EbT' Y = 1TEbT' (41) 

and it is convenient to introduce the dimensionless constants 

b 2 + c2 , b 2 _ c2 

a= a=---
2be ' 2bc 

noting that 

Then the equation for 1/0' 1/ without the cP effect, is 

d 21/0 ra'2 cos28 

d8 2 + 1/0 = .10 + a cos 8 - 2 2' 
(a - cos 8)2 

(42) 

(43) 

(44) 

which is solvable by variation of parameters, while the cP 
effect is brought in by using (40) with (26) and (27), our hav
ing, as before, that 8, = 0, 82 = !1T. The solution for 1/, used 
in place of A in (13), gives by that equation the first-order 
profile, which is 

r = b { I + ~a(8 sin 8 + cos 8 - !1T) 

+73a'cos8(~- 0 I 2) 
a- a- - cos e 

I - ,[ a' ( 8 I a + cos e +-ya - cos n 
2 2a a - cos e 

+ (1 - a~2 )sin 8 arctan (sin 8Ia') - arctan ~,)]}. 
(45) 

8. THE SECOND-ORDER CYLINDER AND UNIFORM 
FIELD PROBLEM 

Returning to the two-dimensional uniform-field situa
tion, the condition that the potential should vanish on the 
line x = 0 and on the first-order profile (38), is the boundary 
condition for the second-order field problem for the electro
hydrostatic problem as a whole. If we calculate this field (to 
the extent of E B)' there is no difficulty in principle in calcu
lating the second-order profile, according to the procedure 
indicated briefly at the end of Sec. 5. 

In fact, the electrostatic problem is not an elementary 
one, but we can nevertheless find E8 to the first order in a 
and y (which is all we require) by applying a perturbation 
process to Robin's integral equation. This has been done be
fore (Cade9

), but the result was wrong on account of the first
order profile obtained by the early considerations being 
wrong. However, the difference is only a question of values 
of constant factors, and using the correct profile (38), the 
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previous second-order field solution can be corrected at once 
by a mere change of a constant, to give 

E B (e ) = F { 2 cos e - a [ (e sin e + cos e - 6hr) cos e 

+ (lhr) sin 2e In(sec e + tan e) + (2hT) cos 2el/l (e)] 

x jycos 3e}. (46) 

where 

i
1T12 

I/I(e) = 8 In(sec t + tan t )dt. (47) 

This function is related to Clausen's integral, 

Cl(e) = - f In(2 sin !t )dt, (48) 

by 

1/1 (e) = 2Cl(~1T + e) + !Cl(1T - 2e), (49) 

and tablesofCI(e) have been given by, among others, Ashour 
and Sabri20 and Lewin. 21 

The process outlined at the end of Sec. 5 leads to a dif
ferential equation with the same left member as (21) but with 
the replacement of 17 by S [Eq. (16)], and a right member 
which is very much more complicated, and as we said, the 
situation is one in which we solve for So, S with no <P effect, 
and simply add on the <P effect afterwards, now using the end 
conditions S /(0) = S '(!1T) = S (~1T) = O. The solution process 
for SO' by variation of parameters, is laborious in the ex
treme, but once complete, complementing it with the <P 
terms is relatively easy. 

The final result for the second-order profile, in terms of 
the perturbation parameters (35), is 

r = b (I + ~a(e sin e + cos e - ~1T) + 1Y cos
2
e 

- !a2ne) + ~Yf2(e) + ~af3ne) 
- if3yf4(e) + yals(e)j, 

ne) = a1T(e sin e + cos e - !1T) + (1 + ie 2) cos2e, 

h(e) = 10 - 17 sin2e + 7 sin4e, 

f~(e) = (e sin e + cos e + ! - ;) cos e 

+ J...- sin 2e In(sec e + tan e) + ~ cos 2el/l (e). 
1T 1T 

f4(e) = 3 cos e + cos 3e, 

Is(e) = (r/32 + ~ + fs sin2e) cos e 

- (1T/6 - 9/81T) cos2e + tile sin e - !1T) 

+ ~(sin 2e - 30 )e cos e - _5_ sin e cos2e In(sec e 
81T 

where 

+ tan e) + _1_(3 + 4 sin2 e) cos el/l(e) 
81T 

+ _1_( sin en (e) - n (!1T) j, (50) 
21T 

n (8) = l8 I/I(t )dt. (51) 

This function, which was tabulated by the present author,9 is 
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also, like 1/1, related in a simple way to one tabulated by 
Lewin. 21 

9. DISCUSSION 

We anticipated in Sec. 1 the fact that the <P terms in a 
profile solution will predict a differential effect upon the pro
file on field reversal. Clearly, this differential effect would be 
the property to use in an experiment aimed at the measure
ment of <P, as it separates off qualitatively the <P effect from 
the weight effect and the "classical" electrostatic deforma
tion. In fact, the differential maximum height hd is what, no 
doubt, one would measure. Denoting the solution (45) by 
rlf,e) and (50) by r(F,e), we shall have hd = rlj,O) - r( - /,0) 
in the former case, and hd = r(F,O) - r( - F,O) in the latter. 
Thus, referring to the definitions (35) and (41) of the pertur
bation parameters, we find at once for the former, first-order 
line-charge profile, 

hd = - 2/3 /a'a2 (52) 

[having used (43)]. while for the latter, second-order uni
form-field profile, 

Taking an experimental arrangement as described in 
Sec. 7 one would, presumably, choose for the liquid A a weak 
electrolyte. For we require only that A be a conductor, and in 
this way we have the best chance of avoiding difficulties 
which might arise with strong electrolytes or liquid metals 
(distortion of the double layer v, Sec. 2). In the second place, 
using for A an aqueous solution, it would be easy to obtain a 
nonconducting liquid B which was transparent and of nearly 
the same density, which should allow the half-width b of the 
groove to be relatively large, facilitating measurement. 

The absence of <P effects from the first-order uniform
field profiles (38) and (39) might be seen as a distant conse
quence of the elementary fact that a dipole experiences no 
force in a uniform field, although this facile observation is 
not in itself sufficient without some elaboration. There are 
practical implications. For, expecting effects to be generally 
small, one would, experimentally, wish to use a large field. 
But in the line-charge case, where the field would presum
ably be provided by a thin wire, its largeness at the liquid 
surface would be limited by considerations of dielectric 
breakdown, since it would be so much larger close to the 
wire. In the uniform-field case one could, indeed, have a very 
large field. But then the effect itself, being of second order, 
would, for a given order offield, be much smaller. 

The optimum theoretical basis for an experiment would 
be a first-order profile which contains a <P effect but for 
which the applied field, although no doubt nonuniform, does 
not, in the theory, become infinite anywhere. But it is pre
cisely here that one meets the greatest obstacle to finding 
specific profile solutions, namely, in the difficulty of solving 
the electrostatic problems involved. Further progress from 
the quantitative physical point of view would seem to lie with 
seeking and solving a problem such as we have just 
described. 
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Erratum: Structure and representations of the symmetry group of the four
dimensional cube [J. Math. Phys. 23,944 (1982)] 

M. Baake, B. GemUnden, and R. Oedingen 
Physikalisches Institut, Universitat Bonn, D-5300 Bonn I, West Germany 

(Received 3 August 1982; accepted for publication 11 August 1982) 

PACS numbers: 02.20.Qs, 02.20.Rt, 99.10. + g 

(1) Page 944, in the middle of the left column: Delete (2) Page 946, left column, line 14: Delete the comma 
before - w , i.e., write "Then (a,1T) - w (b,u)···." 

(3) Pag~ 946, right column, line 11: Replace Tij (a,1T) by 
1}i(a,1T). 

(4) Page 946, right column, between lines 28 and 29: 
Insert 

and replace it by (a,1T) 1-+ sgn[ <P (a,1T)] ("signum S8")' 
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(5) Page 946, left column, line 22: Delete 1 <;;;n<;;;ord 1T 
and replace it by 1 <;;;n < ord 1T. 
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